• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bloch型空間上的Toeplitz 算子及分數(shù)階導(dǎo)數(shù)刻畫

    2023-04-29 00:44:03賈策曹廣福王曉峰張藝淵
    關(guān)鍵詞:緊性王曉峰刻畫

    賈策 曹廣福 王曉峰 張藝淵

    令μ為Cn中單位球Euclid Math TwoBA@n上的正Borel測度.本文主要刻畫了Bloch型空間Bα(Euclid Math TwoBA@n)上以μ為符號的Toeplitz算子Tαμ的有界性和緊性,其中0<α<1. 當(dāng)α>1時,本文利用分數(shù)階導(dǎo)數(shù)給出了Bα(Euclid Math TwoBA@n)空間上的函數(shù)刻畫的充要條件.

    Toeplitz 算子;分數(shù)階導(dǎo)數(shù);Bloch 型空間

    O177A2023.031001

    收稿日期: 2021-01-23

    作者簡介: 賈策(1984-), 天津人, 博士, 高級工程師, 主要研究方向為算子理論.E-mail: jiace@ibp.ac.cn

    通訊作者: 曹廣福.E-mail: guangfucao@163.com; 王曉峰.E-mail: wxf@gzhu.edu.cn; 張藝淵.E-mail: 1053296958@qq.com

    On the characterization of Toeplitz operators and fractional derivatives? on Bloch-type space

    JIA Ce1,2, CAO Guang-Fu1, WANG Xiao-Feng1, ZHANG Yi-Yuan1

    (1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;

    2. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China)

    Let μ be the positive Borel measure on the unit ballEuclid Math TwoBA@n of Cn. We in this paper characterize the measure μ onEuclid Math TwoBA@n? for which the Toeplitz operator Tαμ is bounded or compact on the Bloch-type spaces Bα(Euclid Math TwoBA@n), where 0<α<1. Additionlly, we also give a characterization for the functions on Bα(Euclid Math TwoBA@n) in terms of fractional derivatives, where α>1.

    Toeplitz operator; Fractional derivative; Bloch-type space

    (2010 MSC 30H30, 47B35, 26A33)

    1 Introduction

    Let Cn be the complex Euclidean space of dimension n and Euclid Math TwoBA@n the unit ball of Cn. For α>-1, let dvα(z)=Cα(1-|z|2)αdv(z) be the weighted volume measure, where cα=Γ(n+α+1)n!Γ(α+1) is a normalizing constant such that vα(Euclid Math TwoBA@n)=1. For α>-1 and 0

    When the weight α=0, we simply write Ap(Euclid Math TwoBA@n) for Apα(Euclid Math TwoBA@n).These are the standard Bergman spaces. When p=2, A2α(Euclid Math TwoBA@) is a Hilbert space. It is well known that the reproducing kernel of A2α(Euclid Math TwoBA@) is given byKα(z,w)=1/1-〈z,w〉n+1+α,where 〈z,w〉=∑ni=1ziw-i for z=(z1,…,zn), w=(w1,…,wn). The Bergman projection Pα is the orthogonal projection from L2(Euclid Math TwoBA@n,dvα) onto A2α(Euclid Math TwoBA@) defined byPα(f)(z)=fEuclid Math TwoBA@nKα(z,w)f(w)dvα(w), f∈L1(Euclid Math TwoBA@n,dvα).

    The projection Pα naturally extends to an integral operator on L1(Euclid Math TwoBA@n,dvα), see Ref. [1, Theorem 2.11].

    賈 策, 等: Bloch型空間上的Toeplitz 算子及分數(shù)階導(dǎo)數(shù)刻畫

    For α>-1, we also define the general Bergman projection of the measure μ as

    Pα(μ)(z)=cα∫Euclid Math TwoBA@nKα(z,w)(1-|w|2)αdμ(w).

    For a measure μ onEuclid Math TwoBA@n and α>0, we define a Toeplitz operator as

    Tαμ(f)(z)=cα-1∫Euclid Math TwoBA@nf(w)(1-|w|2)α-11-〈z,w〉n+αdμ(w),

    f∈L1(Euclid Math TwoBA@n,dvα).

    Thus Tαμ(f)(z)=Pα-1(μf)(z), where dμf(z)=f(z)dμ(z). For α>0, the α-Bloch space Bα(Euclid Math TwoBA@n), also known as the Bloch-type space, consists exactly of holomorphic functions f on Bn such that

    ‖f‖*Euclid Math TwoBA@α(Bn)=supz∈Bn(1-|z|2)α|SymbolQC@f(z)|<∞,

    whereSymbolQC@f(z)=(fz1(z),...fzn(z)).

    The Bloch-type space Bα(Euclid Math TwoBA@n) becomes a Banach space when equipped with the norm

    ‖f‖Bα(Euclid Math TwoBA@n)=|f(0)|+supz∈Euclid Math TwoBA@n(1-|z|2)α|SymbolQC@f(z)|.

    It is well known that the above norm is equivalent to |f(0)|+supz∈Euclid Math TwoBA@n(1-|z|2)α|Rf(z)|, where Rf(z)=∑nk=1zkfzk(z) is the radial derivative of? f at z.

    Let H(Euclid Math TwoBA@n) be the holomorphic functions onEuclid Math TwoBA@n, for any two real parameters γ and t such that neither n+γ nor n+γ+t is a negative integer, we define an invertible fractional differential operator Rγ,t:H(Euclid Math TwoBA@n)→H(Euclid Math TwoBA@n) as follows. If f(z)=∑∞k=0fk(z) is the homogeneous expansion of f, then

    Rγ,tf(z)=

    ∑∞k=0Γ(n+1+γ)Γ(n+1+k+γ+t)Γ(n+1+γ+t)Γ(n+1+k+γ)fk(z).

    The inverse of Rγ,t, denoted by Rγ,t is given by

    Rγ,tf(z)=

    ∑∞k=0Γ(n+1+γ+t)Γ(n+1+k+γ)Γ(n+1+γ)Γ(n+1+k+γ+t)fk(z).

    Toeplitz operators have been extensively studied on many spaces of analytic functions, see,? for instance, Refs. [1-18]. A fundamental problem is to determine conditions on the measure, necessary or sufficient, for the corresponding Toeplitz operator to be either bounded or compact. There is also some previous work on the characterization of bounded and compact Toeplitz operators Tαμ on α-Bloch spaces. In Ref. [14], the authors have completely characterized complex measure μ on the unit diskEuclid Math TwoDA@? under some restricted conditions for which Tαμ is bounded? or compact on Bloch-type spaces Bα(Euclid Math TwoDA@) with 0<α<∞. In Ref. [13], due to the limitation of technique in Ref. [16, Theorem 2], the? authors have only characterized the positive Borel measure μ onEuclid Math TwoBA@n such that Tαμ is bounded or compact on Bα(Euclid Math TwoBA@n) with 1≤α<2. In this paper, we will use another different technique to characterize the positive Borel measure μ onEuclid Math TwoBA@n for which the Toeplitz operator Tαμ is bounded or compact on Bα(Euclid Math TwoBA@n) with 0<α<1, which is an extension of Ref. [13]. Besides, we also give a characterization of functions on? Bα(Euclid Math TwoBA@n) in terms of fractional derivatives and its module with α>1.

