• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    2012-05-11 06:54:52WANGDangwei
    水動力學研究與進展 B輯 2012年1期
    關鍵詞:家法胸襟

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    (Received August 12, 2011, Revised November 9, 2011)

    Imbalance arises when the Roe’s method is directly applied in the shallow water simulation. The reasons are different for the continuity equation and the momentum equations. Based on the Roe’s method, a partial surface method is proposed for a perfect balance for the continuity equation. In order to generate a mathematically hyperbolic formulation, the momentum equations are split, which causes incompatibility in the calculation of the momentum equations. In this article a numerical approach named the Slop Flux Method (SFM) is proposed to balance the source terms and the flux gradient based on the finite volume method. The method is first applied to shallow water equations. The model is verified by analytical results of classical test cases with good agreement. Finally the method is applied to a steady flow simulation over a practical complicated topography and the result shows good balance and conservation.

    shallow water simulation, Roe’s method, complicated topography, partial surface method, bed slop flux method

    Introduction

    The flows in rivers are very complex that failure often occurs in numerical simulations, especially, when there are shock waves involved[1]. For the equation system related with conservation laws, the Godunov-type methods can account for correct information in nearly all flow patterns even for cases including discontinuities by solving a set of Riemann problems over the entire computational domain. As the computational efficiency is too low when Riemann problems are solved directly, many approximate Riemann solvers are available that can provide good approximate results with much less computation time. The Roe’s method is one of the most robust approximate Riemann solvers widely used in aerodynamics and hydrodynamics. But difficulties still arise in solving the Riemann problems, especially, when the source terms are included in Shallow Water Equations (SWEs).

    In order to keep the equations as a hyperbolic system and adopt the Roe’s method directly, the flux gradients and the source terms of SWEs are split artificially. Thus a numerical imbalance will be found for flows over natural riverbeds often with complicated topographies. It is understood that the imbalance is caused solely because of mathematical splitting[2]. This problem is usually treated in two different ways, namely, by the numerical method and by the mathematical method. Mathematical method involves revi-sing the formulation of the governing equations before any numerical algorithms to be implemented. Nugic[3]obtained SWEs in a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gradients to the source terms. Rogers et al.[4]proposed an alternative splitting of the free surface gradient terms and derived a deviatoric form by subtracting an equilibrium solution that could refer to the still water conditions or the equilibrium conditions to allow one to drive a simulation to a steady state. Recently Liang[5,6]suggested another way for splitting free surface gradient terms to solve problems involving wetting and drying. On the other hand, the numerical methods make some revisions based on numerical algorithms without any change of the governing equations. Considerable progress was made in this direction[7-17]and the most representative work is Vázquez-Cendón’s[14]upwind scheme for the source terms, Zhou’s surface gradient method[15]and LeVeque’s[16,17]quasi-steady wave-propagation algorithm. Most of the above approaches are to keep a balance between the flux and the source terms in the motion equations but the conservative property of these approaches is usually not well addressed.

    In this article we apply the Roe’s method to discretize the conservative form SWEs. For the imbalance thus caused, different techniques are proposed for the continuity equation and the momentum equations, separately. An approach of balancing the source terms with the flux is presented based on the finite volume method and it can be easily extended to other approximate Riemann solvers. Besides keeping a strict balance, the model established in this article has a good performance for conservation.

    1. The nature of the problem

    1.1 Governing equations

    Neglecting the vertical acceleration of water particles and taking the pressure to be hydrostatic, the 2-D non-linear SWEs may be derived by depth-integrating the 3-D Reynolds averaged Navier-Stokes equations. In the matrix form, a conservation law of the 2-D non-linear shallow water equations can be written as

    where U, F, G and S are the vectors representing the conserved variables, the numerical fluxes in x- and y-directions, and the source terms, respectively. Ignoring the viscous terms, the surface stress caused by the wind, and the Coriolis effects, these vectors can be written as

    This is the popular form of the SWEs and it can be solved by Godunov-type schemes. In these expressions, h is the water depth, u and v are the depth averaged velocity in x- and y-directions, respectively, g is the acceleration due to the gravity,xs andys are the bed slopes in x- and y-directions, respectively, and are expressed as

    wherebz is the bed elevation,xf andyf are the bed friction due to the bed roughness in x- and y-directions, respectively and they can be estimated by empirical formulas as

    where n is the Manning coefficient.

