• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS?

    2023-04-25 01:41:36劉佳石賽賽張遠(yuǎn)
    關(guān)鍵詞:劉佳

    (劉佳) (石賽賽) (張遠(yuǎn)))

    Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics,Bengbu 233030, China

    E-mails: liujia860319@163.com; saisai shi@126.com; 120210066@aufe.edu.cn

    Abstract In this paper,we consider the graph of the product of continuous functions in terms of Hausdorffand packing dimensions.More precisely,we show that,given a real number 1 ≤β ≤2,any real-valued continuous function in C([0,1])can be decomposed into a product of two real-valued continuous functions,each having a graph of Hausdorffdimension β.In addition,a product decomposition result for the packing dimension is obtained.This work answers affirmatively two questions raised by Verma and Priyadarshi [14].

    Key words Hausdorffdimension;packing dimension;graph of function;product of functions

    1 Introduction

    LetXbe a compact metric space,we denote byC(X) the collection of all real-valued continuous functions onX.ThenC(X) is a Banach space when endowed with the maximum norm.The graph of a functionf ∈C(X) is defined as the set

    For simplicity,we write thatGf=Gf(X)as long as this causes no confusion.Throughout this paper,the Hausdorff,packing,lower box and upper box dimensions of a setAare denoted by dimHA,dimP A,,respectively(see[6]for definitions and related properties).

    The aim of this paper is to consider the product decomposition of continuous functions in terms of the Hausdorffdimension,as well as the packing dimension.Problems of decomposition of continuous functions in terms of fractal dimensions were first concerned by Mauldin and Williams [13],who proved that any continuous function can be written as a sum of two continuous functions with their graphs having a Hausdorffdimension one.Wingren [15]provided a constructive proof of this result and moreover showed that any continuous function can be decomposed into a sum of two continuous functions such that both of them have graphs with a lower box dimension one.After that,some related problems have been studied in [16,17].Generally,for any functionf ∈C([0,1]) andβ ∈[1,2],are there functionsg,h ∈C([0,1]) such that

    In 2013,Bayart and Heurteaux [4]proved that Equation (1.1) holds forβ=2.Later,Liu and Wu solved the problem for the remaining case 1<β<2.Versions of Result (1.1)for other fractal dimensions were also studied in [1,7–11,17].Recently,motivated by above decomposition result,Verma and Priyadarshi began to study fractal dimensional results for graph of the product of two continuous functions.They obtained some results related to the product decomposition of continuous functions in terms of the upper box dimension.More precisely,they proved the following result,which is an analogue of Corollary 1.6 in [11]:

    Theorem 1.1([14]) Letβ ∈[1,2]andf ∈C([0,1]) withf(x)≠ 0,?x ∈[0,1].Then there exist functionsg,h ∈C([0,1]) such that

    However,some analogous decomposition results regarding the Hausdorffdimension [12],the packing dimension [11]and the lower box dimension [10]are still open.Thus Verma and Priyadarshi posed some open problems: see Questions 4.1,4.2,4.3 in [14].

    In this paper,we give affirmative solutions to Question 4.1 and Question 4.2 from[14],and prove the following two results:

    Theorem 1.2Givenβ ∈[1,2]andf ∈C([0,1]),there are functionsg,h ∈C([0,1]) such that

    In addition,we obtain the counterpart decomposition theorem for the packing dimension,by a suitable modification to the proof of Theorem 1.2.

    Theorem 1.3Givenβ ∈[1,2]andf ∈C([0,1]),if dimP Gf ≤β,then there are functionsg,h ∈C([0,1]) such that

    The following proposition shows that not any functionf ∈C([0,1]) can be decomposed into a product of two functions whose graphs have a packing dimension

    Proposition 1.4Assume thatf ∈C([0,1]) satisfies the condition that dimP Gf(U)=dimP Gffor any nonempty open setU ?[0,1].Then,for any functionsg,h ∈C([0,1]) such thatf=g·h,we have that

    2 Preliminaries

    In this section,we cite some useful lemmas which will be used in the next section.Throughout the paper,for a setK ?R and a numberβ>0,we writeHβ(K),Pβ(K) as

    Lemma 2.1([11]) LetX ?Rdbe a compact set,f ∈C(X) and letαbe a real number.Iffor any open setV ?RdwithV ∩X≠?,then we have that

    Lemma 2.2([13])H1([0,1]) is co-meager inC([0,1]).

