• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    2012-05-11 06:54:52WANGDangwei
    水動力學研究與進展 B輯 2012年1期
    關鍵詞:家法胸襟

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    (Received August 12, 2011, Revised November 9, 2011)

    Imbalance arises when the Roe’s method is directly applied in the shallow water simulation. The reasons are different for the continuity equation and the momentum equations. Based on the Roe’s method, a partial surface method is proposed for a perfect balance for the continuity equation. In order to generate a mathematically hyperbolic formulation, the momentum equations are split, which causes incompatibility in the calculation of the momentum equations. In this article a numerical approach named the Slop Flux Method (SFM) is proposed to balance the source terms and the flux gradient based on the finite volume method. The method is first applied to shallow water equations. The model is verified by analytical results of classical test cases with good agreement. Finally the method is applied to a steady flow simulation over a practical complicated topography and the result shows good balance and conservation.

    shallow water simulation, Roe’s method, complicated topography, partial surface method, bed slop flux method

    Introduction

    The flows in rivers are very complex that failure often occurs in numerical simulations, especially, when there are shock waves involved[1]. For the equation system related with conservation laws, the Godunov-type methods can account for correct information in nearly all flow patterns even for cases including discontinuities by solving a set of Riemann problems over the entire computational domain. As the computational efficiency is too low when Riemann problems are solved directly, many approximate Riemann solvers are available that can provide good approximate results with much less computation time. The Roe’s method is one of the most robust approximate Riemann solvers widely used in aerodynamics and hydrodynamics. But difficulties still arise in solving the Riemann problems, especially, when the source terms are included in Shallow Water Equations (SWEs).

    In order to keep the equations as a hyperbolic system and adopt the Roe’s method directly, the flux gradients and the source terms of SWEs are split artificially. Thus a numerical imbalance will be found for flows over natural riverbeds often with complicated topographies. It is understood that the imbalance is caused solely because of mathematical splitting[2]. This problem is usually treated in two different ways, namely, by the numerical method and by the mathematical method. Mathematical method involves revi-sing the formulation of the governing equations before any numerical algorithms to be implemented. Nugic[3]obtained SWEs in a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gradients to the source terms. Rogers et al.[4]proposed an alternative splitting of the free surface gradient terms and derived a deviatoric form by subtracting an equilibrium solution that could refer to the still water conditions or the equilibrium conditions to allow one to drive a simulation to a steady state. Recently Liang[5,6]suggested another way for splitting free surface gradient terms to solve problems involving wetting and drying. On the other hand, the numerical methods make some revisions based on numerical algorithms without any change of the governing equations. Considerable progress was made in this direction[7-17]and the most representative work is Vázquez-Cendón’s[14]upwind scheme for the source terms, Zhou’s surface gradient method[15]and LeVeque’s[16,17]quasi-steady wave-propagation algorithm. Most of the above approaches are to keep a balance between the flux and the source terms in the motion equations but the conservative property of these approaches is usually not well addressed.

    In this article we apply the Roe’s method to discretize the conservative form SWEs. For the imbalance thus caused, different techniques are proposed for the continuity equation and the momentum equations, separately. An approach of balancing the source terms with the flux is presented based on the finite volume method and it can be easily extended to other approximate Riemann solvers. Besides keeping a strict balance, the model established in this article has a good performance for conservation.

    1. The nature of the problem

    1.1 Governing equations

    Neglecting the vertical acceleration of water particles and taking the pressure to be hydrostatic, the 2-D non-linear SWEs may be derived by depth-integrating the 3-D Reynolds averaged Navier-Stokes equations. In the matrix form, a conservation law of the 2-D non-linear shallow water equations can be written as

    where U, F, G and S are the vectors representing the conserved variables, the numerical fluxes in x- and y-directions, and the source terms, respectively. Ignoring the viscous terms, the surface stress caused by the wind, and the Coriolis effects, these vectors can be written as

    This is the popular form of the SWEs and it can be solved by Godunov-type schemes. In these expressions, h is the water depth, u and v are the depth averaged velocity in x- and y-directions, respectively, g is the acceleration due to the gravity,xs andys are the bed slopes in x- and y-directions, respectively, and are expressed as

    wherebz is the bed elevation,xf andyf are the bed friction due to the bed roughness in x- and y-directions, respectively and they can be estimated by empirical formulas as

    where n is the Manning coefficient.