    1.2 Discretizing by finite volume method The integral form of Eq.(1) is

    Applying Green’s theorem, Eq.(5) can be written as

    where E=(F, G), the n is the unit normal vectors of the cell boundary. The computational domain consists of quadrilateral cells and the variables are taken at the centre of each cell. So Eq.(3) becomes

    where AΔ is the area of the cell,ilΔ is the length of the boundary i,xn andyn are the Cartesian components of n in x- and y-directions, respectively, f?and g?denotes the numerical flux in x- and ydirections, respectively, which can be estimated by the Roe’s approximate Riemann solver as follows

    in whichlU andrU are the terms on the conservative left and right sides, separated by a discontinuity at the interface,andare the eigenvalue and the eigenvector of the linearized coefficient matrix of the SWEs. According to the principle of the Roe’s method, the linearized Jacobianfor Eq.(1) can be derived as

    So the eigenvalues and eigenvectors ofare as follows

    In the Roe’s method, the discontinuity at the interface of the computational element can be estimated by the eigen-decomposition algorithms as

    where ΔU is the jump value, or the difference between right and left Riemann states on either side of a cell interface of the variable U.

    For a quiescent still water without any input, the values in SWEs should be u=v=0. Substituting Eqs.(10)-(14) into Eq.(7), the discretized form of the SWEs by the Roe’s method can be written as

    It is obvious that the water will keep quiescent if there is no inflow current and the variables would not change with time, so the right matrix must be equal to 0. Now the key is to keep the terms in the right matrix equal to 0.

    1.3 Balancing methods

    The imbalances of the continuity equation and the momentum equation are different and they need to be solved separately.

    1.3.1 Partial surface method[18]for continuity equation

    In the start, the water is still. Thus the continuity equation should satisfy the condition

    But Eq.(16) does not always hold true. In fact, the condition of keeping Eq.(16) in equilibrium is so rigor for a riverbed that is rarely required in a natural environment and a flatterrain is one of conditions that may suit the needs. This problem is related to the physical nature of the Roe’s approximate Riemann solver. The Roe’s method is a kind of Godunov-type schemes, where the problem is treated as sets of Riemann problems over the entire computational domain, so the

    jump value should be the driving force. From the physical point of view, the water movement is a kind of gravity wave, while hΔ is definitely not the original driving force for a gravity-driven flow like the water flow. It is obvious that the jump value of the water level would not drive the water from still to motion, so Eq.(16) should be

    where z is the water level. Then the continuity equation should be written as

    With no riverbed deformation, it can be easily shown that Eq.(18) becomes a typical continuity equation in 2-D SWEs. So Eq.(17) is correct both physically and mathematically and the imbalance caused by the continuity equation is thus eliminated.

    1.3.2 Slop flux method for motion equations

    For still water, the motion equations discretized by the Roe’s method (in x-direction, for example) is

    The key is how to deal with the bed slope and the imbalance and the false flow caused by direct discretization. In order to solve this problem under the frame of FVM and keep the result conservative, the second term in Eq.(19) can be written as

    where c is a constant in a single cell. Applying Green’s theorem to the right side term of Eq.(20), we have

    It can be considered as a Riemann problem, so Eq.(17) can be written as

    Now we need to calculate the value of c with the still water state as a boundary condition for this problem. In the still water state, we have

    wherecz is the water level at the center of the cell. Substituting Eq.(24) into Eq.(22) we obtain the final discretization form of the bed slope in the source terms of the motion equations.

