• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    2012-05-11 06:54:52WANGDangwei
    水動力學研究與進展 B輯 2012年1期
    關鍵詞:家法胸襟

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    (Received August 12, 2011, Revised November 9, 2011)

    Imbalance arises when the Roe’s method is directly applied in the shallow water simulation. The reasons are different for the continuity equation and the momentum equations. Based on the Roe’s method, a partial surface method is proposed for a perfect balance for the continuity equation. In order to generate a mathematically hyperbolic formulation, the momentum equations are split, which causes incompatibility in the calculation of the momentum equations. In this article a numerical approach named the Slop Flux Method (SFM) is proposed to balance the source terms and the flux gradient based on the finite volume method. The method is first applied to shallow water equations. The model is verified by analytical results of classical test cases with good agreement. Finally the method is applied to a steady flow simulation over a practical complicated topography and the result shows good balance and conservation.

    shallow water simulation, Roe’s method, complicated topography, partial surface method, bed slop flux method

    Introduction

    The flows in rivers are very complex that failure often occurs in numerical simulations, especially, when there are shock waves involved[1]. For the equation system related with conservation laws, the Godunov-type methods can account for correct information in nearly all flow patterns even for cases including discontinuities by solving a set of Riemann problems over the entire computational domain. As the computational efficiency is too low when Riemann problems are solved directly, many approximate Riemann solvers are available that can provide good approximate results with much less computation time. The Roe’s method is one of the most robust approximate Riemann solvers widely used in aerodynamics and hydrodynamics. But difficulties still arise in solving the Riemann problems, especially, when the source terms are included in Shallow Water Equations (SWEs).

    In order to keep the equations as a hyperbolic system and adopt the Roe’s method directly, the flux gradients and the source terms of SWEs are split artificially. Thus a numerical imbalance will be found for flows over natural riverbeds often with complicated topographies. It is understood that the imbalance is caused solely because of mathematical splitting[2]. This problem is usually treated in two different ways, namely, by the numerical method and by the mathematical method. Mathematical method involves revi-sing the formulation of the governing equations before any numerical algorithms to be implemented. Nugic[3]obtained SWEs in a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gradients to the source terms. Rogers et al.[4]proposed an alternative splitting of the free surface gradient terms and derived a deviatoric form by subtracting an equilibrium solution that could refer to the still water conditions or the equilibrium conditions to allow one to drive a simulation to a steady state. Recently Liang[5,6]suggested another way for splitting free surface gradient terms to solve problems involving wetting and drying. On the other hand, the numerical methods make some revisions based on numerical algorithms without any change of the governing equations. Considerable progress was made in this direction[7-17]and the most representative work is Vázquez-Cendón’s[14]upwind scheme for the source terms, Zhou’s surface gradient method[15]and LeVeque’s[16,17]quasi-steady wave-propagation algorithm. Most of the above approaches are to keep a balance between the flux and the source terms in the motion equations but the conservative property of these approaches is usually not well addressed.

    In this article we apply the Roe’s method to discretize the conservative form SWEs. For the imbalance thus caused, different techniques are proposed for the continuity equation and the momentum equations, separately. An approach of balancing the source terms with the flux is presented based on the finite volume method and it can be easily extended to other approximate Riemann solvers. Besides keeping a strict balance, the model established in this article has a good performance for conservation.

    1. The nature of the problem

    1.1 Governing equations

    Neglecting the vertical acceleration of water particles and taking the pressure to be hydrostatic, the 2-D non-linear SWEs may be derived by depth-integrating the 3-D Reynolds averaged Navier-Stokes equations. In the matrix form, a conservation law of the 2-D non-linear shallow water equations can be written as

    where U, F, G and S are the vectors representing the conserved variables, the numerical fluxes in x- and y-directions, and the source terms, respectively. Ignoring the viscous terms, the surface stress caused by the wind, and the Coriolis effects, these vectors can be written as

    This is the popular form of the SWEs and it can be solved by Godunov-type schemes. In these expressions, h is the water depth, u and v are the depth averaged velocity in x- and y-directions, respectively, g is the acceleration due to the gravity,xs andys are the bed slopes in x- and y-directions, respectively, and are expressed as

    wherebz is the bed elevation,xf andyf are the bed friction due to the bed roughness in x- and y-directions, respectively and they can be estimated by empirical formulas as

    where n is the Manning coefficient.