    Our main results about the boundedness or compactness of Toeplitz operators Tαμ on Bα(Euclid Math TwoBA@n) with 0<α<1 are given in Sections 3 and 4, and the main results about characterization of functions on Bα(Euclid Math TwoBA@n) in terms of fractional derivatives and its module with α>1 are shown in Section 5.

    2 Preliminaries

    For w∈Euclid Math TwoBA@n\{0}, the automorphism mapping φw:Euclid Math TwoBA@n→Cn is given by

    φw(z)=w-Pw(z)-1-|w|2Qw(z)1-〈z,w〉,

    where Pw is the orthogonal projection from Cn onto the one dimensional subspace [w] generated by w, and Qw is the orthogonal projection from Cn onto Cn-[w] defined by Qw=I-Pw. More information about the mapping φw is described in section 2.2 of Ref. [11] or section 1.2 of Ref. [1], where we can find the following identity

    1-〈φw(z),w〉=1-|w|21-〈z,w〉(1)

    In Ref. [3, Lemma 2.1], we can find the inequality

    |w-φw(z)|2≤2(1-|w|2)|1-〈z,w〉|(2)

    Lemma 2.1[1] For any? α>-1 and z∈Euclid Math TwoBA@n, we have

    |w-φw(z)|2≤2(1-|w|2)|1-〈z,w〉|

    if f is a holomorphic function on?Euclid Math TwoBA@n with

    ∫Bn(1-|w|2)α|f(w)|dv(w)<+∞,

    where dv is the normalized volume measure on?Euclid Math TwoBA@n.

    Lemma 2.2[1] Suppose c is real and t>-1. Then the integrals

    Ic(z)=∫Sndσ(ζ)|1-〈z,ζ〉|n+c,z∈Euclid Math TwoBA@n

    and

    Jc,t(z)=∫Bn(1-|w|2)tdv(w)|1-〈z,w〉|n+1+t+c, z∈Euclid Math TwoBA@n

    have the following asymptotic properties:

    (i) If c<0, then Ic and Jc,t are both bounded in Bn;

    (ii) If c = 0, then Ic(z)~Jc,t(z)~log11-|z|2,|z|→1-;

    (iii) If? c > 0, then Ic(z)~Jc,t(z)~(1-|z|2)-c,|z|→1-.

    Lemma 2.3[16] Let 0<α<2, β be any real number satisfying the following properties:

    (i) 0≤β≤α if 0<α<1;

    (ii) 0<β<1 if α=1;

    (iii) α-1≤β≤1 if 1<α≤2.

    Then a holomorphic function f∈Bα(Euclid Math TwoBA@n) if and only if

    Fβ(f)=supz,w∈Bn(1-|z|2)β(1-|w|2)α-β

    |f(z)-f(w)||z-w|<∞.

    Moreover, for any α and β satisfying above conditions, the following two semi-norms supz∈Euclid Math TwoBA@n(1-|z|2)α|SymbolQC@f(z)| and Fβ(f) are equivalent.

    Lemma 2.4[13] Suppose that? 0<α<1. If? f∈Bα(Euclid Math TwoBA@n), then

    |f(z)|≤11-α‖f‖Bα(Euclid Math TwoBA@n), z∈Euclid Math TwoBA@n.

    Lemma 2.5 For any z,w∈Euclid Math TwoBA@n, the following estimate holds:

    |w-z|≤2|1-〈z,w〉|.

    Proof According to inequality (2), we have

    |w-φw(u)|2≤2(1-|w|2)|1-〈w,u〉|.

    The change of variable u=φw(z) yields

    |w-z|2≤2(1-|w|2)|1-〈φw(z),w〉|.

    This together with (1) gives the desired result.

    3 Bounded Toeplitz operators

    In this section, we are going to characterize bounded Toeplitz operators on Bα(Euclid Math TwoBA@n) for 0<α<1. To this end, for a positive measure μ onEuclid Math TwoBA@n and α-β>0, we call μ satisfies the condition Sα,β if

    Sα,β(μ)(z)=(1-|z|2)β·

    ∫Bn(1-|w|2)α-β-11-〈w,z〉n+α+1/2dμ(w)<∞.

    In fact, such a positive measure μ satisfying the condition Sα,β does exist and there are many. Next, we will give an example under the assumption that α-β>0.

    Example 3.1 Let

    dμ(w)=(1-|w|2)γdv(w),

    where w∈Euclid Math TwoBA@n and γ>0. If γ=1/2 and β>0, or γ>β+1/2, then Sα,β(μ)(z)<∞ for all z∈Euclid Math TwoBA@n.

    Proof we have

    Sα,β(μ)(z)=(1-|z|2)β·

    ∫Euclid Math TwoBA@n(1-|w|2)α-β-1+γ1-〈w,z〉n+α+1/2dv(w)=

    (1-|z|2)β·

    ∫Euclid Math TwoBA@n(1-|w|2)α-β-1+γ1-〈w,z〉n+1+α-β-1+γ+β-γ+1/2dv(w).

    If γ=1/2 and β>0, then by (iii) of Lemma 2.2, we have

    Sα,β(μ)(z)=(1-|z|2)β ∫Euclid Math TwoBA@n(1-|w|2)α-β-1/21-〈w,z〉n+1+α-β-1/2+βdv(w)~1.

    If β-γ+1/2<0, that is, γ>β+1/2, then by (i) of Lemma 2.2, we get

    ∫Euclid Math TwoBA@n(1-|w|2)α-β-1+γ1-〈w,z〉n+1+α-β-1+γ+β-γ+1/2dμ(w)<∞,

    hence Sα,β(μ)(z)<∞ for all z∈Euclid Math TwoBA@n.

    Theorem 3.2 Let 0<α<1 and μ be the positive Borel measure onEuclid Math TwoBA@n. If μ satisfies the condition Sα,β then

    Sα,β(μ)(z)=(1-|z|2)β

    ∫Euclid Math TwoBA@n(1-|w|2)α-β-11-〈w,z〉n+α+1/2dμ(w)<∞

    is bounded on Bα(Euclid Math TwoBA@n) if and only if Pα-1(μ)∈Bα(Euclid Math TwoBA@n).

    Proof It can be seen from Theorem 7.6 of Ref. [1] that (A1(Euclid Math TwoBA@n))*Bα(Euclid Math TwoBA@n) under the integral pairing

    〈f,g〉α-1=∫Euclid Math TwoBA@nf(z)g(z)(1-|z|2)α-1dv(z),

    f∈A1(Euclid Math TwoBA@n),g∈Bα(Euclid Math TwoBA@n).

    In order to prove the boundedness of Tαμ, we need to show

    〈f,Tαμ(g)〉α-1≤CfA1(Euclid Math TwoBA@n)gBα(Euclid Math TwoBA@n)

    for any f∈A1(Euclid Math TwoBA@n) and g∈Bα(Euclid Math TwoBA@n).