    In view of stability and computational efficiency, the self-adaptable time step method[19]is adopt for solving the bed shear stress terms.

    2. Results and discussion

    The numerical scheme is validated against benchmark tests. The results are first compared with analytical solutions, then the model is applied in a practical flow simulation in Songhuajiang River with complicated natural topography. In all cases, g= 9.81m/s2.

    2.1 Steady flow over a bump

    The bed elevation of a 25 m long channel with a bump is defined by

    which is a classical test problem used as a benchmark test case for numerical methods at the workshop on dam-break wave simulations. A discharge per unit width of q=0.18 m2/s is imposed at the upstream boundary and h=0.33m is specified as the downstream boundary condition and the bed shear stress is ignored. In this case, the flow is trans-critical with a sGhoouctka l[w15a].ve and the analytical result was given by

    The global relative error R is defined by

    Fig.1 Convergence history of global error

    Fig.2 Comparison of discharge

    Fig.3 Comparison of water surface

    Fig.4 Comparison of velocity

    Fig.5 Comparison of Froude number

    2.2 Tidal wave flow over an irregular bed

    絳蠟叢中一講廬,披圖想見過庭趨。塤篪韻事真馨逸,得許升堂展謁無。梓橋俯仰傍寒林,伴結幽芳夙抱深。家法豈惟傳治譜,先將鐵石煉胸襟。

    This is a 1-D problem with bed topography defined by

    A comparison of the numerical results with the asymptotic analytical solution at t=7 552s is shown in Figs.6 and 7. The agreement is excellent especially for the water surface. The largest difference between the numerical and analytical values of the velocity is about 0.004 m/s. This suggests that the proposed scheme is accurate for tidal flow problems.

    Fig.6 Comparison of water velocity

    Fig.7 Comparison of water surface

    2.3 Steady flow in Songhuajiang River with compli

    cated bed topography

    The model is used in Jiamusi reach of Songhuajiang River to evaluate the influence of building Liushudao dike on the flood control. The dike is built to protect people and animals on the island from flood disaster. The computational area is about 35 km2and the area of Liushudao Island is about 10 km2, as is shown in Fig.7. The whole computational domain is divided into 100×200 irregular quadrilateral grids. A discharge of 17 100 m3/s is imposed at the inlet and the corresponding water surface at the outlet is 79.290 m.

    The relative error of discharge between inlet and outlet is defined as

    Fig.8 Convergence history ofDR

    Fig.9 Change of water surface due to embankment around the island

    Fig.10 Velocity profile of a typical cross section

    Figure 8 shows the convergence history of RDand RD=0.9% when the steady state is reached after 6 000 s. It shows that the model can keep variables conservative perfectly. Figure 9 shows the contour of the water surface change due to the Liushudao dike. In most area, the water surface rises when the Liushudao dike is built and this is because the water can not flow over the island as it did without the dike. The largest rise is about 0.33 m, which is near the inlet of the left branch because of an anti-flow there. Figure 10 shows the profile of the velocity of a typical cross section which goes across the island. Barred by theLiushudao dike, the water can not flood the island, where the velocity is decreased to 0 while the velocity in the main channel is increased.

    3. Conclusion

    This article presents a numerical model by solving 2-D SWEs using the Roe’s method. Imbalance would occur when the Roe’s method is directly applied to solve the SWEs, therefore, the partial surface method is proposed for balancing the continuity equations based on the physical nature of the Roe’s method. The source terms, especially, the bed slope term, often cause imbalance in the simulation of 2-D shallow water over complicated topography. In this article we propose a numerical method based on FVM to keep the conservative property of the conservation laws. The model is verified by results of classical test cases and the Songhuajiang River is taken as an example to show that the numerical model in this article enjoys generality, balance and conservation.

    [1] YU Ming-hui, DENG Yin-ling and QIN Lian-chao et al. Numerical simulation of levee breach flows under complex boundary conditions[J]. Journal of Hydrodynamics, 2009, 21(5): 633-639

    [2] ROGERS B. D., BORTHWICK A. G. L. and TAYLOR P. H. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver[J]. Journal of Computational Physics, 2003, 192(2): 422-451.