    1.2 Discretizing by finite volume method The integral form of Eq.(1) is

    Applying Green’s theorem, Eq.(5) can be written as

    where E=(F, G), the n is the unit normal vectors of the cell boundary. The computational domain consists of quadrilateral cells and the variables are taken at the centre of each cell. So Eq.(3) becomes

    where AΔ is the area of the cell,ilΔ is the length of the boundary i,xn andyn are the Cartesian components of n in x- and y-directions, respectively, f?and g?denotes the numerical flux in x- and ydirections, respectively, which can be estimated by the Roe’s approximate Riemann solver as follows

    in whichlU andrU are the terms on the conservative left and right sides, separated by a discontinuity at the interface,andare the eigenvalue and the eigenvector of the linearized coefficient matrix of the SWEs. According to the principle of the Roe’s method, the linearized Jacobianfor Eq.(1) can be derived as

    So the eigenvalues and eigenvectors ofare as follows

    In the Roe’s method, the discontinuity at the interface of the computational element can be estimated by the eigen-decomposition algorithms as

    where ΔU is the jump value, or the difference between right and left Riemann states on either side of a cell interface of the variable U.

    For a quiescent still water without any input, the values in SWEs should be u=v=0. Substituting Eqs.(10)-(14) into Eq.(7), the discretized form of the SWEs by the Roe’s method can be written as

    It is obvious that the water will keep quiescent if there is no inflow current and the variables would not change with time, so the right matrix must be equal to 0. Now the key is to keep the terms in the right matrix equal to 0.

    1.3 Balancing methods

    The imbalances of the continuity equation and the momentum equation are different and they need to be solved separately.

    1.3.1 Partial surface method[18]for continuity equation

    In the start, the water is still. Thus the continuity equation should satisfy the condition

    But Eq.(16) does not always hold true. In fact, the condition of keeping Eq.(16) in equilibrium is so rigor for a riverbed that is rarely required in a natural environment and a flatterrain is one of conditions that may suit the needs. This problem is related to the physical nature of the Roe’s approximate Riemann solver. The Roe’s method is a kind of Godunov-type schemes, where the problem is treated as sets of Riemann problems over the entire computational domain, so the

    jump value should be the driving force. From the physical point of view, the water movement is a kind of gravity wave, while hΔ is definitely not the original driving force for a gravity-driven flow like the water flow. It is obvious that the jump value of the water level would not drive the water from still to motion, so Eq.(16) should be

    where z is the water level. Then the continuity equation should be written as

    With no riverbed deformation, it can be easily shown that Eq.(18) becomes a typical continuity equation in 2-D SWEs. So Eq.(17) is correct both physically and mathematically and the imbalance caused by the continuity equation is thus eliminated.

    1.3.2 Slop flux method for motion equations

    For still water, the motion equations discretized by the Roe’s method (in x-direction, for example) is

    The key is how to deal with the bed slope and the imbalance and the false flow caused by direct discretization. In order to solve this problem under the frame of FVM and keep the result conservative, the second term in Eq.(19) can be written as

    where c is a constant in a single cell. Applying Green’s theorem to the right side term of Eq.(20), we have

    It can be considered as a Riemann problem, so Eq.(17) can be written as

    Now we need to calculate the value of c with the still water state as a boundary condition for this problem. In the still water state, we have

    wherecz is the water level at the center of the cell. Substituting Eq.(24) into Eq.(22) we obtain the final discretization form of the bed slope in the source terms of the motion equations.

    In view of stability and computational efficiency, the self-adaptable time step method[19]is adopt for solving the bed shear stress terms.

    2. Results and discussion

    The numerical scheme is validated against benchmark tests. The results are first compared with analytical solutions, then the model is applied in a practical flow simulation in Songhuajiang River with complicated natural topography. In all cases, g= 9.81m/s2.