    Applying Fubinis Theorem and the reproducing property, we obtain

    〈f,Taμ(g)〉α-1=cα-1∫Euclid Math TwoBA@nf(z)Tαμ(g)(z)(1-|z|2)α-1dv(z)=

    cα-1∫Euclid Math TwoBA@nf(z)cα-1∫Euclid Math TwoBA@ng(w)(1-|w|2)α-1(1-〈w,z〉)n+αdμ(w)(1-|z|2)α-1dv(z)=

    cα-1∫Euclid Math TwoBA@ncα-1∫Euclid Math TwoBA@nf(z)(1-|z|2)α-1(1-〈w,z〉)n+αdv(z)g(w)(1-|w|2)α-1dμ(w)=

    cα-1∫Euclid Math TwoBA@nf(w)g(w)(1-|w|2)α-1dμ(w)=

    cα-1∫Euclid Math TwoBA@nPα(fg-)(w)(1-|w|2)α-1dμ(w)+

    cα-1∫Euclid Math TwoBA@n(I-Pα)(fg-)(w)(1-|w|2)α-1dμ(w)I1+I2,

    where

    (I-Pα)(fg-)(w)=f(w)g(w)-cα∫Euclid Math TwoBA@nf(z)g(z)(1-|z|2)α1-〈w,z〉n+1+αdv(z)=

    cα∫Euclid Math TwoBA@n(g(w)-g(z))f(z)(1-|z|2)α1-〈w,z〉n+1+αdv(z).

    Choosing β ≥ 0 such that α-β>0, by Lemmas 2.3 and 2.5, we get

    |I2|=cα-1cα∫Euclid Math TwoBA@n∫Euclid Math TwoBA@n(g(w)-g(z))(1-|z|2)α(1-|w|2)α-11-〈w,z〉n+1+αdv(z)dμ(w)=

    cα-1cα∫Euclid Math TwoBA@nf(z)(1-|z|2)α∫Euclid Math TwoBA@n(g(w)-g(z))(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)≤

    cα-1cα∫Euclid Math TwoBA@n|f(z)|(1-|z|2)β∫Euclid Math TwoBA@n(1-|z|2)α-β(1-|w|2)β|g(w)-g(z)||w-z|·

    (1-|w|2)α-β-1w-z1-〈w,z〉n+1+αdμ(w)dv(z).

    Since μ satisfies the condition Sα,β, hence |I2|≤C‖f‖A1(Bn)‖g‖Bα(Bn).

    Next, we consider I1. By Fubinis Theorem, we have

    I1=cα-1∫Euclid Math TwoBA@nPα(fg-)(w)(1-|w|2)α-1dμ(w)=

    cα-1∫Euclid Math TwoBA@ncα∫Euclid Math TwoBA@nf(z)g(z)(1-|z|2)α1-〈w,z〉n+1+αdv(z)(1-|w|2)α-1dμ(w)=

    cα-1cα∫Euclid Math TwoBA@nf(z)g(z)∫Euclid Math TwoBA@n(1-|w|2)α-11-〈z,w〉n+1+αdμ(w)(1-|z|2)αdv(z).

    Let

    Qα(μ)(z)=cα-1∫Euclid Math TwoBA@n(1-|w|2)α-11-〈z,w〉n+1+αdμ(w). Then we have

    I1=cα∫Euclid Math TwoBA@nf(z)g(z)Qα(μ)(z)(1-|z|2)αdv(z).

    By some elementary calculation, we obtain the following relation between Qα(μ) and Pα-1(μ):

    Qα(μ)(z)=Pα-1(μ)(z)+1n+αRPα-1(μ)(z).

    Since g(z) and Pα-1(μ) belong to Bα(Euclid Math TwoBA@n), by Lemma 2.4, there exist constant C1 and C2 satisfying the following inequalities, respectively, |g(z)|≤C1‖g(z)‖Bα(Bn), |Pα-1(μ)|≤C2Pα-1(μ)Bα(Euclid Math TwoBA@n). Then

    (1-|z|2)αg(z)Qα(μ)(z)=

    |(1-|z|2)αg(z)Pα-1(μ)(z)+

    g(z)n+α·(1-|z|2)αRPα-1(μ)(z)|<

    (1-|z|2)α|g(z)|·|Pα-1(μ)|+

    1n+α|g(z)‖·|Pα-1(μ)‖Bα(Euclid Math TwoBA@n)≤

    C1C2‖g(z)‖Bα(Euclid Math TwoBA@n)‖Pα-1(μ)‖Bα(Euclid Math TwoBA@n)+

    C1n+α‖g(z)‖Bα(Euclid Math TwoBA@n)‖Pα-1(μ)‖Bα(Euclid Math TwoBA@n)≤

    C‖g(z)‖Bα(Euclid Math TwoBA@n).

    Thus we conclude that

    |I1|≤C‖f‖A1(Euclid Math TwoBA@n)‖g(z)‖Bα(Euclid Math TwoBA@n).

    Therefore, Tαμ? is bounded on Bα(Euclid Math TwoBA@n).

    Conversely, if Tαμ is bounded on Bα(Euclid Math TwoBA@n), then Tαμ(1)=Pα-1(μ)∈Bα(Euclid Math TwoBA@n). This completes the proof.

    4 Compact Toeplitz operators

    In this section we present our main characterization of compact Toeplitz operator on Bα(Euclid Math TwoBA@n) with 0<α<1.

    Theorem 4.1 Let 0<α<1. If the positive Borel measure μ satisfies lim|z|→1Sα,β(μ)(z)=0 then Tαμ is compact on Bα(Euclid Math TwoBA@n) if and only if Pα-1(μ)∈Bα(Euclid Math TwoBA@n).

    Proof Let {gn} be a sequence in Bα(Euclid Math TwoBA@n) such that ‖gn‖Bα(Euclid Math TwoBA@n)≤1 and gn(z)→0 uniformly on compact subsets ofEuclid Math TwoBA@n. Let? f be in the unit ball? of A1(Euclid Math TwoBA@n), by a similar discussion as Theorem 3.1, we have

    〈f,Taμ(gn)〉α-1=

    cα-1∫Euclid Math TwoBA@nPα(fg-n)(w)(1-|w|2)α-1dμ(w)+

    cα-1∫Bn(I-Pα)(fg-n)(w)(1-|w|2)α-1dμ(w)=

    I1,n+I2,n,

    where

    I1,n=cα∫Euclid Math TwoBA@nf(z)gn(z)Qα(μ)(z)·

    (1-|z|2)αdv(z),

    I2,n=cα-1cα∫Euclid Math TwoBA@n∫Euclid Math TwoBA@n

    (gn(w)-gn(z))f(z)(1-|z|2)α(1-|w|2)α-11-〈w,z〉n+1+αdv(z)dμ(w).