    Lemma 2.3([1,3]) LetKbe an uncountable compact metric space and letd ∈N.Then,for a prevalent continuous functionf ∈C(K,Rd),we have that

    where dim expresses any one of the Hausdorffor packing dimensions andC(K,Rd) denotes the set of all continuous mapsf:K →Rd.

    Lemma 2.4([2]) LetX,Ybe two complete metric spaces and letR:X →Ybe a continuous,open and surjective mapping.Then,1.ifA ?Xis of second category(co-meager),R(A)?Yis of second category(co-meager);2.ifB ?Yis of second category (co-meager),R-1(B)?Xis of second category (comeager).

    Lemma 2.5([5]) LetG1,G2be abelian Polish groups and let Φ:G1→G2be a continuous onto homomorphism.IfS ?G2is prevalent,then so is Φ-1(S)?G1.

    Note that Verma and Priyadarshi showed the following two lemmas for the case in whichX=[0,1]:

    Lemma 2.6LetXbe a nonempty compact metric space and letf ∈C(X) be a continuous function such thatf(x)≠0 for allx ∈X.Then

    Then it is easy to see thatTis bi-Lipschitz.Combining this and the bi-Lipschitz invariance property of these dimensions,the lemma follows.

    Lemma 2.7LetXbe a nonempty compact metric space and letf ∈C(X) be a continuous function satisfying the condition thatf(x)≠0 for allx ∈X.Then

    where dim is any one of dimH,dimP,

    ProofConsider the mapping Φ:Gf →Gf2defined by

    Clearly Φ is bi-Lipschitz.

    Lemma 2.8([14]) Letf ∈C([0,1]).Then

    Lemma 2.9LetXbe a nonempty compact metric space and letf ∈C(X)be a Lipschitz function such thatf(x)≠0 for allx ∈X.Then,for anyg ∈C(X),we have that

    where dim is any one of dimH,dimP,

    ProofIn fact,the mapping Φ:Gg →Gf·gdefined by

    is bi-Lipschitz.

    3 Proofs of the Main Theorems

    In this section we prove our main results.

    Proposition 3.1Letf ∈C([0,1]) be a continuous function such thatf(x)≠ 0 for allx ∈[0,1].Then there exist functionsg,h ∈H1([0,1]) such that

    ProofConsider the mappingTf:C([0,1])→C([0,1]),defined by

    Then,clearly,Tfis a continuous,open and surjective mapping.Thus,by Lemmas 2.2,2.4,we have thatTf(H1([0,1]))=f·H1([0,1]) is co-meager.This gives that the setH1([0,1])∩f·H1([0,1]) is also co-meager and thus dense inC([0,1]).Without loss of generality,we assume thatf(x)>0,?x ∈[0,1](otherwise,we may consider-f).Let I(x)=1,?x ∈[0,1],so there exists a functiong ∈H1([0,1])∩f·H1([0,1])∩B(I(x),).Here,B(I(x),) denotes the ball inC([0,1]) of radiuscentered at the function I(x).Thus there exists a real valued functionh1∈H1([0,1]) such thatg=f·h1.Note that,sincef(x)>0 andg(x)>,thush1(x)>0 for allx ∈[0,1].This gives thatf=g·h,whereh=.Due to Lemma 2.6,we have thath ∈H1([0,1]).

    Proposition 3.2LetX ?[0,1]be an uncountable compact set with dimHX=s(dimP X=s).Then,for any functionf ∈C(X) withf(x)≠ 0 for allx ∈X,there are functionsg,h ∈Hs+1(X)(g,h ∈Ps+1(X))such that

    ProofBecause of the packing dimensional case can be proved in the same way.Thus we only need to prove this proposition for the Hausdorffdimensional case.Define mapping Γf:C(X)→C(X) by

    It is easy to show that Γfis a continuous onto homomorphism,so combining Lemma 2.3 and Lemma 2.5,we see that is prevalent inC(X).Thusf·Hs+1(X)∩Hs+1(X) is also prevalent and of course is dense inC([0,1]).Similarly to the discussion in the proof of Proposition 3.1,there are functionsg,h2∈Hs+1(X) withg(x)>0,?x ∈Xsuch thatf·h2=g(note thath2(x)≠ 0 for anyx ∈X).Writing,we have thatf=g·h.Applying Lemma 2.6 again,we have thath ∈Hs+1(X).