    1.2 Discretizing by finite volume method The integral form of Eq.(1) is

    Applying Green’s theorem, Eq.(5) can be written as

    where E=(F, G), the n is the unit normal vectors of the cell boundary. The computational domain consists of quadrilateral cells and the variables are taken at the centre of each cell. So Eq.(3) becomes

    where AΔ is the area of the cell,ilΔ is the length of the boundary i,xn andyn are the Cartesian components of n in x- and y-directions, respectively, f?and g?denotes the numerical flux in x- and ydirections, respectively, which can be estimated by the Roe’s approximate Riemann solver as follows

    in whichlU andrU are the terms on the conservative left and right sides, separated by a discontinuity at the interface,andare the eigenvalue and the eigenvector of the linearized coefficient matrix of the SWEs. According to the principle of the Roe’s method, the linearized Jacobianfor Eq.(1) can be derived as

    So the eigenvalues and eigenvectors ofare as follows

    In the Roe’s method, the discontinuity at the interface of the computational element can be estimated by the eigen-decomposition algorithms as

    where ΔU is the jump value, or the difference between right and left Riemann states on either side of a cell interface of the variable U.

    For a quiescent still water without any input, the values in SWEs should be u=v=0. Substituting Eqs.(10)-(14) into Eq.(7), the discretized form of the SWEs by the Roe’s method can be written as

    It is obvious that the water will keep quiescent if there is no inflow current and the variables would not change with time, so the right matrix must be equal to 0. Now the key is to keep the terms in the right matrix equal to 0.

    1.3 Balancing methods

    The imbalances of the continuity equation and the momentum equation are different and they need to be solved separately.

    1.3.1 Partial surface method[18]for continuity equation

    In the start, the water is still. Thus the continuity equation should satisfy the condition

    But Eq.(16) does not always hold true. In fact, the condition of keeping Eq.(16) in equilibrium is so rigor for a riverbed that is rarely required in a natural environment and a flatterrain is one of conditions that may suit the needs. This problem is related to the physical nature of the Roe’s approximate Riemann solver. The Roe’s method is a kind of Godunov-type schemes, where the problem is treated as sets of Riemann problems over the entire computational domain, so the

    jump value should be the driving force. From the physical point of view, the water movement is a kind of gravity wave, while hΔ is definitely not the original driving force for a gravity-driven flow like the water flow. It is obvious that the jump value of the water level would not drive the water from still to motion, so Eq.(16) should be

    where z is the water level. Then the continuity equation should be written as

    With no riverbed deformation, it can be easily shown that Eq.(18) becomes a typical continuity equation in 2-D SWEs. So Eq.(17) is correct both physically and mathematically and the imbalance caused by the continuity equation is thus eliminated.

    1.3.2 Slop flux method for motion equations

    For still water, the motion equations discretized by the Roe’s method (in x-direction, for example) is

    The key is how to deal with the bed slope and the imbalance and the false flow caused by direct discretization. In order to solve this problem under the frame of FVM and keep the result conservative, the second term in Eq.(19) can be written as

    where c is a constant in a single cell. Applying Green’s theorem to the right side term of Eq.(20), we have

    It can be considered as a Riemann problem, so Eq.(17) can be written as

    Now we need to calculate the value of c with the still water state as a boundary condition for this problem. In the still water state, we have

    wherecz is the water level at the center of the cell. Substituting Eq.(24) into Eq.(22) we obtain the final discretization form of the bed slope in the source terms of the motion equations.

    In view of stability and computational efficiency, the self-adaptable time step method[19]is adopt for solving the bed shear stress terms.