    Firstly, we consider I2,n. Let Bδ={z:|z|≤δ}, where 0<δ<1. We will divide the integral into two parts, say,

    limn→∞|I2,n|=limn→∞cα-1cα∫Euclid Math TwoBA@n∫Euclid Math TwoBA@n(gn(w)-gn(z))f(z)(1-|z|2)α(1-|w|2)α-11-〈w,z〉n+1+αdv(z)dμ(w)=

    limn→∞cα-1cα∫Euclid Math TwoBA@nf(z)(1-|z|2)α∫Euclid Math TwoBA@n(gn(w)-gn(z))(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)≤

    limn→∞C∫Euclid Math TwoBA@n\Euclid Math TwoBA@δ|f(z)|(1-|z|2)α∫Euclid Math TwoBA@n|gn(w)-gn(z)|(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)+

    limn→∞C∫Euclid Math TwoBA@δ|f(z)|(1-|z|2)α∫Euclid Math TwoBA@n|gn(w)-gn(z)|(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)J1,n+J2,n.

    For J1,n, since

    lim|z|→1Sα,β(μ)(z)=lim|z|→1(1-|z|2)β∫Bn(1-|w|2)α-β-11-〈w,z〉n+α+1/2dμ(w)=0,

    where β≥0 and α-β>0, for a fixed ε>0, let δ get sufficiently close to 1 such that Sα,β(μ)(z)<ε, combining with Lemmas 2.3 and 2.5, we have

    J1,n≤limn→∞C∫Euclid Math TwoBA@n\Euclid Math TwoBA@δ|f(z)|(1-|z|2)β∫Euclid Math TwoBA@n(1-|z|2)α-β(1-|w|2)β·

    |gn(w)-gn(z)||w-z|(1-|w|2)α-β-1|w-z|1-〈w,z〉n+1+αdμ(w)dv(z)≤

    limn→∞C∫Euclid Math TwoBA@n\Euclid Math TwoBA@δ|f(z)‖|gn‖Bα(Euclid Math TwoBA@n)(1-|z|2)β∫Euclid Math TwoBA@n(1-|w|2)α-β-1|w-z|1-〈w,z〉n+1+αdμ (w)dv(z)≤

    C∫Euclid Math TwoBA@n\Euclid Math TwoBA@δ|f(z)|(1-|z|2)β∫Euclid Math TwoBA@n(1-|w|2)α-β-11-〈w,z〉n+α+1/2dμ(w)dv(z)≤

    Cε∫Euclid Math TwoBA@n\Euclid Math TwoBA@δ|f(z)|dv(z)≤Cε‖f‖A1(Euclid Math TwoBA@n)≤Cε.

    For? J2,n, letEuclid Math TwoBA@r={z:|z|

    J2,n≤limn→∞C∫Euclid Math TwoBA@δ|f(z)|(1-|z|2)α∫Euclid Math TwoBA@n\Euclid Math TwoBA@r|gn(w)-gn(z)|(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)+

    limn→∞C∫Euclid Math TwoBA@δ|f(z)|(1-|z|2)α∫Euclid Math TwoBA@n\Euclid Math TwoBA@r|gn(w)-gn(z)|(1-|w|2)α-11-〈w,z〉n+1+αdμ(w)dv(z)K1,n+K2,n.

    For K1,n, by a similar discussion as J1,n, we obtain K1,n≤Cε. For K2,n, since gn(z)→0 uniformly on any compact subsets ofEuclid Math TwoBA@n, we can choose n large enough such that |gn(w)-gn(z)|(1-|w|2)α-1≤ε uniformly for z belongs to compact subsets ofEuclid Math TwoBA@n, therefore

    K2,n=limn→∞C∫Bδf(z)|(1-|z|2)α·

    ∫Euclid Math TwoBA@r|gn(w)-gn(z)|(1-|w|2)α-11-〈w,z〉n+1+α·

    dμ(w)dv(z)≤

    Cε∫Euclid Math TwoBA@δ|f(z)|(1-|z|2)α·

    ∫Euclid Math TwoBA@r11-〈w,z〉n+1+αdμ(w)dv(z)≤

    Cε‖f‖A1(Bn)≤Cε.

    Consequently, we have limn→∞|I2,n|≤Cε, which yields that limn→∞|I2,n|=0.

    For? I1,n, since ‖gn(z)‖Bα(Bn)≤1, gn(z)→0 uniformly on any compact subsets ofEuclid Math TwoBA@n, we can choose n large enough so that |gn(z)|≤ε uniformly for z belongs to compact subsets ofEuclid Math TwoBA@n. Combined this with what we have estimated in the proof of Theorem 3.1, we obtain

    limn→∞|I1,n|=

    ∫Euclid Math TwoBA@nf(z)gn(z)Qα(μ)(z)(1-|z|2)αdv(z)≤

    Cε‖f‖A1(Euclid Math TwoBA@n)‖Pα-1(μ)‖Bα(Euclid Math TwoBA@n)≤Cε.

    Thus limn→∞|I1,n|=0. Therefore, Tαμ is compact on Bα(Euclid Math TwoBA@n).

    Conversely, let Tαμ be compact on Bα(Euclid Math TwoBA@n). Then Tαμ is bounded on Bα(Euclid Math TwoBA@n). By Theorem 31, we have Pα-1(μ)∈Bα(Euclid Math TwoBA@n). This completes the proof.

    5 Characterization fractional derivatives on Bloch-type spaces

    In this section, we will give a characterization of functions on Bα(Euclid Math TwoBA@n) in terms of fractional derivatives and its module with α>1.

    For 0<α<1, the Lipschitz space Λα(Euclid Math TwoBA@n) consists of all holomorphic functions? f onEuclid Math TwoBA@n such that

    ‖f‖*Λα(Euclid Math TwoBA@n)=

    sup|f(z)-f(w)|z-w|α:z,w∈Euclid Math TwoBA@n,z≠w<∞.

    The space Λα(Euclid Math TwoBA@n) is called the holomorphic Lipschitz space of order α. It is well known that each space Λα(Euclid Math TwoBA@n) is contained in the ball algebra and contains the polynomials. For each α∈(0,1), the holomorphic Lipschitz space Λα(Euclid Math TwoBA@n) is a Banach space with the norm ‖f‖Λα(Euclid Math TwoBA@n)=|f(0)|+‖f‖*Λα(Euclid Math TwoBA@n). Please refer to Ref. [1, Theorem 78] for the detailed proof.

    Lemma 5.1[1] Suppose that 0<α<1,β>1 and f is? holomorphic inEuclid Math TwoBA@n. Then the following conditions are equivalent:

    (i) f∈Λα(Euclid Math TwoBA@n);

    (ii) f is in the ball algebra and its boundary values satisfy

    sup|f(ζ)-f(ξ)||ζ-ξ|α:ζ,ξ∈Euclid Math TwoBA@n,ζ≠ξ<∞;

    (iii) (1-|z|2)1-α|Rf(z)| is bounded inEuclid Math TwoBA@n;

    (iv) There exists a function g∈L∞(Euclid Math TwoBA@n) such that

    f(z)=∫Euclid Math TwoBA@ng(w)dvβ(w)1-〈z,w〉n+1+β-α, z∈Euclid Math TwoBA@n;

    (v) (1-|z|2)1-α|SymbolQC@f(z)| is bounded inEuclid Math TwoBA@n.