    Theorem 3.3Letβ ∈[1,2]andf ∈C([0,1])withf(x)≠0,?x ∈[0,1].Then there exist functionsg,h ∈Hβ([0,1]) such that

    ProofIt suffices to prove this result forβ ∈(1,2).Without loss of generality,we may assume thatf(x)>0,?x ∈[0,1].The proof is divided into the following two cases:

    Case 1dimHGf([0,1])>β.

    Proposition 3.1 yields that we can find two functions,f1,f2∈C([0,1]),such that

    Now we show thatg,hare the desired functions.Obviouslyg,hare all continuous andf=g·h.Thus,we only need to show that the Hausdorffdimensions of their graphs are all equal toβ.In fact,onK,according to whetherf2>0 or not.Combining this and Lemma 2.7,we get that

    OutsideK,is locally Lipschitz,and so,by Lemma 2.9,

    Therefore,dimHGh([0,1])=β.Similarly,dimHGg([0,1])=β.

    Case 2dimHGf([0,1])≤β.

    Take a nonempty compact subsetMof [0,1]with dimHM=β-1.Then,by Proposition 3.2,there are positive valued functionsg1,g2∈C(M) such that

    As in the previous case,we extendg1,g2linearly to the whole space [0,1]and denote the extensional functions byrespectively,such that(x)>0,(x)>0 for anyx ∈[0,1].Set that

    Clearly,g,hare all continuous.OnM,h=g2andg=g1,so

    OutsideM,sinceare all locally Lipschitz,applying Lemma 2.7 and Lemma 2.9,we have that

    Therefore,dimHGh([0,1])=dimHGg([0,1])=β.

    The proof is complete.

    Proposition 3.4Letβ ∈[1,2]andf ∈C([0,1]) withf(x)≠0,?x ∈[0,1].If dimP Gf ≤β,then there exist functionsg,h ∈Pβ([0,1]) such that

    ProofThe proof of this proposition is quite similar to that used in Case 2 of Theorem 3.3,and so it is omitted.

    Lemma 3.5Let 00,there exists a Lipschitz functions ∈C([0,1]) withs(x)≠0 for allx ∈[a,b]satisfying that

    where Oscf(K) denotes the oscillation of functionfonK,i.e.,

    ProofLetLbe the family of all Lipschitz functions on[a,b].The well-known Weierstrass approximation theorem yields thatLis dense inC([a,b]).Furthermore,g·L={g·f|f ∈L}is also dense inC([a,b]).Then,for any 0

    where I denotes the constant function I(x)=1,?x ∈[a,b].Multiply a linear functions2tog·s1such that (g·s1·s2)(a)=(g·s1·s2)(b)=1.In fact,

    Set thats=s1·s2.Then we have that

    It is directly appeared thatsis a Lipschitz function and that (g·s)(a)=(g·s)(b)=1.Now we will show that the functionssatisfies the oscillation condition of the lemma by taking an appropriate?.

    If Oscf([a,b])=0,we only need to take that,wherec=|f|.Then,by Equation (3.1),it is easy to show that

    Theorem 3.6Letβ ∈[1,2],δ>0 andf ∈C([a,b]) be such thatf(a)=f(b)=0 andf(x)≠0,?x ∈(a,b).Then there are functionsg,h ∈Hβ([a,b]) such that

    ProofFirst,we take two sequences of real numbers,{an}n≥0and{bn}n≥0,in interval(a,b) with the following properties:

    (I) sequence{an} is strictly decreasing with

    (II) sequence{bn} is strictly increasing with

    (III)a0=b0.

    For eachn ≥0,we consider the decompositions of the restricted functionsf|[an+1,an]∈C([an+1,an]) andf|[bn,bn+1]∈C([bn,bn+1]).Applying Theorem 3.3,there exist functions

    Let{δn}n≥0be a sequence of positive real numbers such that

    Second,we define the functionsgandhby

    Note that,for anyn ≥0,g(an)=g(bn)=1,h(an)=f(an) andh(bn)=f(bn).

    Finally,we check that the functionsgandhsatisfy the conditions of the theorem.We claim thatgis continuous on [a,b].Clearly g is continuous on (a,b) from the construction ofgand the continuity ofWe only need to show thatgis continuous at the end pointsx ∈{a,b}.It suffices to show the casex=a,since the casex=bcan be proven in the same way.For any sequence{xk} withthere exists a sequencenktending to infinity such thatxk ∈(ank+1,ank].According to the equations (3.4),(3.5) and (3.6),and the continuity of functionf,we have thatThe continuity ofhcan be proven in a similar way.We conclude that functionsg,hare all continuous.