    [3] NUGIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 1995, 33(1): 101-111.

    [4] ROGERS B., FUJIHARA M. and BORTHWICK A. G. L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280.

    [5] LIANG Q., BORTHWICK A. G. L. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234.

    [6] LIANG Qiuhua. A coupled morphodynamic model for applications involving wetting and drying[J]. Journal of Hydrodynamics, 2011, 23(3): 273-281.

    [7] AUDUSSE E., BOUCHUT F. and BRISTEAU M. O. et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal of Scientific Computation, 2004, 25(6): 2050-2065.

    [8] VALIANI A., BEGNUDELLI L. Divergence form for bed slope source term in shallow water equations[J]. Journal of Hydraulic Engineering, 2006, 132(7): 652-665.

    [9] TORNBERGA A. K., ENGQUIST B. Numerical approximations of singular source terms in differential equations[J]. Journal of Computational Physics, 2004, 200(2): 462-488.

    [10] LIANG Q., MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.

    [11] XING Y., SHU C. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[J]. Communications in Computational Physics, 2006, 1(1): 100-134.

    [12] BEGNUDELLI L., BRETT F. S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132(4): 371-384

    [13] NOELLEA S., XING Y. and SHU C. High-order wellbalanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226(1): 29-58.

    [14] GARCíA-NAVARRO P., VáZQUEZ-CENDóN M. E. On numerical treatment of the source terms in the shallow water equations[J]. Computers and Fluids, 2000, 29(1): 951-979

    [15] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [16] LEVEQUE R. J. Finite volume methods for hyperbolic problems[M]. Cambridge, UK: Cambridge University Press, 2002.

    [17] BALE D. S., LEVEQUE R. J. and MITRAN S. et al. A wave propagation method for conservation laws and balance laws with spatially varying flux functions[J]. Journal on Scientific Computing, 2002, 24(3): 955-978.

    [18] WANG Dang-wei, YU Ming-hui and CHEN Jian-guo et al. Improve on WENO-Roe method for simulation of shallow water with complicated topography[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 249-253(in Chinese).

    [19] WANG Xin, CAO Zhi-xian and YUE Zhi-yuan. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 56-62(in Chinese).

    10.1016/S1001-6058(11)60219-9

    * Project supported by the National Basic Research and Development Program of China (973 Program, Grant No. 2011CB409901), the Special Funds for Public Welfare Project (Grant No. 200901014), and the “12th Five-Year Plan” to Support Science and Technology Project (Grant No. 2012BAB02B01).