    2.1 Steady flow over a bump

    The bed elevation of a 25 m long channel with a bump is defined by

    which is a classical test problem used as a benchmark test case for numerical methods at the workshop on dam-break wave simulations. A discharge per unit width of q=0.18 m2/s is imposed at the upstream boundary and h=0.33m is specified as the downstream boundary condition and the bed shear stress is ignored. In this case, the flow is trans-critical with a sGhoouctka l[w15a].ve and the analytical result was given by

    The global relative error R is defined by

    Fig.1 Convergence history of global error

    Fig.2 Comparison of discharge

    Fig.3 Comparison of water surface

    Fig.4 Comparison of velocity

    Fig.5 Comparison of Froude number

    2.2 Tidal wave flow over an irregular bed

    絳蠟叢中一講廬,披圖想見過庭趨。塤篪韻事真馨逸,得許升堂展謁無。梓橋俯仰傍寒林,伴結幽芳夙抱深。家法豈惟傳治譜,先將鐵石煉胸襟。

    This is a 1-D problem with bed topography defined by

    A comparison of the numerical results with the asymptotic analytical solution at t=7 552s is shown in Figs.6 and 7. The agreement is excellent especially for the water surface. The largest difference between the numerical and analytical values of the velocity is about 0.004 m/s. This suggests that the proposed scheme is accurate for tidal flow problems.

    Fig.6 Comparison of water velocity

    Fig.7 Comparison of water surface

    2.3 Steady flow in Songhuajiang River with compli

    cated bed topography

    The model is used in Jiamusi reach of Songhuajiang River to evaluate the influence of building Liushudao dike on the flood control. The dike is built to protect people and animals on the island from flood disaster. The computational area is about 35 km2and the area of Liushudao Island is about 10 km2, as is shown in Fig.7. The whole computational domain is divided into 100×200 irregular quadrilateral grids. A discharge of 17 100 m3/s is imposed at the inlet and the corresponding water surface at the outlet is 79.290 m.

    The relative error of discharge between inlet and outlet is defined as

    Fig.8 Convergence history ofDR

    Fig.9 Change of water surface due to embankment around the island

    Fig.10 Velocity profile of a typical cross section

    Figure 8 shows the convergence history of RDand RD=0.9% when the steady state is reached after 6 000 s. It shows that the model can keep variables conservative perfectly. Figure 9 shows the contour of the water surface change due to the Liushudao dike. In most area, the water surface rises when the Liushudao dike is built and this is because the water can not flow over the island as it did without the dike. The largest rise is about 0.33 m, which is near the inlet of the left branch because of an anti-flow there. Figure 10 shows the profile of the velocity of a typical cross section which goes across the island. Barred by theLiushudao dike, the water can not flood the island, where the velocity is decreased to 0 while the velocity in the main channel is increased.

    3. Conclusion

    This article presents a numerical model by solving 2-D SWEs using the Roe’s method. Imbalance would occur when the Roe’s method is directly applied to solve the SWEs, therefore, the partial surface method is proposed for balancing the continuity equations based on the physical nature of the Roe’s method. The source terms, especially, the bed slope term, often cause imbalance in the simulation of 2-D shallow water over complicated topography. In this article we propose a numerical method based on FVM to keep the conservative property of the conservation laws. The model is verified by results of classical test cases and the Songhuajiang River is taken as an example to show that the numerical model in this article enjoys generality, balance and conservation.

    [1] YU Ming-hui, DENG Yin-ling and QIN Lian-chao et al. Numerical simulation of levee breach flows under complex boundary conditions[J]. Journal of Hydrodynamics, 2009, 21(5): 633-639

    [2] ROGERS B. D., BORTHWICK A. G. L. and TAYLOR P. H. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver[J]. Journal of Computational Physics, 2003, 192(2): 422-451.

    [3] NUGIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 1995, 33(1): 101-111.

    [4] ROGERS B., FUJIHARA M. and BORTHWICK A. G. L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280.