    Combining equation (3.3) and the definitions ofgandh,it is directly appeared thatf=g·h,g(a)=g(b)=1,h(a)=h(b)=0.By Lemma 2.9,equation (3.2) and the stability of the Hausdorffdimension,we have thatf,g ∈Hβ([0,1]).From the definitions of functionshandgand Equations (3.4),(3.5),(3.6) and (3.7),it is not difficult to see that,for any?>0,there existx0,x1,y0,y1∈(0,1)(without loss of generality,we may assume thaty0∈(an0+1,an0]andy1∈(an1+1,an1]for somen0,n1≥0) such that

    Therefore,we get that Oscg([a,b])≤3Oscf([a,b])+δand that Osch([a,b])≤3Oscf([a,b])+δ.

    Proposition 3.7Letβ ∈[1,2],δ>0 andf ∈C([a,b])be such thatf(a)=f(b)=0 andf(x)≠0,?x ∈(a,b).If dimP Gf ≤β,then there are functionsg,h ∈Pβ([a,b]) such that

    ProofThe proof of the proposition follows from an argument similar to that used in Theorem 3.6 (combined with Proposition 3.4).Thus the proof is here omitted.

    Proof of the Theorem 1.2Let Kerfbe the set of all zero points of functionf ∈C([0,1]),i.e.,let

    Then Kerfis a compact subset of [0,1].If Kerf=[0,1].Let 0

    If Kerf≠[0,1].Write

    It follows from Kerf≠[0,1]that at least one of(ai,bi)is nonempty.Without loss of generality,we may assume that{0,1} ?Kerf(otherwise,we can make a linear extension to a large interval such that functionfvanishes at the endpoints).Take a sequence{δn}n≥1of positive real numbers withδn →0 asn →∞.For each fixed nonempty interval (an,bn),we consider the product decomposition of the functionf|[an,bn].It follows from Theorem 3.6 that there exist functionshn,gn ∈Hβ([an,bn]) such that

    Then we defineh,gby

    We claim thatg,hare continuous.Obviously,gandhare both continuous on every interval(an,bn),thus we only need to show that,for anyx0∈Kerf,andHere we only prove the case wherethe proofs of the remaining cases are omitted.we can now divide things into the following two cases:

    Case 1There is an increasing sequence{yn}?Kerfsuch that

    Letkn=min{i ≥1 : (ai,bi)?[yn,x0])} (we use the convention that min?=∞).Thenkn →∞asn →∞.By the construction,the oscillation ofgon any interval [yn,x0]is not greater than 6Oscf([yn,x0])+2 supj≥kn δj,so we obtain that

    Caes 2(x0-ζ,x0)∩Kerf=?for someζ>0.

    In this case,we have that (x0-ζ,x0)?(ai,bi) for someiand thusx0=bi.Thenby the definition ofg|[ai,bi]=gi.

    We then conclude thatgandhare continuous on [0,1].

    Sinceg|Kerf ≡1 andh|Kerf ≡0 andhn,gn ∈Hβ([an,bn]),so by the countable stability of the Hausdorffdimension,we have thatg,h ∈Hβ([0,1]).

    The proof is now complete.

    Proof of the Theorem 1.3With the help of Propositions 3.4 and Proposition 3.7,an argument similar to that of the proof of Theorem 1.2 is obtained,so detailed proofs will be omitted here.

    Proof of the Proposition 1.4Without loss of generality,we suppose that dimP Gh

    for any open subintervalO ?[0,1],withU ∩O≠?.Applying Lemma 2.1 again,we have that dimP Gg(U)≥dimP Gf.The proof is complete.