    2. Results and discussion

    The numerical scheme is validated against benchmark tests. The results are first compared with analytical solutions, then the model is applied in a practical flow simulation in Songhuajiang River with complicated natural topography. In all cases, g= 9.81m/s2.

    2.1 Steady flow over a bump

    The bed elevation of a 25 m long channel with a bump is defined by

    which is a classical test problem used as a benchmark test case for numerical methods at the workshop on dam-break wave simulations. A discharge per unit width of q=0.18 m2/s is imposed at the upstream boundary and h=0.33m is specified as the downstream boundary condition and the bed shear stress is ignored. In this case, the flow is trans-critical with a sGhoouctka l[w15a].ve and the analytical result was given by

    The global relative error R is defined by

    Fig.1 Convergence history of global error

    Fig.2 Comparison of discharge

    Fig.3 Comparison of water surface

    Fig.4 Comparison of velocity

    Fig.5 Comparison of Froude number

    2.2 Tidal wave flow over an irregular bed

    絳蠟叢中一講廬,披圖想見過庭趨。塤篪韻事真馨逸,得許升堂展謁無。梓橋俯仰傍寒林,伴結幽芳夙抱深。家法豈惟傳治譜,先將鐵石煉胸襟。

    This is a 1-D problem with bed topography defined by

    A comparison of the numerical results with the asymptotic analytical solution at t=7 552s is shown in Figs.6 and 7. The agreement is excellent especially for the water surface. The largest difference between the numerical and analytical values of the velocity is about 0.004 m/s. This suggests that the proposed scheme is accurate for tidal flow problems.

    Fig.6 Comparison of water velocity

    Fig.7 Comparison of water surface

    2.3 Steady flow in Songhuajiang River with compli

    cated bed topography

    The model is used in Jiamusi reach of Songhuajiang River to evaluate the influence of building Liushudao dike on the flood control. The dike is built to protect people and animals on the island from flood disaster. The computational area is about 35 km2and the area of Liushudao Island is about 10 km2, as is shown in Fig.7. The whole computational domain is divided into 100×200 irregular quadrilateral grids. A discharge of 17 100 m3/s is imposed at the inlet and the corresponding water surface at the outlet is 79.290 m.

    The relative error of discharge between inlet and outlet is defined as

    Fig.8 Convergence history ofDR

    Fig.9 Change of water surface due to embankment around the island

    Fig.10 Velocity profile of a typical cross section

    Figure 8 shows the convergence history of RDand RD=0.9% when the steady state is reached after 6 000 s. It shows that the model can keep variables conservative perfectly. Figure 9 shows the contour of the water surface change due to the Liushudao dike. In most area, the water surface rises when the Liushudao dike is built and this is because the water can not flow over the island as it did without the dike. The largest rise is about 0.33 m, which is near the inlet of the left branch because of an anti-flow there. Figure 10 shows the profile of the velocity of a typical cross section which goes across the island. Barred by theLiushudao dike, the water can not flood the island, where the velocity is decreased to 0 while the velocity in the main channel is increased.

    3. Conclusion

    This article presents a numerical model by solving 2-D SWEs using the Roe’s method. Imbalance would occur when the Roe’s method is directly applied to solve the SWEs, therefore, the partial surface method is proposed for balancing the continuity equations based on the physical nature of the Roe’s method. The source terms, especially, the bed slope term, often cause imbalance in the simulation of 2-D shallow water over complicated topography. In this article we propose a numerical method based on FVM to keep the conservative property of the conservation laws. The model is verified by results of classical test cases and the Songhuajiang River is taken as an example to show that the numerical model in this article enjoys generality, balance and conservation.

    [1] YU Ming-hui, DENG Yin-ling and QIN Lian-chao et al. Numerical simulation of levee breach flows under complex boundary conditions[J]. Journal of Hydrodynamics, 2009, 21(5): 633-639

    [2] ROGERS B. D., BORTHWICK A. G. L. and TAYLOR P. H. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver[J]. Journal of Computational Physics, 2003, 192(2): 422-451.

    [3] NUGIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 1995, 33(1): 101-111.