    Biography: WANG Dang-wei (1982-), Male, Ph. D., Engineer

    2012,24(1):58-64

    猜你喜歡
    家法胸襟
    新的開始
    家法
    家法:整齊門內,提斯子孫
    新傳奇(2018年15期)2018-05-14 17:41:26
    中秋節(jié)里的“家法”
    家長(2017年11期)2017-12-04 03:30:53
    寬闊的胸襟
    員工上班打盹5分鐘被除名,企業(yè)嚴格執(zhí)行“家法”合不合法?
    女性天地(2017年7期)2017-07-21 13:54:05
    從包拯家法說起
    家庭服務(2017年11期)2017-03-11 09:45:34
    書畫家要有胸襟氣度與人生境界
    中國篆刻(2016年12期)2016-09-26 07:43:33
    要有合作的胸襟
    海的高度
    讀者(2013年9期)2013-12-25 02:12:52
    午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 如何舔出高潮| 九色成人免费人妻av| 亚洲精品一卡2卡三卡4卡5卡| 成人性生交大片免费视频hd| 成人特级av手机在线观看| 深夜精品福利| 国产又黄又爽又无遮挡在线| 亚洲欧美中文字幕日韩二区| 综合色丁香网| 香蕉av资源在线| 日日啪夜夜撸| h日本视频在线播放| 可以在线观看毛片的网站| 精品99又大又爽又粗少妇毛片| 久久午夜亚洲精品久久| 91久久精品国产一区二区三区| 男女下面进入的视频免费午夜| 欧美日本亚洲视频在线播放| 少妇高潮的动态图| 黄色日韩在线| 欧美不卡视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 青春草视频在线免费观看| 久久精品国产亚洲网站| 欧美一区二区亚洲| 国内揄拍国产精品人妻在线| 欧美日韩综合久久久久久| 国产亚洲精品av在线| 亚洲国产精品久久男人天堂| 干丝袜人妻中文字幕| 精品无人区乱码1区二区| 一级av片app| 欧美国产日韩亚洲一区| 欧美极品一区二区三区四区| 亚洲国产色片| 久久人人爽人人片av| 久久久久久大精品| 色哟哟·www| 老熟妇仑乱视频hdxx| 日本在线视频免费播放| 久久99热6这里只有精品| 日韩 亚洲 欧美在线| 国产黄色视频一区二区在线观看 | 欧美色视频一区免费| 日本爱情动作片www.在线观看 | 国产又黄又爽又无遮挡在线| 亚洲va在线va天堂va国产| 久久久久久久久大av| 亚洲精品成人久久久久久| 婷婷精品国产亚洲av| 久久精品国产亚洲av天美| 国产91av在线免费观看| a级毛片免费高清观看在线播放| 99久久久亚洲精品蜜臀av| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 最近2019中文字幕mv第一页| 国产精品一及| av在线蜜桃| 97碰自拍视频| 赤兔流量卡办理| 精品久久久久久久久久免费视频| 久99久视频精品免费| 成人特级av手机在线观看| 嫩草影院精品99| 嫩草影视91久久| 在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清无吗| 97碰自拍视频| 欧美日本亚洲视频在线播放| 免费av毛片视频| 久久婷婷人人爽人人干人人爱| 婷婷色综合大香蕉| 日本 av在线| 高清日韩中文字幕在线| www.色视频.com| 亚洲av成人av| 国产一区二区亚洲精品在线观看| 久久6这里有精品| 国产精品嫩草影院av在线观看| 午夜激情福利司机影院| 亚洲第一电影网av| 欧美极品一区二区三区四区| av专区在线播放| 国产白丝娇喘喷水9色精品| 一个人看的www免费观看视频| 日韩欧美 国产精品| 国产 一区精品| 国产精品一区二区三区四区久久| 欧美一区二区亚洲| 综合色丁香网| 色综合站精品国产| 亚洲国产日韩欧美精品在线观看| 直男gayav资源| 精品午夜福利视频在线观看一区| 久久久久性生活片| 春色校园在线视频观看| 免费大片18禁| 噜噜噜噜噜久久久久久91| a级毛片a级免费在线| 日本爱情动作片www.在线观看 | 在线观看66精品国产| 国产精品1区2区在线观看.| 国产精品国产高清国产av| 国产伦一二天堂av在线观看| 亚洲国产日韩欧美精品在线观看| 99精品在免费线老司机午夜| 日韩一区二区视频免费看| 大又大粗又爽又黄少妇毛片口| 不卡视频在线观看欧美| 久久久久国产网址| 色5月婷婷丁香| 国产探花极品一区二区| 国产伦一二天堂av在线观看| 91在线观看av| 国产激情偷乱视频一区二区| 天堂网av新在线| 国产色爽女视频免费观看| 又爽又黄a免费视频| 男女那种视频在线观看| 日本三级黄在线观看| 精品久久久久久成人av| 女的被弄到高潮叫床怎么办| 色尼玛亚洲综合影院| 亚洲人成网站在线观看播放| 变态另类成人亚洲欧美熟女| 人妻制服诱惑在线中文字幕| 日韩,欧美,国产一区二区三区 | 哪里可以看免费的av片| 亚洲av美国av| 国产国拍精品亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 