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    劉佳
    劉佳
    太陽的歌
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    江蘇省宜興市陶城實驗小學(xué)劉佳
    遇見,又如何
    照相機(2022年12期)2022-02-09 09:13:54
    A PENALTY FUNCTION METHOD FOR THE PRINCIPAL-AGENT PROBLEM WITH AN INFINITE NUMBER OF INCENTIVE-COMPATIBILITY CONSTRAINTS UNDER MORAL HAZARD?
    Interaction induced non-reciprocal three-level quantum transport?
    劉佳美術(shù)作品
    Principles and Teaching Application of Suggestopedia’s 6 Technical Characteristics
    He’s just been to the zoo.
    亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 久久久久久亚洲精品国产蜜桃av| 免费高清视频大片| 国产亚洲av高清不卡| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 精品人妻1区二区| 可以在线观看毛片的网站| 99精品久久久久人妻精品| 18禁国产床啪视频网站| 久久香蕉精品热| 久久人妻av系列| 成熟少妇高潮喷水视频| 视频区欧美日本亚洲| 成人特级黄色片久久久久久久| 国产精品 欧美亚洲| 亚洲五月天丁香| 亚洲国产毛片av蜜桃av| 国产精品亚洲美女久久久| 两人在一起打扑克的视频| 丝袜在线中文字幕| 黄色a级毛片大全视频| 国产麻豆成人av免费视频| 成在线人永久免费视频| 国产不卡一卡二| 亚洲欧美激情在线| 看片在线看免费视频| 性欧美人与动物交配| 免费在线观看黄色视频的| 大型av网站在线播放| 丰满的人妻完整版| ponron亚洲| 麻豆成人av在线观看| 欧美 亚洲 国产 日韩一| 男人操女人黄网站| 久久中文看片网| 91字幕亚洲| 一本综合久久免费| 高清在线国产一区| 十八禁人妻一区二区| 男女床上黄色一级片免费看| 悠悠久久av| 中文字幕高清在线视频| 色综合欧美亚洲国产小说| 久久久久九九精品影院| 国产欧美日韩精品亚洲av| 午夜福利18| 亚洲一区中文字幕在线| 欧美另类亚洲清纯唯美| 一区二区三区精品91| 大陆偷拍与自拍| 国产不卡一卡二| 成年版毛片免费区| 级片在线观看| 久久香蕉激情| 黑丝袜美女国产一区| 一级a爱片免费观看的视频| 成人特级黄色片久久久久久久| 中文字幕高清在线视频| 成人三级做爰电影| 51午夜福利影视在线观看| 久久精品aⅴ一区二区三区四区| 麻豆成人av在线观看| 脱女人内裤的视频| 免费不卡黄色视频| 少妇裸体淫交视频免费看高清 | 国产精品乱码一区二三区的特点 | av中文乱码字幕在线| 9热在线视频观看99| 国产熟女xx| 亚洲av片天天在线观看| 国产单亲对白刺激| 一本久久中文字幕| 99国产精品一区二区蜜桃av| 国产一区二区三区在线臀色熟女| 亚洲国产看品久久| 麻豆成人av在线观看| 黑人操中国人逼视频| 伦理电影免费视频| 国产成人欧美在线观看| 操出白浆在线播放| 国产精品av久久久久免费| 深夜精品福利| 日本五十路高清| 黄色成人免费大全| 欧美性长视频在线观看| 欧美乱色亚洲激情| 一级毛片精品| 国内精品久久久久久久电影| 欧美成人性av电影在线观看| 十八禁网站免费在线| 国产三级在线视频| 757午夜福利合集在线观看| 日本在线视频免费播放| 国产精品免费视频内射| 三级毛片av免费| 国产黄a三级三级三级人| 男女午夜视频在线观看| 老司机靠b影院| 亚洲国产日韩欧美精品在线观看 | 国内久久婷婷六月综合欲色啪| 香蕉国产在线看| 久久人妻福利社区极品人妻图片| 精品人妻在线不人妻| 黄色 视频免费看| 欧美乱色亚洲激情| 欧美另类亚洲清纯唯美| 99香蕉大伊视频| cao死你这个sao货| 欧美日本中文国产一区发布| 亚洲国产精品999在线| 国产亚洲精品久久久久久毛片| 色播在线永久视频| 在线播放国产精品三级| 免费在线观看黄色视频的| 人成视频在线观看免费观看| 国产黄a三级三级三级人| 男女做爰动态图高潮gif福利片 | 国产精品影院久久| 欧美亚洲日本最大视频资源| 亚洲精品在线美女| 国产精品一区二区精品视频观看| 777久久人妻少妇嫩草av网站| 日韩大尺度精品在线看网址 | 每晚都被弄得嗷嗷叫到高潮| 侵犯人妻中文字幕一二三四区| 亚洲午夜理论影院| 中文字幕av电影在线播放| 在线播放国产精品三级| 亚洲av电影不卡..