    [4] ROGERS B., FUJIHARA M. and BORTHWICK A. G. L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280.

    [5] LIANG Q., BORTHWICK A. G. L. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234.

    [6] LIANG Qiuhua. A coupled morphodynamic model for applications involving wetting and drying[J]. Journal of Hydrodynamics, 2011, 23(3): 273-281.

    [7] AUDUSSE E., BOUCHUT F. and BRISTEAU M. O. et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal of Scientific Computation, 2004, 25(6): 2050-2065.

    [8] VALIANI A., BEGNUDELLI L. Divergence form for bed slope source term in shallow water equations[J]. Journal of Hydraulic Engineering, 2006, 132(7): 652-665.

    [9] TORNBERGA A. K., ENGQUIST B. Numerical approximations of singular source terms in differential equations[J]. Journal of Computational Physics, 2004, 200(2): 462-488.

    [10] LIANG Q., MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.

    [11] XING Y., SHU C. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[J]. Communications in Computational Physics, 2006, 1(1): 100-134.

    [12] BEGNUDELLI L., BRETT F. S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132(4): 371-384

    [13] NOELLEA S., XING Y. and SHU C. High-order wellbalanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226(1): 29-58.

    [14] GARCíA-NAVARRO P., VáZQUEZ-CENDóN M. E. On numerical treatment of the source terms in the shallow water equations[J]. Computers and Fluids, 2000, 29(1): 951-979

    [15] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [16] LEVEQUE R. J. Finite volume methods for hyperbolic problems[M]. Cambridge, UK: Cambridge University Press, 2002.

    [17] BALE D. S., LEVEQUE R. J. and MITRAN S. et al. A wave propagation method for conservation laws and balance laws with spatially varying flux functions[J]. Journal on Scientific Computing, 2002, 24(3): 955-978.

    [18] WANG Dang-wei, YU Ming-hui and CHEN Jian-guo et al. Improve on WENO-Roe method for simulation of shallow water with complicated topography[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 249-253(in Chinese).

    [19] WANG Xin, CAO Zhi-xian and YUE Zhi-yuan. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 56-62(in Chinese).

    10.1016/S1001-6058(11)60219-9

    * Project supported by the National Basic Research and Development Program of China (973 Program, Grant No. 2011CB409901), the Special Funds for Public Welfare Project (Grant No. 200901014), and the “12th Five-Year Plan” to Support Science and Technology Project (Grant No. 2012BAB02B01).