    [5] LIANG Q., BORTHWICK A. G. L. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234.

    [6] LIANG Qiuhua. A coupled morphodynamic model for applications involving wetting and drying[J]. Journal of Hydrodynamics, 2011, 23(3): 273-281.

    [7] AUDUSSE E., BOUCHUT F. and BRISTEAU M. O. et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal of Scientific Computation, 2004, 25(6): 2050-2065.

    [8] VALIANI A., BEGNUDELLI L. Divergence form for bed slope source term in shallow water equations[J]. Journal of Hydraulic Engineering, 2006, 132(7): 652-665.

    [9] TORNBERGA A. K., ENGQUIST B. Numerical approximations of singular source terms in differential equations[J]. Journal of Computational Physics, 2004, 200(2): 462-488.

    [10] LIANG Q., MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.

    [11] XING Y., SHU C. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[J]. Communications in Computational Physics, 2006, 1(1): 100-134.

    [12] BEGNUDELLI L., BRETT F. S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132(4): 371-384

    [13] NOELLEA S., XING Y. and SHU C. High-order wellbalanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226(1): 29-58.

    [14] GARCíA-NAVARRO P., VáZQUEZ-CENDóN M. E. On numerical treatment of the source terms in the shallow water equations[J]. Computers and Fluids, 2000, 29(1): 951-979

    [15] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [16] LEVEQUE R. J. Finite volume methods for hyperbolic problems[M]. Cambridge, UK: Cambridge University Press, 2002.

    [17] BALE D. S., LEVEQUE R. J. and MITRAN S. et al. A wave propagation method for conservation laws and balance laws with spatially varying flux functions[J]. Journal on Scientific Computing, 2002, 24(3): 955-978.

    [18] WANG Dang-wei, YU Ming-hui and CHEN Jian-guo et al. Improve on WENO-Roe method for simulation of shallow water with complicated topography[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 249-253(in Chinese).

    [19] WANG Xin, CAO Zhi-xian and YUE Zhi-yuan. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 56-62(in Chinese).

    10.1016/S1001-6058(11)60219-9

    * Project supported by the National Basic Research and Development Program of China (973 Program, Grant No. 2011CB409901), the Special Funds for Public Welfare Project (Grant No. 200901014), and the “12th Five-Year Plan” to Support Science and Technology Project (Grant No. 2012BAB02B01).