在线观看| 在线观看免费午夜福利视频| 欧美人与性动交α欧美精品济南到| 少妇裸体淫交视频免费看高清 | 十八禁网站免费在线| 成人三级黄色视频| 12—13女人毛片做爰片一| 夜夜看夜夜爽夜夜摸| 成年版毛片免费区| 亚洲一区中文字幕在线| 9191精品国产免费久久| 久久人人爽av亚洲精品天堂| 一卡2卡三卡四卡精品乱码亚洲| 桃色一区二区三区在线观看| 少妇的丰满在线观看| 桃红色精品国产亚洲av| 日韩欧美免费精品| 中文字幕人妻丝袜一区二区| 国产主播在线观看一区二区| 亚洲精品一区av在线观看| 久久婷婷成人综合色麻豆| 国产精品亚洲一级av第二区| 亚洲成人免费电影在线观看| 亚洲专区国产一区二区| 老司机深夜福利视频在线观看| 久久人人爽av亚洲精品天堂| 午夜福利成人在线免费观看| 狂野欧美激情性xxxx| 国产麻豆69| 好男人在线观看高清免费视频 | 88av欧美| 亚洲片人在线观看| 国产精品香港三级国产av潘金莲| 日韩免费av在线播放| 亚洲专区中文字幕在线| 午夜两性在线视频| 一边摸一边抽搐一进一出视频| 看黄色毛片网站| 亚洲欧美日韩高清在线视频| 性少妇av在线| 欧美人与性动交α欧美精品济南到| 免费看十八禁软件| 精品免费久久久久久久清纯| 免费高清在线观看日韩| 亚洲精品美女久久久久99蜜臀| 一区二区日韩欧美中文字幕| 成人三级黄色视频| 99国产极品粉嫩在线观看| 国产男靠女视频免费网站| 一卡2卡三卡四卡精品乱码亚洲| 嫁个100分男人电影在线观看| 18禁裸乳无遮挡免费网站照片 | 激情在线观看视频在线高清| 亚洲五月色婷婷综合| 免费在线观看视频国产中文字幕亚洲| 男男h啪啪无遮挡| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| 看黄色毛片网站| 人人澡人人妻人| 熟女少妇亚洲综合色aaa.| 色av中文字幕| 午夜久久久在线观看| 成人18禁在线播放| 熟女少妇亚洲综合色aaa.| 中出人妻视频一区二区| 欧美一级毛片孕妇| 久久草成人影院| 精品欧美国产一区二区三| 欧美色视频一区免费| 三级毛片av免费| 国产极品粉嫩免费观看在线| 国产成人影院久久av| 夜夜爽天天搞| 人成视频在线观看免费观看| av超薄肉色丝袜交足视频| 免费看美女性在线毛片视频| 成在线人永久免费视频| 久久久水蜜桃国产精品网| 男女床上黄色一级片免费看| 在线免费观看的www视频| 少妇被粗大的猛进出69影院| 欧美老熟妇乱子伦牲交| 亚洲第一青青草原| 中文字幕人妻丝袜一区二区| 久久精品影院6| 大型av网站在线播放| 麻豆国产av国片精品| 桃红色精品国产亚洲av| 18禁裸乳无遮挡免费网站照片 | 国产精品电影一区二区三区| 黑人欧美特级aaaaaa片| 伦理电影免费视频| 国产片内射在线| 国产精品亚洲av一区麻豆| 亚洲免费av在线视频| 日韩一卡2卡3卡4卡2021年| 无人区码免费观看不卡| 美女 人体艺术 gogo| 热99re8久久精品国产| 69精品国产乱码久久久| 国产欧美日韩一区二区精品| 一区在线观看完整版| av网站免费在线观看视频| 夜夜爽天天搞| 最近最新免费中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 巨乳人妻的诱惑在线观看| 老司机靠b影院| 变态另类成人亚洲欧美熟女 | 国产精品九九99| 欧美日韩亚洲综合一区二区三区_| 大型av网站在线播放| 国产精华一区二区三区| av片东京热男人的天堂| 午夜久久久久精精品| 亚洲午夜理论影院| 亚洲专区字幕在线| 日韩中文字幕欧美一区二区| 国产精品一区二区精品视频观看| 色哟哟哟哟哟哟| 国产成人系列免费观看| 精品国产美女av久久久久小说| 岛国视频午夜一区免费看| 免费高清视频大片| 亚洲av日韩精品久久久久久密| 淫秽高清视频在线观看| 亚洲七黄色美女视频| 男人操女人黄网站| 久久久精品国产亚洲av高清涩受| 国产单亲对白刺激| 最近最新中文字幕大全电影3 | 欧美午夜高清在线| 国产一区二区在线av高清观看| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 18禁美女被吸乳视频| 香蕉丝袜av| 日日干狠狠操夜夜爽| av超薄肉色丝袜交足视频| 18美女黄网站色大片免费观看| 免费看十八禁软件| 午夜福利在线观看吧| 香蕉国产在线看| 精品乱码久久久久久99久播| 精品免费久久久久久久清纯| 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女 | 亚洲久久久国产精品| 女生性感内裤真人,穿戴方法视频| 国产精品av久久久久免费| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 性欧美人与动物交配| 欧美一级a爱片免费观看看 | 最近最新中文字幕大全电影3 | 又紧又爽又黄一区二区| 亚洲最大成人中文| 性欧美人与动物交配| 久久九九热精品免费| 一进一出抽搐动态| 精品一区二区三区四区五区乱码| 性欧美人与动物交配| 国产精品永久免费网站| 色尼玛亚洲综合影院| 久久国产精品人妻蜜桃| 中文字幕高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品av一区二区| 日日爽夜夜爽网站| 