    Biography: WANG Dang-wei (1982-), Male, Ph. D., Engineer

    2012,24(1):58-64

    猜你喜歡
    家法胸襟
    新的開始
    家法
    家法:整齊門內,提斯子孫
    新傳奇(2018年15期)2018-05-14 17:41:26
    中秋節(jié)里的“家法”
    家長(2017年11期)2017-12-04 03:30:53
    寬闊的胸襟
    員工上班打盹5分鐘被除名,企業(yè)嚴格執(zhí)行“家法”合不合法?
    女性天地(2017年7期)2017-07-21 13:54:05
    從包拯家法說起
    家庭服務(2017年11期)2017-03-11 09:45:34
    書畫家要有胸襟氣度與人生境界
    中國篆刻(2016年12期)2016-09-26 07:43:33
    要有合作的胸襟
    海的高度
    讀者(2013年9期)2013-12-25 02:12:52
    a级片在线免费高清观看视频| 天堂动漫精品| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 在线观看人妻少妇| 一区二区三区激情视频| 女同久久另类99精品国产91| 欧美另类亚洲清纯唯美| 啪啪无遮挡十八禁网站| 少妇被粗大的猛进出69影院| 精品一品国产午夜福利视频| 天天影视国产精品| 亚洲,欧美精品.| 成人av一区二区三区在线看| 午夜两性在线视频| 亚洲五月色婷婷综合| 亚洲欧美精品综合一区二区三区| 日日夜夜操网爽| 中文字幕另类日韩欧美亚洲嫩草| 日韩制服丝袜自拍偷拍| 精品少妇内射三级| 亚洲欧美日韩高清在线视频 | 久久精品国产综合久久久| 欧美亚洲 丝袜 人妻 在线| 免费高清在线观看日韩| 宅男免费午夜| 日韩欧美一区视频在线观看| 久久精品国产a三级三级三级| 中文亚洲av片在线观看爽 | 黑人欧美特级aaaaaa片| 国产高清videossex| 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 欧美性长视频在线观看| 无限看片的www在线观看| 大片免费播放器 马上看| 日韩一卡2卡3卡4卡2021年| 欧美精品人与动牲交sv欧美| 五月开心婷婷网| 国产真人三级小视频在线观看| 纯流量卡能插随身wifi吗| 在线十欧美十亚洲十日本专区| 国产精品亚洲av一区麻豆| 在线观看免费午夜福利视频| 亚洲国产精品一区二区三区在线| 男女午夜视频在线观看| 一二三四在线观看免费中文在| 日日摸夜夜添夜夜添小说| 大片电影免费在线观看免费| 国产欧美日韩一区二区精品| 亚洲七黄色美女视频| 精品人妻熟女毛片av久久网站| 涩涩av久久男人的天堂| 中文亚洲av片在线观看爽 | 高清在线国产一区| 性少妇av在线| 国产精品偷伦视频观看了| 少妇裸体淫交视频免费看高清 | 日韩中文字幕视频在线看片| 国产成人影院久久av| 免费看十八禁软件| 蜜桃在线观看..| 欧美成人午夜精品| 精品第一国产精品| 久久 成人 亚洲| 亚洲欧美一区二区三区久久| 热99国产精品久久久久久7| 91老司机精品| 一级片'在线观看视频| 成人18禁在线播放| 两个人看的免费小视频| 黄色毛片三级朝国网站| 最新美女视频免费是黄的| 亚洲av欧美aⅴ国产| 在线天堂中文资源库| 新久久久久国产一级毛片| 涩涩av久久男人的天堂| 丝袜喷水一区| 12—13女人毛片做爰片一| 国产免费视频播放在线视频| 国精品久久久久久国模美| 国产激情久久老熟女| 国产精品美女特级片免费视频播放器 | 免费一级毛片在线播放高清视频 | videosex国产| 国产日韩欧美亚洲二区| 久久久久久久国产电影| 精品国产亚洲在线| 亚洲欧美日韩另类电影网站| 啦啦啦 在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| 十八禁高潮呻吟视频| 激情视频va一区二区三区| 又黄又粗又硬又大视频| 丁香六月欧美| 制服人妻中文乱码| 大码成人一级视频| 欧美日韩福利视频一区二区| 母亲3免费完整高清在线观看| 免费观看av网站的网址| 久久中文字幕一级| 啦啦啦 在线观看视频| 激情视频va一区二区三区| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久成人av| 香蕉久久夜色| 中文字幕av电影在线播放| 在线播放国产精品三级| 一级片'在线观看视频| 国产亚洲午夜精品一区二区久久| 高潮久久久久久久久久久不卡| 一级毛片精品| 热99国产精品久久久久久7| 久久 成人 亚洲| xxxhd国产人妻xxx| 欧美乱码精品一区二区三区| 国产精品熟女久久久久浪| 欧美日韩精品网址| 夜夜骑夜夜射夜夜干| av片东京热男人的天堂| 国产成人av教育| 日本一区二区免费在线视频| 日韩中文字幕视频在线看片| www.熟女人妻精品国产| 国产精品一区二区在线不卡| www.