亚洲熟妇中文字幕五十中出| 亚洲精品国产成人久久av| 国产一区二区在线av高清观看| 国产男人的电影天堂91| 国产亚洲91精品色在线| 国产精品一区二区三区四区久久| 国产av不卡久久| 97在线视频观看| 亚洲av熟女| 亚洲高清免费不卡视频| 美女内射精品一级片tv| 国产精华一区二区三区| 亚洲欧美日韩高清专用| 久久久久性生活片| 高清毛片免费看| 联通29元200g的流量卡| 久久鲁丝午夜福利片| 国产三级在线视频| 国产免费一级a男人的天堂| 无遮挡黄片免费观看| 99九九线精品视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 国产精品人妻久久久久久| 特级一级黄色大片| 小说图片视频综合网站| 中文字幕av成人在线电影| 久久精品久久久久久噜噜老黄 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩高清在线视频| 午夜精品一区二区三区免费看| av在线亚洲专区| 国内精品一区二区在线观看| 日本-黄色视频高清免费观看| 日本五十路高清| 亚洲av美国av| 观看美女的网站| 亚洲欧美清纯卡通| 熟女人妻精品中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 村上凉子中文字幕在线| 国产国拍精品亚洲av在线观看| 搡老妇女老女人老熟妇| 亚洲精品影视一区二区三区av| 午夜精品在线福利| 亚洲一区高清亚洲精品| 国产探花在线观看一区二区| 尾随美女入室| 国语自产精品视频在线第100页| 免费在线观看影片大全网站| 午夜影院日韩av| 美女黄网站色视频| a级毛片a级免费在线| 一区二区三区四区激情视频 | 可以在线观看的亚洲视频| 麻豆乱淫一区二区| 国产又黄又爽又无遮挡在线| 人妻制服诱惑在线中文字幕| 午夜福利18| 久久久久久九九精品二区国产| 久久久成人免费电影| 超碰av人人做人人爽久久| 一本久久中文字幕| 最近2019中文字幕mv第一页| 精品久久久久久久久久免费视频| 久久精品国产亚洲av涩爱 | 国产精品国产高清国产av| 欧美+亚洲+日韩+国产| 精品人妻视频免费看| 成人特级av手机在线观看| 亚洲高清免费不卡视频| 亚洲av电影不卡..在线观看| 搞女人的毛片| 日韩国内少妇激情av| 婷婷精品国产亚洲av| 一进一出抽搐gif免费好疼| 99久久中文字幕三级久久日本| 成人特级av手机在线观看| 国产高清有码在线观看视频| 久久久久久久久久黄片| av中文乱码字幕在线| 国产一级毛片七仙女欲春2| 亚洲色图av天堂| 一个人看的www免费观看视频| 免费无遮挡裸体视频| 日韩一区二区视频免费看| 青春草视频在线免费观看| 成年版毛片免费区| 五月伊人婷婷丁香| 欧美性感艳星| 欧美色欧美亚洲另类二区| 中文字幕久久专区| 亚洲色图av天堂| 日韩精品青青久久久久久| 国产一区二区激情短视频| 久99久视频精品免费| 久久久a久久爽久久v久久| 国产精品国产高清国产av| 国产乱人视频| 国产一区亚洲一区在线观看| 男女视频在线观看网站免费| 国产91av在线免费观看| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 国产亚洲精品久久久com| 精品久久久噜噜| 91在线观看av| 国产精品亚洲一级av第二区| av天堂在线播放| 国产成人91sexporn| 久久久精品94久久精品| 精品久久久久久久末码| 日韩 亚洲 欧美在线| 日本三级黄在线观看| 亚洲无线观看免费| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影| а√天堂www在线а√下载| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片| 人人妻人人澡欧美一区二区| 精品午夜福利在线看| 国模一区二区三区四区视频| 欧美3d第一页| 内射极品少妇av片p| 亚洲美女视频黄频| 成人av在线播放网站| 精品久久久噜噜| 中文亚洲av片在线观看爽| 深夜a级毛片| 久久精品影院6| 国产片特级美女逼逼视频| 一本精品99久久精品77| 天天一区二区日本电影三级| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 99久国产av精品国产电影| 精品久久久久久成人av| 国产伦精品一区二区三区四那| 国产高清不卡午夜福利| 99久久精品热视频| 欧美成人一区二区免费高清观看| 内地一区二区视频在线| 亚洲国产日韩欧美精品在线观看| 免费在线观看影片大全网站| 色吧在线观看| 日日摸夜夜添夜夜爱| 夜夜夜夜夜久久久久| 国产色婷婷99| 波野结衣二区三区在线| 久久国产乱子免费精品| 九九热线精品视视频播放| 99久国产av精品国产电影| 又黄又爽又刺激的免费视频.| 国产伦在线观看视频一区| 老熟妇仑乱视频hdxx| 亚州av有码| 亚洲高清免费不卡视频| 高清毛片免费看| 人妻制服诱惑在线中文字幕| 午夜福利18| 免费大片18禁| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩精品一区二区| 日本黄色视频三级网站网址| www.