国产乱人伦免费视频| 日韩欧美国产一区二区入口| 国产av一区二区精品久久| 亚洲人成77777在线视频| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 精品电影一区二区在线| 国产三级黄色录像| 丝袜人妻中文字幕| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 黄色成人免费大全| 波多野结衣av一区二区av| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 国产麻豆69| 黑人欧美特级aaaaaa片| 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| 久久精品影院6| 国产精品 国内视频| 老司机午夜十八禁免费视频| 久久影院123| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 精品一品国产午夜福利视频| 日韩视频一区二区在线观看| 大型av网站在线播放| 99在线视频只有这里精品首页| 久久香蕉激情| 亚洲国产精品久久男人天堂| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 欧美日韩亚洲综合一区二区三区_| 久久久久九九精品影院| 性欧美人与动物交配| 中文字幕av电影在线播放| 9热在线视频观看99| av天堂在线播放| 88av欧美| 久久久久久大精品| 午夜福利在线观看吧| 两人在一起打扑克的视频| 免费观看精品视频网站| 又紧又爽又黄一区二区| 91成人精品电影| 久久人人精品亚洲av| 啦啦啦免费观看视频1| 亚洲无线在线观看| 一级片免费观看大全| 成人亚洲精品av一区二区| 我的亚洲天堂| 不卡av一区二区三区| 精品一区二区三区视频在线观看免费| 村上凉子中文字幕在线| 88av欧美| 一个人观看的视频www高清免费观看 | 亚洲av第一区精品v没综合| 香蕉国产在线看| 久久草成人影院| 日日爽夜夜爽网站| 成年版毛片免费区| 黑人巨大精品欧美一区二区蜜桃| 黄色女人牲交| 久久久精品欧美日韩精品| 久久性视频一级片| 国产亚洲欧美98| 怎么达到女性高潮| 免费无遮挡裸体视频| 波多野结衣高清无吗| 国产精品免费一区二区三区在线| 99在线人妻在线中文字幕| 夜夜爽天天搞| 久久久久亚洲av毛片大全| 国产男靠女视频免费网站| 岛国视频午夜一区免费看| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 国产99白浆流出| 美女免费视频网站| 久久久久久国产a免费观看| 免费搜索国产男女视频| 国产成人一区二区三区免费视频网站| av天堂久久9| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 少妇的丰满在线观看| 亚洲专区字幕在线| 久久人人精品亚洲av| 香蕉丝袜av| 国产亚洲欧美98| 亚洲av成人一区二区三| 91字幕亚洲| 国产黄a三级三级三级人| 禁无遮挡网站| 亚洲欧美日韩高清在线视频| 久久久久久免费高清国产稀缺| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 久久久国产成人免费| 国产精品一区二区在线不卡| 欧美性长视频在线观看| 久久国产乱子伦精品免费另类| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 精品国内亚洲2022精品成人| 国产亚洲av高清不卡| 久久婷婷人人爽人人干人人爱 | 青草久久国产| 成人三级做爰电影| 久久久久国产精品人妻aⅴ院| 国产在线观看jvid| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 高清在线国产一区| 女同久久另类99精品国产91| 精品国产一区二区三区四区第35| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 99国产精品一区二区三区| 好男人电影高清在线观看| 黄片小视频在线播放| cao死你这个sao货| 国内精品久久久久久久电影| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 国产私拍福利视频在线观看| 国产精品 国内视频| 午夜成年电影在线免费观看| 曰老女人黄片| 精品一品国产午夜福利视频| 亚洲av熟女| 黄色丝袜av网址大全| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩一区二区精品| 亚洲精品av麻豆狂野| 国产精品影院久久| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费| 亚洲国产欧美日韩在线播放| 日韩欧美三级三区| 久久九九热精品免费| 最近最新中文字幕大全电影3 | av在线播放免费不卡| 亚洲精品在线美女| 手机成人av网站| 99香蕉大伊视频| 亚洲av片天天在线观看| 