    Biography: WANG Dang-wei (1982-), Male, Ph. D., Engineer

    2012,24(1):58-64

    猜你喜歡
    家法胸襟
    新的開始
    家法
    家法:整齊門內,提斯子孫
    新傳奇(2018年15期)2018-05-14 17:41:26
    中秋節(jié)里的“家法”
    家長(2017年11期)2017-12-04 03:30:53
    寬闊的胸襟
    員工上班打盹5分鐘被除名,企業(yè)嚴格執(zhí)行“家法”合不合法?
    女性天地(2017年7期)2017-07-21 13:54:05
    從包拯家法說起
    家庭服務(2017年11期)2017-03-11 09:45:34
    書畫家要有胸襟氣度與人生境界
    中國篆刻(2016年12期)2016-09-26 07:43:33
    要有合作的胸襟
    海的高度
    讀者(2013年9期)2013-12-25 02:12:52
    亚洲丝袜综合中文字幕| 最近中文字幕高清免费大全6| 亚洲欧洲日产国产| 亚洲国产欧洲综合997久久,| 天堂√8在线中文| 国产黄a三级三级三级人| 国产亚洲午夜精品一区二区久久 | 午夜免费男女啪啪视频观看| kizo精华| 尾随美女入室| 午夜免费男女啪啪视频观看| 一级毛片aaaaaa免费看小| 一级毛片aaaaaa免费看小| 国产午夜精品论理片| 久久久久久久久久久免费av| 高清午夜精品一区二区三区| 午夜福利网站1000一区二区三区| 久久久午夜欧美精品| 哪个播放器可以免费观看大片| 日韩制服骚丝袜av| 亚洲自偷自拍三级| 舔av片在线| 久久6这里有精品| 一区二区三区免费毛片| 超碰av人人做人人爽久久| 久久精品综合一区二区三区| 男女国产视频网站| 国产精品女同一区二区软件| 一夜夜www| 丰满少妇做爰视频| 麻豆成人午夜福利视频| 成人二区视频| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| 亚洲成av人片在线播放无| www.av在线官网国产| 一个人看的www免费观看视频| 伊人久久精品亚洲午夜| 久久久久国产网址| 国产午夜精品论理片| 在线观看66精品国产| 三级国产精品欧美在线观看| 中文字幕av成人在线电影| 婷婷色综合大香蕉| av卡一久久| 干丝袜人妻中文字幕| 国产精品伦人一区二区| 久久精品国产99精品国产亚洲性色| 51国产日韩欧美| 中文字幕制服av| 丝袜喷水一区| 亚洲无线观看免费| 久久久久久久久久久免费av| 午夜福利网站1000一区二区三区| 精品人妻视频免费看| 最近最新中文字幕免费大全7| 97在线视频观看| 久久6这里有精品| 精品一区二区三区视频在线| 美女高潮的动态| 国产亚洲一区二区精品| 国产91av在线免费观看| 亚洲精品乱码久久久v下载方式| 精品久久久噜噜| 内射极品少妇av片p| 亚洲欧美精品自产自拍| 国产精品无大码| 成人一区二区视频在线观看| 成人性生交大片免费视频hd| 日韩 亚洲 欧美在线| 亚洲伊人久久精品综合 | 国产精品,欧美在线| 亚洲最大成人中文| 国产成人a区在线观看| 国产精品乱码一区二三区的特点| 欧美+日韩+精品| 九草在线视频观看| 日本黄色视频三级网站网址| 国产极品天堂在线| 国产成人免费观看mmmm| 淫秽高清视频在线观看| 精品久久久久久久末码| 一级黄片播放器| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区四那| 女人久久www免费人成看片 | 校园人妻丝袜中文字幕| 男插女下体视频免费在线播放| 欧美成人a在线观看| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 亚洲18禁久久av| 成人特级av手机在线观看| 狠狠狠狠99中文字幕| 亚洲国产精品成人久久小说| 亚洲av不卡在线观看| 老女人水多毛片| 大香蕉久久网| 久久人人爽人人爽人人片va| 韩国av在线不卡| 欧美+日韩+精品| 色噜噜av男人的天堂激情| 亚洲av熟女| 日本三级黄在线观看| 岛国毛片在线播放| 五月玫瑰六月丁香| 啦啦啦啦在线视频资源| 中文亚洲av片在线观看爽| 免费不卡的大黄色大毛片视频在线观看 | 久久久成人免费电影| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看| 偷拍熟女少妇极品色| 超碰97精品在线观看| 女人久久www免费人成看片 | 天天一区二区日本电影三级| 免费电影在线观看免费观看| 一区二区三区四区激情视频| 亚洲av不卡在线观看| 大香蕉久久网| 精品久久久久久久久av| 三级毛片av免费| 国产精品久久久久久精品电影小说 | 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 午夜亚洲福利在线播放| 国产91av在线免费观看| 国产精品综合久久久久久久免费| 国产高清国产精品国产三级 | 精品久久久久久电影网 | 亚洲精品乱码久久久久久按摩| 偷拍熟女少妇极品色| 成年av动漫网址| 精品国产露脸久久av麻豆 | 欧美性猛交╳xxx乱大交人| 国产一级毛片在线| 亚洲欧美精品自产自拍| 