色视频.com| 一区二区三区四区激情视频 | 观看美女的网站| 久久99热6这里只有精品| 赤兔流量卡办理| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 午夜免费激情av| 99久久成人亚洲精品观看| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品合色在线| 日日啪夜夜撸| 亚洲无线在线观看| 久99久视频精品免费| 午夜视频国产福利| 亚洲欧美精品自产自拍| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 十八禁国产超污无遮挡网站| 亚洲经典国产精华液单| 国产私拍福利视频在线观看| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 色综合亚洲欧美另类图片| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久丰满| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 六月丁香七月| 尤物成人国产欧美一区二区三区| 高清午夜精品一区二区三区 | www.色视频.com| 日本一二三区视频观看| 国产av一区在线观看免费| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 亚洲欧美清纯卡通| 欧美潮喷喷水| 国产av在哪里看| 国产精品精品国产色婷婷| 免费看av在线观看网站| 精品久久久噜噜| 国产爱豆传媒在线观看| 中国国产av一级| 如何舔出高潮| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 99国产极品粉嫩在线观看| 九九热线精品视视频播放| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| av在线老鸭窝| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 内地一区二区视频在线| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 可以在线观看的亚洲视频| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 国产精品女同一区二区软件| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 99久久精品热视频| 久久久色成人| 在线国产一区二区在线| 亚洲自拍偷在线| 两个人视频免费观看高清| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 亚洲无线在线观看| 夜夜夜夜夜久久久久| 亚洲国产精品合色在线| 99热网站在线观看| 亚洲欧美日韩高清专用| 久久精品国产亚洲av涩爱 | av在线观看视频网站免费| 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影 | 亚洲无线在线观看| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱 | 国内揄拍国产精品人妻在线| 欧美激情在线99| 欧美成人精品欧美一级黄| 99久久精品一区二区三区| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 内地一区二区视频在线| 国产精品综合久久久久久久免费| 18禁在线播放成人免费| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 自拍偷自拍亚洲精品老妇| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| avwww免费| 国产人妻一区二区三区在| 久久久久国产网址| 国产一区二区激情短视频| 女的被弄到高潮叫床怎么办| 麻豆久久精品国产亚洲av| 一级毛片久久久久久久久女| 国产色爽女视频免费观看| 日韩一本色道免费dvd| 日日干狠狠操夜夜爽| 久久久久久久亚洲中文字幕| 99国产极品粉嫩在线观看| 欧美激情在线99| 乱码一卡2卡4卡精品| 国产乱人视频| 亚洲七黄色美女视频| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 91精品国产九色| 国产成人精品久久久久久| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| av中文乱码字幕在线| 男插女下体视频免费在线播放| 草草在线视频免费看| 亚洲内射少妇av| 欧美丝袜亚洲另类| 久久久久国产精品人妻aⅴ院| 国产精品日韩av在线免费观看| 色视频www国产| 欧美区成人在线视频| 乱人视频在线观看| 级片在线观看| av天堂在线播放| 午夜免费激情av| 91在线观看av| 亚洲综合色惰| 亚洲一区高清亚洲精品| 成人亚洲欧美一区二区av| 亚洲精品国产成人久久av| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| av女优亚洲男人天堂| 