熟女人妻精品国产| 精品国内亚洲2022精品成人 | 亚洲av美国av| 视频区欧美日本亚洲| 国产精品av久久久久免费| 久久99一区二区三区| 亚洲av欧美aⅴ国产| 亚洲精品国产精品久久久不卡| 考比视频在线观看| 成年人免费黄色播放视频| 国产av精品麻豆| 电影成人av| 19禁男女啪啪无遮挡网站| h视频一区二区三区| 日韩 欧美 亚洲 中文字幕| 在线观看一区二区三区激情| 国产成人系列免费观看| 国产xxxxx性猛交| 啦啦啦免费观看视频1| 丝袜在线中文字幕| 国产精品1区2区在线观看. | 久久久久国内视频| 亚洲精品中文字幕一二三四区 | 免费在线观看日本一区| 黄片播放在线免费| 制服人妻中文乱码| 久久午夜综合久久蜜桃| 久久午夜综合久久蜜桃| av天堂久久9| 国产日韩一区二区三区精品不卡| 国产高清videossex| 久久久久精品国产欧美久久久| 成人18禁在线播放| 免费av中文字幕在线| 国产精品欧美亚洲77777| 多毛熟女@视频| 在线播放国产精品三级| 国产片内射在线| 正在播放国产对白刺激| 欧美大码av| 亚洲情色 制服丝袜| 我的亚洲天堂| 久久久精品94久久精品| 国产成人一区二区三区免费视频网站| 少妇的丰满在线观看| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 国精品久久久久久国模美| 国产aⅴ精品一区二区三区波| www.精华液| 怎么达到女性高潮| 一本综合久久免费| 日韩一区二区三区影片| 欧美在线黄色| 老司机靠b影院| 欧美人与性动交α欧美软件| 国精品久久久久久国模美| 国产日韩欧美在线精品| 国产亚洲一区二区精品| 精品少妇久久久久久888优播| 十八禁人妻一区二区| 精品一品国产午夜福利视频| 999久久久精品免费观看国产| 一级毛片女人18水好多| 欧美中文综合在线视频| 国产精品秋霞免费鲁丝片| 操出白浆在线播放| 香蕉丝袜av| 国产精品九九99| 久久亚洲精品不卡| 黄色 视频免费看| 日韩一区二区三区影片| 12—13女人毛片做爰片一| 日韩免费av在线播放| h视频一区二区三区| 国产成人精品在线电影| 日韩大码丰满熟妇| 精品久久久久久电影网| 国产国语露脸激情在线看| 一区二区三区精品91| 欧美精品一区二区免费开放| 久久精品国产99精品国产亚洲性色 | 美女扒开内裤让男人捅视频| 搡老乐熟女国产| 久久 成人 亚洲| 老司机深夜福利视频在线观看| 变态另类成人亚洲欧美熟女 | 制服人妻中文乱码| 黄色a级毛片大全视频| 国产99久久九九免费精品| 亚洲欧美日韩高清在线视频 | 热99久久久久精品小说推荐| 亚洲av美国av| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| 亚洲国产精品一区二区三区在线| 久久免费观看电影| 在线观看免费日韩欧美大片| av片东京热男人的天堂| 如日韩欧美国产精品一区二区三区| 在线观看免费午夜福利视频| 欧美另类亚洲清纯唯美| 午夜日韩欧美国产| 男男h啪啪无遮挡| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| a级毛片黄视频| 亚洲 国产 在线| 91精品三级在线观看| 天天操日日干夜夜撸| 如日韩欧美国产精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 两个人看的免费小视频| 下体分泌物呈黄色| 好男人电影高清在线观看| 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| cao死你这个sao货| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| av片东京热男人的天堂| 啦啦啦中文免费视频观看日本| 国产视频一区二区在线看| 国产xxxxx性猛交| 亚洲成人国产一区在线观看| 黄片小视频在线播放| 久久久久久久久久久久大奶| 久久久久国产一级毛片高清牌| 亚洲欧美日韩高清在线视频 | 一区二区日韩欧美中文字幕| 在线看a的网站| av片东京热男人的天堂| 热re99久久国产66热| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 国产日韩欧美视频二区| 欧美 日韩 精品 国产| 精品一品国产午夜福利视频| 香蕉丝袜av| 最近最新中文字幕大全免费视频| 纵有疾风起免费观看全集完整版| 免费观看a级毛片全部| 成年女人毛片免费观看观看9 | 人妻 亚洲 视频| 国产一区二区三区在线臀色熟女 | 9191精品国产免费久久| 热re99久久精品国产66热6| 国产在线观看jvid| 午夜福利,免费看| 日韩熟女老妇一区二区性免费视频| 久久久久久久精品吃奶| 欧美人与性动交α欧美精品济南到| 日本黄色日本黄色录像| 视频区欧美日本亚洲| 亚洲精华国产精华精| 无人区码免费观看不卡 | 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三| 国产成人精品在线电影| 视频在线观看一区二区三区| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 国产成人免费无遮挡视频| 777久久人妻少妇嫩草av网站| 亚洲 国产 在线| 国产av一区二区精品久久| 老司机影院毛片| 