一夜夜www| 尤物成人国产欧美一区二区三区| 日本-黄色视频高清免费观看| 色哟哟·www| 美女高潮的动态| h日本视频在线播放| 国产精品一区二区三区四区久久| 国产精品一二三区在线看| 少妇熟女aⅴ在线视频| 精品久久久久久电影网 | 亚洲精品日韩av片在线观看| 日韩高清综合在线| 日韩在线高清观看一区二区三区| 精品久久久久久电影网 | 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 老司机福利观看| 在线观看66精品国产| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 麻豆久久精品国产亚洲av| 欧美性感艳星| 成人综合一区亚洲| 在线观看一区二区三区| 老司机影院成人| 欧美日本视频| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 亚洲av成人精品一区久久| 亚洲,欧美,日韩| 成人二区视频| 91精品一卡2卡3卡4卡| 纵有疾风起免费观看全集完整版 | 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 极品教师在线视频| 毛片女人毛片| 欧美成人一区二区免费高清观看| 99久久无色码亚洲精品果冻| 国产成人a∨麻豆精品| 亚洲五月天丁香| 亚洲国产最新在线播放| 日韩欧美精品免费久久| 国产在视频线精品| 日本欧美国产在线视频| 非洲黑人性xxxx精品又粗又长| 狂野欧美白嫩少妇大欣赏| 精品无人区乱码1区二区| 免费黄色在线免费观看| 婷婷色av中文字幕| 中国美白少妇内射xxxbb| 成人毛片60女人毛片免费| 亚洲国产精品专区欧美| videossex国产| 婷婷色av中文字幕| www.av在线官网国产| 亚洲精品乱码久久久久久按摩| 日韩三级伦理在线观看| 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 少妇高潮的动态图| a级毛片免费高清观看在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产一级毛片七仙女欲春2| 听说在线观看完整版免费高清| 精品久久久久久成人av| 午夜日本视频在线| 亚洲四区av| 亚洲无线观看免费| 亚洲av成人av| 国产av一区在线观看免费| 亚洲精品自拍成人| 一级毛片我不卡| 欧美日本视频| 床上黄色一级片| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 最后的刺客免费高清国语| 日韩欧美在线乱码| 爱豆传媒免费全集在线观看| 国产91av在线免费观看| 国产三级在线视频| 成人av在线播放网站| 黄色配什么色好看| 淫秽高清视频在线观看| 国产色婷婷99| 99久久精品热视频| 久久精品久久久久久久性| 在线a可以看的网站| 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| 国产成人a∨麻豆精品| 国产在线男女| 色综合亚洲欧美另类图片| 狂野欧美白嫩少妇大欣赏| av天堂中文字幕网| 日本爱情动作片www.在线观看| 国产色爽女视频免费观看| 22中文网久久字幕| 2021少妇久久久久久久久久久| 日本熟妇午夜| 亚洲av电影在线观看一区二区三区 | 深爱激情五月婷婷| 99热精品在线国产| 99久久中文字幕三级久久日本| 久久精品久久久久久久性| 国产午夜福利久久久久久| 国产黄片视频在线免费观看| 91精品一卡2卡3卡4卡| 美女黄网站色视频| 欧美成人午夜免费资源| 哪个播放器可以免费观看大片| 久久久国产成人免费| 亚洲国产精品合色在线| 国产高清国产精品国产三级 | 亚洲精品国产成人久久av| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 在线免费十八禁| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 色视频www国产| 亚洲第一区二区三区不卡| av视频在线观看入口| 看片在线看免费视频| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂 | 免费av毛片视频| 色视频www国产| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看吧| 97超碰精品成人国产| 国产精品人妻久久久影院| 极品教师在线视频| 久久99蜜桃精品久久| 男插女下体视频免费在线播放| 国产成人a区在线观看| 午夜福利网站1000一区二区三区| 免费看美女性在线毛片视频| 亚洲国产精品国产精品| 久久热精品热| 校园人妻丝袜中文字幕| 久久人妻av系列| 国产成人精品久久久久久| АⅤ资源中文在线天堂| 一级av片app| 大香蕉久久网| 高清av免费在线| 韩国av在线不卡| 欧美激情国产日韩精品一区| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清专用| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 99热全是精品| 白带黄色成豆腐渣| 