    Lemma 5.2[1] Suppose that α>0,β>1 and f is holomorphic inEuclid Math TwoBA@n. Then the following conditions are equivalent:

    (i) f∈Euclid Math TwoBA@α(Bn);

    (ii) The function (1-|z|2)α|Rf(z)| is bounded inEuclid Math TwoBA@n;

    (iii) There exists a function g∈L∞(Euclid Math TwoBA@n) such that

    f(z)=∫Euclid Math TwoBA@ng(w)dvβ(w)1-〈z,w〉n+α+β, z∈Euclid Math TwoBA@n.

    In view of Lemma 5.1 and Lemma 5.2, we clearly see that Λ1-α(Euclid Math TwoBA@n)=Bα(Euclid Math TwoBA@n). for any 0<α<1. Therefore, in order to obtain a characterization of the functions on Bα(Euclid Math TwoBA@n) in terms of fractional derivatives with 0<α<1, we only need to get the corresponding result for Λα(Euclid Math TwoBA@n), and Zhu in Ref. [1, Theorem 7.17] has gotten this, which is? shown in the following Lemma.

    Lemma 5.3 Suppose that t>α>0. If γ is a real parameter such that neither n+γ nor n+γ+t is a negative integer, then a holomorphic function f inEuclid Math TwoBA@n belongs toEuclid Math TwoBA@α(Bn) if and only if the function (1-|z|2)t+α-1Rγ,tf(z) is bounded inEuclid Math TwoBA@n.

    By using the relation Λ1-α(Euclid Math TwoBA@n)=Bα(Euclid Math TwoBA@n), we give the characterization of functions on Bα(Euclid Math TwoBA@n) in terms of fractional derivatives with 0<α<1.

    Theorem 5.4 Suppose that 0<α<1, t+α>1. If γ is a real parameter such that neither n+γ nor n+γ+t is a negative integer, then a holomorphic function f inEuclid Math TwoBA@n? belongs to Bα(Euclid Math TwoBA@n) if and only if the function (1-|z|2)t+α-1Rγ,tf(z) is bounded inEuclid Math TwoBA@n.

    Lemma 5.5[1] Suppose neither n+γ nor n+γ+t is a negative integer. If β=γ+N for? some positive integer N, then there exists a one-variable polynomial h of degree N such that

    Rγ,t11-〈z,w〉n+1+β=h〈z,w〉1-〈z,w〉n+1+β+t.

    There also exists a polynomial P(z,w) such that

    Rγ,t11-〈z,w〉n+1+β+t=P(z,w)1-〈z,w〉n+1+β.

    Lemma 5.6[1] Suppose neither n+γ nor n+γ+t is a negative integer. Then the operator Rγ,t is the unique continuous linear operator on H(Euclid Math TwoBA@n) satisfying

    Rγ,t11-〈z,w〉n+1+γ+t=11-〈z,w〉n+1+γ

    for all w∈Euclid Math TwoBA@n. Similarly, the operator Rγ,t is the unique continuous linear operator on H(Euclid Math TwoBA@n) satisfying

    Rγ,t11-〈z,w〉n+1+γ+t=11-〈z,w〉n+1+γ

    for all w∈Euclid Math TwoBA@n.

    Next we give the characterization of functions on Bα(Bn) in terms of fractional derivatives with α>1.

    Theorem 5.7 Suppose that α>1 and t>0. If γ is a real parameter such that neither n+γ nor n+γ+t is a negative integer. Then a holomorphic function f ?onEuclid Math TwoBA@n belongs to Bα(Euclid Math TwoBA@n) if and only if supz∈Euclid Math TwoBA@n(1-|z|2)α-1+tRγ,tf(z) is bounded onEuclid Math TwoBA@n.

    Proof If f∈Bα(Euclid Math TwoBA@n), then by Lemma 5.2 there exists a function f∈Bα(Euclid Math TwoBA@n) such that

    f(z)=∫Euclid Math TwoBA@ng(w)dvβ(w)1-〈z,w〉n+α+β,z∈Euclid Math TwoBA@n,

    here β=γ-α+N+1 and N is a large enough positive integer such that? β>-1. It follows from Lemma 5.5 that

    Rγ,tf(z)=cα∫Euclid Math TwoBA@nh〈z,w〉g(w)1-〈z,w〉n+α+β+tdvβ(w),

    z∈Euclid Math TwoBA@n,

    where h is a one-variable polynomial of degree N-α+1. An application of Lemma 2.2 then shows the function 1-|z|2α-1+tRγ,tf(z) is bounded onEuclid Math TwoBA@n.

    Next, we will assume that the function 1-|z|2α-1+tRγ,tf(z) is bounded onEuclid Math TwoBA@n. It follows from the remark of Ref. [1, Lemma 2.18.] that? Rγ,tf and Rγ+N,tf are comparable for any holomorphic function f, hence the function (cβ/cβ+α-1+t)(1-|z|2)α-1-tRγ+N,tf(z) is also bounded in Bn, where N is the same as the previous paragraph. By Lemma 2.1, we have

    Rγ+N,tf(z)=

    cβ∫Euclid Math TwoBA@n1-|w|2β+α-1+tRγ+N,tf(w)1-〈z,w〉n+1+β+α-1+tdv(w)=

    ∫Euclid Math TwoBA@n1-|w|2α-1+tRγ+N,tf(w)1-〈z,w〉n+1+γ+N+tdvβ(w),

    where β=γ-α+N+1 is also as in the previous paragraph. Apply the operator Rγ+N,t inside the integral sign and use Lemma 5.6, we have

    f(z)=∫Euclid Math TwoBA@n(1-|w|2)α-1+tRγ+N,tf(w)1-〈z,w〉n+1+r+Ndvβ(w)=

    ∫Euclid Math TwoBA@n(1-|w|2)α-1+tRγ+N,tf(w)1-〈z,w〉n+β+αdvβ(w).

    Since the function (1-|w|2)α-1+tRγ+N,tf(w) belongs to L∞(Euclid Math TwoBA@n) by Lemma 5.1, we see that f is in Bα(Euclid Math TwoBA@n) in view of Lemma 5.2.

    Finally, we give the characterization of Bα(Euclid Math TwoBA@n) in terms of its module with α>1.

    Theorem 5.8 Suppose that α>1 and f is holomorphic in Bn. Then f∈Bα(Euclid Math TwoBA@n) if and only if the function (1-|z|2)α-1|f(z)| is bounded inEuclid Math TwoBA@n.

    Proof If f∈Bα(Euclid Math TwoBA@n), then by Lemma 5.2, there exists a function g∈L∞(Euclid Math TwoBA@n) such that

    f(z)=∫Euclid Math TwoBA@ng(w)dvβ(w)1-〈z,w〉n+α+β, z∈Euclid Math TwoBA@n,

    where β>-1. Thus, by Lemma 2.2, for every z∈Euclid Math TwoBA@n, there exists a constant C>0 such that

    |f(z)|=∫Euclid Math TwoBA@ng(w)1-〈z,w〉n+α+βdvβ(w)=

    Cβ∫Euclid Math TwoBA@n(1-|z|2)βg(w)1-〈z,w〉n+α+βdv(w)≤

    Cβ‖g‖∞∫Euclid Math TwoBA@n(1-|w|2)β1-〈z,w〉n+α+βdv(w)≤

    C(1-|z|2)-(α-1).