国产av又大| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线美女| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av片中文字幕在线观看| 久久人妻熟女aⅴ| 久久香蕉激情| 国产精品免费大片| 午夜日韩欧美国产| 男人舔女人的私密视频| 波多野结衣av一区二区av| 五月开心婷婷网| 高清毛片免费观看视频网站 | 国产精品一区二区精品视频观看| 激情视频va一区二区三区| 嫩草影视91久久| 1024香蕉在线观看| 欧美精品一区二区大全| 国产精品久久电影中文字幕 | av福利片在线| 久久久精品94久久精品| 成人永久免费在线观看视频 | 男人操女人黄网站| 色尼玛亚洲综合影院| 又紧又爽又黄一区二区| 精品一区二区三卡| 18禁美女被吸乳视频| 91国产中文字幕| 国产精品亚洲av一区麻豆| 两个人看的免费小视频| 老司机在亚洲福利影院| 国产淫语在线视频| 色精品久久人妻99蜜桃| 国产高清videossex| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 亚洲av日韩在线播放| 在线播放国产精品三级| 老司机在亚洲福利影院| 色在线成人网| 一夜夜www| 国产片内射在线| 动漫黄色视频在线观看| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 人人妻人人添人人爽欧美一区卜| 国产精品98久久久久久宅男小说| 欧美成人午夜精品| 国产在线观看jvid| 亚洲国产精品一区二区三区在线| 亚洲成a人片在线一区二区| 美国免费a级毛片| 999久久久国产精品视频| 考比视频在线观看| 91av网站免费观看| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 精品人妻1区二区| 日韩视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久人人做人人爽| 国产成人精品无人区| 多毛熟女@视频| 亚洲五月色婷婷综合| h视频一区二区三区| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 日本精品一区二区三区蜜桃| 亚洲人成电影观看| 在线播放国产精品三级| 精品福利观看| 一区福利在线观看| 精品免费久久久久久久清纯 | 亚洲人成电影观看| 黄色丝袜av网址大全| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| 99在线人妻在线中文字幕 | 欧美精品人与动牲交sv欧美| 777米奇影视久久| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕另类日韩欧美亚洲嫩草| 女人精品久久久久毛片| 欧美乱码精品一区二区三区| 97在线人人人人妻| 成在线人永久免费视频| 老司机午夜福利在线观看视频 | 天堂俺去俺来也www色官网| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲自偷自拍图片 自拍| 国产精品国产av在线观看| 满18在线观看网站| 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 老熟妇乱子伦视频在线观看| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说| 桃红色精品国产亚洲av| 91精品国产国语对白视频| 97在线人人人人妻| 最近最新免费中文字幕在线| 高清在线国产一区| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 老鸭窝网址在线观看| 午夜福利视频精品| 国产在线一区二区三区精| 高清视频免费观看一区二区| av超薄肉色丝袜交足视频| 两个人看的免费小视频| 国产野战对白在线观看| a在线观看视频网站| 香蕉久久夜色| 18禁国产床啪视频网站| 国产成人av教育| 欧美人与性动交α欧美软件| 一区福利在线观看| 在线观看免费午夜福利视频| 超碰成人久久| 精品人妻在线不人妻| 又大又爽又粗| 午夜福利视频精品| 在线永久观看黄色视频| 99热网站在线观看| 在线观看免费视频日本深夜| 成在线人永久免费视频| 久久久久久久久免费视频了| 少妇精品久久久久久久| 亚洲精华国产精华精| 亚洲情色 制服丝袜| 午夜两性在线视频| 天堂动漫精品| 在线av久久热| 国产一区二区三区视频了| 国产有黄有色有爽视频| 国产成人av激情在线播放| 手机成人av网站| 黄片小视频在线播放| 国产国语露脸激情在线看| 岛国在线观看网站| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 大香蕉久久网| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| 久久久国产欧美日韩av| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9 | 欧美成狂野欧美在线观看| 