色综合站精品国产| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 国产大屁股一区二区在线视频| 永久免费av网站大全| 嫩草影院精品99| 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播| 国产 一区精品| 午夜激情福利司机影院| 午夜福利在线在线| 久久99热6这里只有精品| 九九在线视频观看精品| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 青春草亚洲视频在线观看| 99热精品在线国产| 男女边吃奶边做爰视频| 日韩视频在线欧美| 久久婷婷人人爽人人干人人爱| 国产精品蜜桃在线观看| 亚洲成人中文字幕在线播放| 免费看日本二区| 久久99蜜桃精品久久| 国产乱来视频区| 91久久精品电影网| 国产麻豆成人av免费视频| 欧美最新免费一区二区三区| 男女视频在线观看网站免费| 在线观看66精品国产| 国产精品久久久久久av不卡| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| 亚洲,欧美,日韩| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 日韩强制内射视频| 久久亚洲国产成人精品v| 久久久久久大精品| 国产精品不卡视频一区二区| 我要搜黄色片| 久久鲁丝午夜福利片| 亚洲av一区综合| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 亚洲精品乱码久久久v下载方式| 26uuu在线亚洲综合色| 久热久热在线精品观看| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看 | 搞女人的毛片| 亚洲欧美日韩卡通动漫| 一个人看的www免费观看视频| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久成人| 一区二区三区四区激情视频| h日本视频在线播放| 欧美成人a在线观看| 一个人看的www免费观看视频| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 国产亚洲av嫩草精品影院| 国产熟女欧美一区二区| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 天堂av国产一区二区熟女人妻| 人人妻人人澡欧美一区二区| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 婷婷色av中文字幕| 午夜福利在线观看免费完整高清在| 超碰av人人做人人爽久久| 亚洲天堂国产精品一区在线| av在线观看视频网站免费| videossex国产| 日韩在线高清观看一区二区三区| 久久久成人免费电影| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| 亚洲精品色激情综合| 国产单亲对白刺激| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 亚洲在线观看片| 国产午夜精品久久久久久一区二区三区| 视频中文字幕在线观看| 乱码一卡2卡4卡精品| 国产精品无大码| 51国产日韩欧美| 婷婷色麻豆天堂久久 | 在线a可以看的网站| 最近手机中文字幕大全| 国产精品综合久久久久久久免费| 99热这里只有是精品在线观看| 日本与韩国留学比较| 久久精品国产99精品国产亚洲性色| 亚洲精品成人久久久久久| 国产91av在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 卡戴珊不雅视频在线播放| 看十八女毛片水多多多| 一区二区三区乱码不卡18| 国产一级毛片七仙女欲春2| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 99久国产av精品| 搡女人真爽免费视频火全软件| 国产乱人偷精品视频| 亚洲精品乱久久久久久| 波多野结衣巨乳人妻| 国产高清国产精品国产三级 | 国产免费视频播放在线视频 | 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 国产不卡一卡二| 精品久久久久久久久久久久久| 99久久中文字幕三级久久日本| 啦啦啦观看免费观看视频高清| 男女边吃奶边做爰视频| 特级一级黄色大片| 亚洲五月天丁香| 午夜福利在线观看免费完整高清在| 成人av在线播放网站| 男人舔奶头视频| 国产亚洲一区二区精品| 日本午夜av视频| 亚洲国产成人一精品久久久| 在线免费观看的www视频| 亚洲三级黄色毛片| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| 免费看美女性在线毛片视频| 久久精品人妻少妇| 久久精品夜色国产| 成人三级黄色视频| 日韩欧美国产在线观看| 国产一区二区亚洲精品在线观看| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 久久精品91蜜桃| 最近的中文字幕免费完整| 亚洲欧美精品专区久久| 午夜精品国产一区二区电影 | 国产精品乱码一区二三区的特点| 午夜老司机福利剧场| 一区二区三区高清视频在线| 