    Thus (1-|z|2)α-1|f(z)| is bounded inEuclid Math TwoBA@n.

    Conversely, if (1-|z|2)α-1|f(z)|≤M for some constant M>0, then by Lemma 2.1 we have

    f(z)=cα-1∫Euclid Math TwoBA@n(1-|w|2)α-1f(w)1-〈z,w〉n+αdv(w),

    z∈Euclid Math TwoBA@n.

    Thus

    Rf(z)=∑nk=1zkfzk(z)=cα-1∑nk=1zkzk∫Euclid Math TwoBA@n(1-|w|2)α-1f(w)1-〈z,w〉n+αdv(w)=

    cα-1(n+α)∑nk=1zk∫Euclid Math TwoBA@n(1-|w|2)α-1f(w)wk1-〈z,w〉n+α+1dv(w)=

    cα-1(n+α)∑nk=1zk∫Euclid Math TwoBA@n(1-|w|2)α-1f(w)〈z,w〉1-〈z,w〉n+α+1dv(w).

    By Lemma 2.2, there exists a constant C>0 such that

    |Rf(z)|≤cα-1(n+α)·

    ∫Euclid Math TwoBA@n(1-|w|2)α-1|f(w)|1-〈z,w〉n+α+1dv(w)≤

    CM(1-|z|2)-α

    for all z∈Euclid Math TwoBA@n. This shows that f∈Bα(Euclid Math TwoBA@n). The proof is end.

    References:

    [1] Zhu K H. Spaces of holomorphic functions in the unit ball [M]. New York: Springer, 2005.

    [2] Cao G F, He L. Toeplitz operators on Hardy-Sobolev spaces [J]. J Math Anal Appl, 2019, 479: 2165.

    [3] Dieudonne A. Bounded and compact operators on the Bergman space in the unit ball of C n [J]. J Math Anal Appl, 2012, 388: 344.

    [4] Hu Z J, Lv X F. Toeplitz operators on Fock spaces Fp() [J]. Integr Equat Oper Th, 2014, 80: 33.

    [5] Hu Z J, Lv X F. Positive Toeplitz operators between different doubling Fock spaces [J]. Taiwan J Math, 2017, 21: 467.

    [6] Hu Z J, Virtanen J. Fredholm Toeplitz operators with VMO symbols and the duality of generalized Fock spaces with small exponents [J]. P Roy Soc Edinb A, 2020, 150: 3163.

    [7] Jian S M, Wang X F, Xia J. Positive Toeplitz operators between doubling Fock spaces [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 225. (in Chinese)

    [8] Kong L H, Lu Y F. Toeplitz operators on weighted pluri-harmonic Bergman space [J]. Banach J Math Anal, 2018, 12: 439.

    [9] Ma P, Yan F G, Zheng D C, et al. Mixed products of Toeplitz and Hankel operators on the Fock space [J]. J Operat Theor, 2020, 84: 35.

    [10] Qin J, Wang X F. Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces [J]. Acta Math Sin (English Series), 2020, 36: 1245.

    [11] Rudin W. Function theory in the unit ball of Cn [M]. New York: Springer-Verlag, 1980.

    [12] Wang X F, Cao G F, Xia J. Toeplitz operators on Fock-Sobolev spaces with positive measure symbols [J]. Sci China Math, 2014, 57: 1443.

    [13] Wang X L, Liu T S. Toeplitz operators on Bloch-type spaces in the unit ball of Cn? [J]. J Math Anal Appl, 2010, 368: 727.

    [14] Wu Z J, Zhao R H, Zorbosk N. Toeplitz operators on Bloch-type spaces [J]. P Am Math Soc, 2006, 134: 3531.

    [15] Yu T. Toeplitz operators on the Dirichlet space [J]. Integr Equat Oper Th, 2010, 67: 163.

    [16] Zhao R H. A characterization of Bloch-type spaces on the unit ball of Cn [J]. J Math Anal Appl, 2007, 330: 291.

    [17] Zhu K H. Operator theory in function spaces [M]. Providence: AMS, 2007.

    [18] Zhu K H. Analysis on Fock spaces [M]. New York: Springer-Verlag, 2012.

    引用本文格式:

    中 文:? 賈策,? 王曉峰, 張藝淵. Bloch型空間上的Toeplitz 算子及分數(shù)階導(dǎo)數(shù)刻畫[J]. 四川大學(xué)學(xué)報:? 自然科學(xué)版, 2023, 60:? 031001.

    英 文:? Jia C,? Wang X F, Zhang Y Y. On the characterization of Toeplitz operators and fractional derivatives? on Bloch-type space [J]. J Sichuan Univ:? Nat Sci Ed, 2023, 60:? 031001.