少妇猛男粗大的猛烈进出视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品成人免费网站| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 99久久99久久久精品蜜桃| 在线观看免费视频网站a站| tocl精华| 高清欧美精品videossex| 91麻豆精品激情在线观看国产 | 天堂俺去俺来也www色官网| 日本a在线网址| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕| 亚洲伊人久久精品综合| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 一级毛片精品| 国产不卡一卡二| 美女主播在线视频| a级毛片黄视频| 午夜福利在线免费观看网站| 最新美女视频免费是黄的| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久小说| 久热爱精品视频在线9| 香蕉丝袜av| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 女人精品久久久久毛片| 美女视频免费永久观看网站| 一级,二级,三级黄色视频| 无限看片的www在线观看| 国产在线视频一区二区| 男女高潮啪啪啪动态图| 天天影视国产精品| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 老司机影院毛片| 9色porny在线观看| 国产男靠女视频免费网站| 国产成人影院久久av| 岛国在线观看网站| 叶爱在线成人免费视频播放| 啦啦啦视频在线资源免费观看| 国产伦理片在线播放av一区| www.精华液| 午夜福利欧美成人| 十分钟在线观看高清视频www| 另类精品久久| 最近最新中文字幕大全免费视频| 色播在线永久视频| 欧美激情极品国产一区二区三区| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡| 亚洲中文av在线| 亚洲综合色网址| 国产精品一区二区精品视频观看| 国产精品一区二区在线观看99| 一级毛片女人18水好多| 亚洲精品一二三| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免费看| 成人国语在线视频| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 精品少妇一区二区三区视频日本电影| 香蕉丝袜av| av国产精品久久久久影院| 蜜桃在线观看..| 国产精品免费大片| 国产又色又爽无遮挡免费看| 大码成人一级视频| 国产野战对白在线观看| 黄色片一级片一级黄色片| 婷婷成人精品国产| 久久亚洲真实| 日韩免费高清中文字幕av| 久久久久国产一级毛片高清牌| 999久久久国产精品视频| 超色免费av| 老司机在亚洲福利影院| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 成年人免费黄色播放视频| 精品第一国产精品| 亚洲第一av免费看| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 一区二区三区激情视频| 电影成人av| 在线十欧美十亚洲十日本专区| 国产精品一区二区在线观看99| 我的亚洲天堂| 午夜福利一区二区在线看| 亚洲第一欧美日韩一区二区三区 | 欧美在线黄色| 国产单亲对白刺激| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 午夜视频精品福利| 精品国产一区二区久久| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 欧美激情久久久久久爽电影 | 国产精品二区激情视频| 伦理电影免费视频| 日韩欧美一区视频在线观看| 久久精品国产99精品国产亚洲性色 | 欧美激情极品国产一区二区三区| 9色porny在线观看| 他把我摸到了高潮在线观看 | 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 999精品在线视频| 中文欧美无线码| 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的| 十八禁人妻一区二区| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 另类精品久久| 69精品国产乱码久久久| 免费在线观看影片大全网站| 欧美亚洲 丝袜 人妻 在线| 黄色成人免费大全| 久久亚洲真实| 欧美激情久久久久久爽电影 | 男女之事视频高清在线观看| 高清欧美精品videossex| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 亚洲精品中文字幕一二三四区 | 黑丝袜美女国产一区| 91九色精品人成在线观看| 免费观看人在逋| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 亚洲专区国产一区二区| 国产黄频视频在线观看| 亚洲精品在线美女| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片午夜丰满|