大香蕉久久网| 丰满乱子伦码专区| 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 美女内射精品一级片tv| 国产探花极品一区二区| 国产男人的电影天堂91| 人妻久久中文字幕网| 亚洲av中文av极速乱| 禁无遮挡网站| 亚洲最大成人中文| 亚洲av成人av| 成年免费大片在线观看| 我的老师免费观看完整版| 国产精品女同一区二区软件| 99热精品在线国产| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| h日本视频在线播放| 欧美性猛交╳xxx乱大交人| 午夜久久久久精精品| 久久精品久久久久久噜噜老黄 | 精品不卡国产一区二区三区| 综合色丁香网| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 三级国产精品欧美在线观看| 色播亚洲综合网| 久久久欧美国产精品| 黑人高潮一二区| 国产在视频线在精品| 国产真实伦视频高清在线观看| 一区二区三区免费毛片| 国产精品99久久久久久久久| 国产精品三级大全| 99久久成人亚洲精品观看| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 一个人免费在线观看电影| 日韩一区二区视频免费看| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 乱码一卡2卡4卡精品| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 亚洲无线在线观看| 成人综合一区亚洲| 国产精品一及| 成人亚洲精品av一区二区| 嫩草影视91久久| 欧美xxxx性猛交bbbb| 不卡一级毛片| videossex国产| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 在线国产一区二区在线| 丰满乱子伦码专区| 青春草视频在线免费观看| 91麻豆精品激情在线观看国产| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 天天躁夜夜躁狠狠久久av| 亚洲国产色片| 高清午夜精品一区二区三区 | 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 久久久精品欧美日韩精品| 国产精品野战在线观看| 亚洲av美国av| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久 | 日日啪夜夜撸| 别揉我奶头~嗯~啊~动态视频| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 精品福利观看| 亚洲七黄色美女视频| 国内精品一区二区在线观看| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验 | 日韩欧美精品免费久久| 免费观看在线日韩| 欧美xxxx性猛交bbbb| 国产男靠女视频免费网站| 成人鲁丝片一二三区免费| 91av网一区二区| 欧美成人精品欧美一级黄| 一进一出好大好爽视频| 亚洲人成网站高清观看| 天堂√8在线中文| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 特级一级黄色大片| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产av国片精品| 日韩av不卡免费在线播放| 一级黄片播放器| 2021天堂中文幕一二区在线观| 亚洲成人久久爱视频| 神马国产精品三级电影在线观看| 韩国av在线不卡| 午夜福利18| 国产精品久久电影中文字幕| 99久久精品热视频| 久久久久久久亚洲中文字幕| 亚洲国产欧洲综合997久久,| 成人欧美大片| 嫩草影院精品99| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 国产毛片a区久久久久| 精品久久久久久久末码| 婷婷精品国产亚洲av| 亚洲va在线va天堂va国产| 1000部很黄的大片| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看 | 成人鲁丝片一二三区免费| 欧美日韩在线观看h| a级毛色黄片| 亚洲精品成人久久久久久| 欧美高清性xxxxhd video| 搡女人真爽免费视频火全软件 | 亚洲av五月六月丁香网| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲av一区综合| 婷婷亚洲欧美| 在线观看午夜福利视频| 熟女电影av网| 国产美女午夜福利| 日韩欧美精品v在线| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线| 久久久久久久久中文| 日韩成人av中文字幕在线观看 | 国产黄色小视频在线观看| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 在线观看av片永久免费下载| 成年免费大片在线观看| 看非洲黑人一级黄片|