    猜你喜歡
    緊性王曉峰刻畫
    一類廣義Cartan-Hartogs域上加權(quán)Bloch空間之間復(fù)合算子的有界性和緊性
    TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES ?
    刻畫細節(jié),展現(xiàn)關(guān)愛
    摩拜單車CEO王曉峰談與ofo合并:不覺得有可能
    那撒氣的130萬紅包:說好是“姑父”怎會變生父
    L-拓撲空間中Starplus-緊性的刻畫*
    ?(?)上在某點處左可導(dǎo)映射的刻畫
    Potent環(huán)的刻畫
    Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher
    Bloch型空間到加權(quán)Bloch型空間的Volterra算子
    桃色一区二区三区在线观看| 91狼人影院| 欧美日韩国产亚洲二区| 久久精品国产亚洲av涩爱 | 国产高清激情床上av| 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久久久久噜噜老黄 | 又粗又硬又长又爽又黄的视频 | 午夜激情福利司机影院| 中文字幕制服av| 97超碰精品成人国产| 日韩欧美 国产精品| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 成年av动漫网址| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区| 有码 亚洲区| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 三级男女做爰猛烈吃奶摸视频| 在线观看一区二区三区| 91久久精品国产一区二区成人| 美女高潮的动态| 在线国产一区二区在线| 中文欧美无线码| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 欧美最黄视频在线播放免费| 又粗又爽又猛毛片免费看| 亚洲欧洲日产国产| 99热6这里只有精品| 欧美潮喷喷水| 男的添女的下面高潮视频| 久久中文看片网| 色播亚洲综合网| 99久国产av精品| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 国产一级毛片在线| 成年版毛片免费区| 婷婷六月久久综合丁香| av视频在线观看入口| 精品日产1卡2卡| 伊人久久精品亚洲午夜| 一区福利在线观看| 日韩欧美精品免费久久| 啦啦啦韩国在线观看视频| 永久网站在线| 久久久精品94久久精品| 美女 人体艺术 gogo| 国产av麻豆久久久久久久| 12—13女人毛片做爰片一| 国产男人的电影天堂91| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 国产男人的电影天堂91| 韩国av在线不卡| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 丰满乱子伦码专区| 国产亚洲欧美98| av在线亚洲专区| 久久99蜜桃精品久久| 国产精品女同一区二区软件| 久久草成人影院| 欧美人与善性xxx| 久久99蜜桃精品久久| 一个人免费在线观看电影| 性欧美人与动物交配| 亚洲,欧美,日韩| 2022亚洲国产成人精品| 观看美女的网站| 国产精品伦人一区二区| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区 | 中国美白少妇内射xxxbb| 久久99蜜桃精品久久| 免费观看人在逋| 久久草成人影院| 黄色一级大片看看| 黑人高潮一二区| 国产片特级美女逼逼视频| 免费一级毛片在线播放高清视频| 2021天堂中文幕一二区在线观| or卡值多少钱| 如何舔出高潮| 高清午夜精品一区二区三区 | 欧美+日韩+精品| 国产一区二区三区av在线 | 国产一级毛片七仙女欲春2| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 99久久精品热视频| 亚洲欧美中文字幕日韩二区| 麻豆成人av视频| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 老师上课跳d突然被开到最大视频| av.在线天堂| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 免费av观看视频| 亚洲激情五月婷婷啪啪| 久久6这里有精品| 99久国产av精品| 国语自产精品视频在线第100页| 国产 一区精品| 69av精品久久久久久| 在线播放国产精品三级| 91午夜精品亚洲一区二区三区| 最近视频中文字幕2019在线8| 美女高潮的动态| 老熟妇乱子伦视频在线观看| 国产精品一及| 简卡轻食公司| 国产精品一区二区三区四区免费观看| 热99在线观看视频| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 日韩三级伦理在线观看| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 菩萨蛮人人尽说江南好唐韦庄 | 久久99热6这里只有精品| 一个人看视频在线观看www免费| 看非洲黑人一级黄片| 18禁裸乳无遮挡免费网站照片| 日韩大尺度精品在线看网址| 亚洲成人精品中文字幕电影| av卡一久久| 最近最新中文字幕大全电影3| 国产爱豆传媒在线观看| а√天堂www在线а√下载| 久久精品国产亚洲av天美| 插逼视频在线观看| 中文字幕熟女人妻在线| 直男gayav资源| 国产精品一区二区性色av| 久久人人爽人人爽人人片va| 欧美成人免费av一区二区三区| 黄色日韩在线| 成年女人永久免费观看视频| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 嫩草影院新地址| 午夜久久久久精精品| 亚洲成人久久性| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 身体一侧抽搐| 偷拍熟女少妇极品色| 在线播放国产精品三级| 2021天堂中文幕一二区在线观| 免费搜索国产男女视频| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| videossex国产| 又黄又爽又刺激的免费视频.| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 国产精品麻豆人妻色哟哟久久 | 日本黄色视频三级网站网址| 一个人免费在线观看电影| 中文字幕人妻熟人妻熟丝袜美| 国产爱豆传媒在线观看| 国模一区二区三区四区视频| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 毛片女人毛片| 国产精品一区二区三区四区免费观看| 亚洲精品国产成人久久av| 人妻久久中文字幕网| 国产极品精品免费视频能看的| 中国国产av一级| 午夜福利成人在线免费观看| 欧美又色又爽又黄视频| 99久久精品国产国产毛片| 国产亚洲精品av在线| 久久99热这里只有精品18| 亚洲欧美中文字幕日韩二区| 在线a可以看的网站| 亚洲无线在线观看| 欧美高清性xxxxhd video| 国产精品综合久久久久久久免费| 好男人视频免费观看在线| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 久久精品国产亚洲网站| 免费无遮挡裸体视频| 有码 亚洲区| 亚洲人成网站在线播| 12—13女人毛片做爰片一| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 少妇丰满av| 麻豆成人午夜福利视频| 精品不卡国产一区二区三区| 校园人妻丝袜中文字幕| 午夜久久久久精精品| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 成年版毛片免费区| 在线观看美女被高潮喷水网站| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 亚洲欧美日韩高清专用| 九草在线视频观看| 国产精品精品国产色婷婷| 乱码一卡2卡4卡精品| 人人妻人人澡欧美一区二区| 国产淫片久久久久久久久| 国产成人freesex在线| 久久人人爽人人爽人人片va| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐动态| av福利片在线观看| 青春草亚洲视频在线观看| av黄色大香蕉| www日本黄色视频网| 麻豆国产av国片精品| 久久精品国产亚洲av涩爱 | 日韩国内少妇激情av| 五月玫瑰六月丁香| 91精品国产九色| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 男人狂女人下面高潮的视频| 亚洲精品亚洲一区二区| 成人无遮挡网站| 国产亚洲精品av在线| 久久久久久久久久黄片| 在线播放国产精品三级| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 国产黄片美女视频| 国产精品精品国产色婷婷| 又黄又爽又刺激的免费视频.