校园春色视频在线观看| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放 | 又黄又粗又硬又大视频| 首页视频小说图片口味搜索| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 免费高清视频大片| 国产麻豆成人av免费视频| 搞女人的毛片| 黄色视频不卡| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 久久热在线av| 亚洲少妇的诱惑av| 亚洲五月天丁香| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| av网站免费在线观看视频| 久久精品国产99精品国产亚洲性色 | 少妇被粗大的猛进出69影院| 亚洲精品中文字幕一二三四区| 日本vs欧美在线观看视频| 亚洲一区二区三区不卡视频| 亚洲成人久久性| 亚洲av成人av| 波多野结衣一区麻豆| 国产片内射在线| 成人国产综合亚洲| 无遮挡黄片免费观看| 成人亚洲精品一区在线观看| 麻豆国产av国片精品| 亚洲天堂国产精品一区在线| 一边摸一边抽搐一进一出视频| 村上凉子中文字幕在线| 成人亚洲精品一区在线观看| 在线观看免费午夜福利视频| 欧美一级a爱片免费观看看 | 黄网站色视频无遮挡免费观看| 婷婷六月久久综合丁香| 色播亚洲综合网| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 国产一区在线观看成人免费| 男人操女人黄网站| 女性被躁到高潮视频| 国产一区二区激情短视频| 欧美久久黑人一区二区| 国产高清激情床上av| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 亚洲最大成人中文| 19禁男女啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 免费看十八禁软件| 成人永久免费在线观看视频| 长腿黑丝高跟| 日本三级黄在线观看| 免费看a级黄色片| 男人操女人黄网站| 亚洲精品一卡2卡三卡4卡5卡| or卡值多少钱| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 亚洲精品在线美女| 69av精品久久久久久| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| av天堂久久9| 亚洲第一av免费看| 国内精品久久久久久久电影| 悠悠久久av| 一区二区三区精品91| 欧美精品亚洲一区二区| 18禁美女被吸乳视频| 精品卡一卡二卡四卡免费| www.999成人在线观看| 国产人伦9x9x在线观看| 午夜福利欧美成人| 热99re8久久精品国产| 亚洲精品国产区一区二| 久久久久九九精品影院| 欧美日韩精品网址| 天天添夜夜摸| 色综合婷婷激情| 国产一区二区三区综合在线观看| 日本在线视频免费播放| 村上凉子中文字幕在线| 人人妻人人澡人人看| 老司机靠b影院| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影 | 久久久久精品国产欧美久久久| 国产三级在线视频| 日本一区二区免费在线视频| 国产99白浆流出| 又大又爽又粗| 亚洲av五月六月丁香网| 香蕉丝袜av| 精品国产国语对白av| 长腿黑丝高跟| 黄片播放在线免费| 日韩欧美三级三区| 正在播放国产对白刺激| 日本 av在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 一本久久中文字幕| 黑人巨大精品欧美一区二区mp4| av网站免费在线观看视频| www日本在线高清视频| 一夜夜www| 免费在线观看视频国产中文字幕亚洲| 国产精品爽爽va在线观看网站 | 人成视频在线观看免费观看| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 91九色精品人成在线观看| 淫秽高清视频在线观看| 国产1区2区3区精品| 亚洲中文av在线| 欧美最黄视频在线播放免费| 日韩欧美三级三区| 中文字幕最新亚洲高清| 丰满的人妻完整版| 国产片内射在线| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 久久精品aⅴ一区二区三区四区| 精品日产1卡2卡| 久久国产精品男人的天堂亚洲| 久久久久国产一级毛片高清牌| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 男女午夜视频在线观看| 最新在线观看一区二区三区| 波多野结衣av一区二区av| 精品久久蜜臀av无| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 丰满的人妻完整版| 成人18禁高潮啪啪吃奶动态图| 精品乱码久久久久久99久播| 亚洲情色 制服丝袜| 国产成年人精品一区二区| 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 99在线人妻在线中文字幕| 亚洲精品av麻豆狂野| 久久久久久久午夜电影|