麻豆av噜噜一区二区三区| 26uuu在线亚洲综合色| 久久人妻av系列| 欧美一区二区国产精品久久精品| 不卡视频在线观看欧美| 日本一二三区视频观看| 日日啪夜夜撸| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久 | 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 国产成人freesex在线| 性色avwww在线观看| 插逼视频在线观看| 午夜精品在线福利| 亚洲成人精品中文字幕电影| videos熟女内射| 国产一区二区在线av高清观看| 青春草视频在线免费观看| 成人特级av手机在线观看| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 中文天堂在线官网| 国产精品蜜桃在线观看| 少妇人妻一区二区三区视频| 高清毛片免费看| 99在线人妻在线中文字幕| 欧美日本视频| 一边摸一边抽搐一进一小说| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片| 国产一区亚洲一区在线观看| 天堂av国产一区二区熟女人妻| 亚洲av一区综合| 欧美不卡视频在线免费观看| 99久国产av精品国产电影| ponron亚洲| 国产精品美女特级片免费视频播放器| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 亚洲熟妇中文字幕五十中出| 精品少妇黑人巨大在线播放 | 亚洲精品乱码久久久久久按摩| 亚洲av不卡在线观看| 国产精品一区二区三区四区久久| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| 边亲边吃奶的免费视频| 久久草成人影院| 日韩欧美三级三区| 亚洲性久久影院| 日韩欧美精品免费久久| 日韩精品青青久久久久久| 欧美成人午夜免费资源| 色综合站精品国产| 一个人看视频在线观看www免费| 亚洲国产最新在线播放| 日本五十路高清| 国产精品永久免费网站| 淫秽高清视频在线观看| 成人亚洲欧美一区二区av| 熟女人妻精品中文字幕| 色噜噜av男人的天堂激情| 精品国内亚洲2022精品成人| 岛国在线免费视频观看| 中文天堂在线官网| 亚洲人成网站在线播| 亚洲av成人av| 欧美激情久久久久久爽电影| 亚洲欧美中文字幕日韩二区| 国产不卡一卡二| 亚洲丝袜综合中文字幕| 99久久无色码亚洲精品果冻| 日韩av不卡免费在线播放| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 欧美最新免费一区二区三区| 麻豆乱淫一区二区| 日韩大片免费观看网站 | 亚洲精品乱久久久久久| 亚洲无线观看免费| 免费观看的影片在线观看| 国产午夜精品久久久久久一区二区三区| 国产色爽女视频免费观看| 免费观看人在逋| av.在线天堂| 欧美丝袜亚洲另类| 免费电影在线观看免费观看| 伦精品一区二区三区| 男人和女人高潮做爰伦理| 国产一区二区三区av在线| 夜夜爽夜夜爽视频| 91久久精品国产一区二区成人| 纵有疾风起免费观看全集完整版 | av线在线观看网站| 在线免费观看的www视频| 亚洲在线观看片| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 一级毛片电影观看 | 美女脱内裤让男人舔精品视频| 男人的好看免费观看在线视频| 全区人妻精品视频| 毛片女人毛片| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 女的被弄到高潮叫床怎么办| 精品国产三级普通话版| 日本三级黄在线观看| av免费在线看不卡| 天堂网av新在线| 亚洲精品国产成人久久av| 日韩国内少妇激情av| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 久久99热6这里只有精品| 欧美日韩精品成人综合77777| 亚洲国产精品国产精品| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 欧美成人免费av一区二区三区| 热99在线观看视频| 午夜免费男女啪啪视频观看| 日本一二三区视频观看| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 亚洲五月天丁香| 国产三级在线视频| 99热精品在线国产| 久久午夜福利片| 人妻夜夜爽99麻豆av| 亚洲av电影不卡..在线观看| 淫秽高清视频在线观看| 国产极品精品免费视频能看的| 晚上一个人看的免费电影| 亚洲国产欧洲综合997久久,| 国产白丝娇喘喷水9色精品| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品电影| 精品人妻一区二区三区麻豆| 综合色丁香网| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| 国产黄色小视频在线观看| 天天躁夜夜躁狠狠久久av| 国产大屁股一区二区在线视频| 最近中文字幕高清免费大全6| 久久精品人妻少妇| 国产精品麻豆人妻色哟哟久久 | 国产91av在线免费观看| 听说在线观看完整版免费高清| 人妻夜夜爽99麻豆av| 高清在线视频一区二区三区 |