| 亚洲成人中文字幕在线播放| 欧美色欧美亚洲另类二区| 久久精品91蜜桃| 69人妻影院| 国产av麻豆久久久久久久| 久久久久久伊人网av| 秋霞在线观看毛片| 成人特级黄色片久久久久久久| 亚洲av一区综合| 天堂影院成人在线观看| 最新中文字幕久久久久| 色视频www国产| 成人毛片60女人毛片免费| 99久久无色码亚洲精品果冻| 日本熟妇午夜| 舔av片在线| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| 插逼视频在线观看| 日日干狠狠操夜夜爽| 久久久欧美国产精品| 深夜精品福利| 真实男女啪啪啪动态图| 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区 | 69av精品久久久久久| 日韩在线高清观看一区二区三区| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| 国产真实乱freesex| av福利片在线观看| 嫩草影院入口| 久久久久国产网址| 青春草亚洲视频在线观看| 国产成人精品一,二区 | 亚洲精华国产精华液的使用体验 | 免费av观看视频| 中文精品一卡2卡3卡4更新| 国产精品永久免费网站| 成人国产麻豆网| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 三级经典国产精品| 91久久精品国产一区二区成人| 亚洲无线观看免费| 中国国产av一级| 免费人成在线观看视频色| 国产精品,欧美在线| 成熟少妇高潮喷水视频| eeuss影院久久| 国产69精品久久久久777片| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 日本成人三级电影网站| 亚洲av熟女| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 亚洲内射少妇av| 国产在线精品亚洲第一网站| 久久中文看片网| 99久久人妻综合| 欧美日韩精品成人综合77777| 久久99热6这里只有精品| 大型黄色视频在线免费观看| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| av福利片在线观看| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 99riav亚洲国产免费| 亚洲在久久综合| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 99热这里只有是精品50| 深夜精品福利| 亚洲三级黄色毛片| 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 亚洲精品色激情综合| 高清在线视频一区二区三区 | 久久精品影院6| 国产日韩欧美在线精品| 国产精品一区二区三区四区久久| 大又大粗又爽又黄少妇毛片口| 国产精品免费一区二区三区在线| av黄色大香蕉| 在线免费观看的www视频| 99久久人妻综合| 精品国产三级普通话版| 欧美高清性xxxxhd video| 国产不卡一卡二| 中出人妻视频一区二区| av免费观看日本| 欧美丝袜亚洲另类| 国产三级在线视频| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 秋霞在线观看毛片| 国产精品福利在线免费观看| 免费看日本二区| 国产真实伦视频高清在线观看| 夜夜夜夜夜久久久久| 免费看a级黄色片| 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| 久久久久性生活片| 国产一区二区三区av在线 | 久久精品国产清高在天天线| 级片在线观看| 亚洲精品色激情综合| 男女那种视频在线观看| 国产av不卡久久| 观看免费一级毛片| 国产成人精品婷婷| 成人欧美大片| 嫩草影院精品99| 中国美白少妇内射xxxbb| 欧美性猛交╳xxx乱大交人| 亚洲成av人片在线播放无| 最近视频中文字幕2019在线8| 国产精品不卡视频一区二区| 一个人免费在线观看电影| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 亚洲va在线va天堂va国产| 99视频精品全部免费 在线| 夜夜爽天天搞| 国产熟女欧美一区二区| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 狂野欧美白嫩少妇大欣赏| 亚洲精品自拍成人| 国产亚洲欧美98| 欧美日韩在线观看h| 国产精品久久久久久久久免| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久久久久| 美女国产视频在线观看| 亚洲在线观看片| 99热只有精品国产| 成人一区二区视频在线观看| 舔av片在线| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看| 三级经典国产精品| 国产精华一区二区三区| 22中文网久久字幕| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 日本在线视频免费播放| 五月玫瑰六月丁香| 人人妻人人看人人澡| 18禁在线播放成人免费| 白带黄色成豆腐渣| 免费观看的影片在线观看| 人妻夜夜爽99麻豆av| 国产麻豆成人av免费视频| 亚洲精品久久久久久婷婷小说 | 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 免费看光身美女| 夜夜爽天天搞| 寂寞人妻少妇视频99o| 熟女人妻精品中文字幕| 久久99蜜桃精品久久| 亚洲av不卡在线观看| 一区福利在线观看| 美女被艹到高潮喷水动态| 久久久久久大精品| 两性午夜刺激爽爽歪歪视频在线观看| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 国产精品嫩草影院av在线观看| 国产高潮美女av| 最近的中文字幕免费完整| 亚洲成人精品中文字幕电影| 国内久久婷婷六月综合欲色啪| 久久99热这里只有精品18| 久久人妻av系列| 九色成人免费人妻av| 18+在线观看网站| 精品免费久久久久久久清纯| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 久久人人精品亚洲av| 如何舔出高潮| 日韩欧美三级三区| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 日韩,欧美,国产一区二区三区 | 精品人妻一区二区三区麻豆| 亚洲av成人av| 国产亚洲精品av在线| 99九九线精品视频在线观看视频| 国产黄片美女视频| 日韩亚洲欧美综合| 国产精品久久久久久亚洲av鲁大| 中文字幕制服av| 色吧在线观看| 人人妻人人看人人澡| 国产高清有码在线观看视频| av.在线天堂| 国产麻豆成人av免费视频| 深夜a级毛片| 在线播放国产精品三级| 国产精品三级大全| 日韩国内少妇激情av| 97热精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 国产 一区 欧美 日韩| 欧美日韩精品成人综合77777| 成年免费大片在线观看| 91午夜精品亚洲一区二区三区| 一进一出抽搐动态| 神马国产精品三级电影在线观看| 精品无人区乱码1区二区| 久久久午夜欧美精品| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 国产毛片a区久久久久| 国产黄色小视频在线观看| 97超碰精品成人国产| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| 亚洲av成人av| 国内精品久久久久精免费| av又黄又爽大尺度在线免费看 | 亚洲精品国产av成人精品| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 成人亚洲欧美一区二区av| videossex国产| 成人亚洲欧美一区二区av| 国产精品久久视频播放| 黄色日韩在线| 午夜福利在线观看吧| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 身体一侧抽搐| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看| 男人的好看免费观看在线视频| 高清午夜精品一区二区三区 | 给我免费播放毛片高清在线观看| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 一区福利在线观看| 成年av动漫网址| 亚洲精品成人久久久久久| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 国产一级毛片在线| 日韩中字成人| 日本三级黄在线观看| 国产伦精品一区二区三区视频9| 日本三级黄在线观看| 久久久久久伊人网av| 十八禁国产超污无遮挡网站| 国产蜜桃级精品一区二区三区| 精品人妻一区二区三区麻豆| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 免费大片18禁| 国产极品精品免费视频能看的| 一级av片app| 欧美精品国产亚洲| 国产成人freesex在线| 国产片特级美女逼逼视频| 国产不卡一卡二| 99久久精品一区二区三区| 夜夜爽天天搞| 2022亚洲国产成人精品| 观看免费一级毛片| 日本av手机在线免费观看| 三级国产精品欧美在线观看| 中文字幕免费在线视频6| 精品久久久久久久久av| 人人妻人人澡人人爽人人夜夜 | 国产精品日韩av在线免费观看| 老熟妇乱子伦视频在线观看| 少妇人妻精品综合一区二区 | 校园春色视频在线观看| 国产一区二区亚洲精品在线观看| 三级男女做爰猛烈吃奶摸视频| a级毛色黄片| 黑人高潮一二区| 日韩,欧美,国产一区二区三区 | 18+在线观看网站| 高清毛片免费观看视频网站| 日韩欧美精品v在线| 啦啦啦观看免费观看视频高清| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区| 精品久久久久久久久久久久久| 国产精品女同一区二区软件| 三级国产精品欧美在线观看| 免费黄网站久久成人精品| 亚洲无线在线观看| 在线天堂最新版资源| 国产精品久久久久久久久免| 久久久久久国产a免费观看| 日本成人三级电影网站| 久久久国产成人精品二区| 久久精品影院6| 国语自产精品视频在线第100页| 免费在线观看成人毛片| 亚洲自偷自拍三级| 欧美不卡视频在线免费观看| 麻豆乱淫一区二区| 国产精品人妻久久久影院| 婷婷亚洲欧美| 在线免费观看不下载黄p国产| 99热网站在线观看| 搞女人的毛片| 成人性生交大片免费视频hd| 精品一区二区免费观看| 国产精品99久久久久久久久| 人妻少妇偷人精品九色| 久久精品国产清高在天天线| 国产精品乱码一区二三区的特点| 国产成人aa在线观看| 久久久久久久久大av| 日韩国内少妇激情av| 久久精品夜色国产| 在线免费观看的www视频| 少妇高潮的动态图| 精品无人区乱码1区二区| 亚洲国产欧美在线一区| 婷婷精品国产亚洲av| 美女高潮的动态| 亚洲国产欧美人成| av.在线天堂| 九九爱精品视频在线观看| 一级毛片久久久久久久久女| 国内少妇人妻偷人精品xxx网站|