• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANISOTROPIC PERMEABILITY EVOLUTION MODEL OF ROCK IN THE PROCESS OF DEFORMATION AND FAILURE*

    2012-05-11 06:54:42WANGHuanling

    WANG Huan-ling

    Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098, China, E-mail: whl_hm@163.com

    CHU Wei-jiang

    Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    HE Miao

    Jiangsu Transportation Research Institute CO., LTD, Nanjing 211112, China

    ANISOTROPIC PERMEABILITY EVOLUTION MODEL OF ROCK IN THE PROCESS OF DEFORMATION AND FAILURE*

    WANG Huan-ling

    Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098, China, E-mail: whl_hm@163.com

    CHU Wei-jiang

    Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    HE Miao

    Jiangsu Transportation Research Institute CO., LTD, Nanjing 211112, China

    (Received April 29, 2011, Revised September 30, 2011)

    The rock permeability is an important parameter in the studies of seepage and stress coupling. The micro-cracks and pores can initiate and grow on a small scale and coalesce to form large-scale fractures and faults under compressive stresses, which would change the hydraulic conductivity of the rock, and therefore, the rock permeability. The rock permeability is, therefore, closely related with the micro-cracking growing, coalescence, and macro new fracture formation. This article proposes a conceptual model of rock permeability evolution and a micro kinematics mechanism of micro-cracking on the basis of the basic theory of micromechanics. The applicability of the established model is verified through numerical simulations of in situ tests and laboratory tests. The simulation results show that the model can accurately forecast the peak permeability evolution of brittle rock, and can well describe the macro-experimental phenomenon before the peak permeability evolution of brittle rock on a macro-scale.

    rock hydraulics, micro-mechanics, permeability, model validation

    Introduction

    The stresses will be re-distributed in a rock mass, under external forces or other engineering situations, which in turn will significantly change the permeability within the rock mass. This process is now a hot issue in the study of the coupling between the seepage field and the stress field in rock masses. With the development of new methods and new equipment in rock mechanics tests, especially, the application of the seepage coupling experimental method in the stressstrain process, it is widely recognized that the permeability of rock is closely related with the micro-crack growth and coalescence, and the macro-fracture formation[1]. A large number of experimental curves related with stress-strain relations and permeability evolutions[2]show that the rock stress state and the deformation degree in different directions in the stressstrain process are not the same, therefore, the evolution of micro-crack opening, density, and connectivity are different and the permeability is not the same in different directions, that is, the permeability shows a significant anisotropy[3]. So the rock deformation not only changes the permeability value, but also brings about a significant anisotropy, which should be considered in rock engineering.

    Extensive researches were carried out on the impact of the load (the stress state) on the rock permeability, which may be summarized as follows: (1) The empirical formulas obtained through extensive experiments. Early studies focused on establishing the relationship between seepage and stress by using direct experiments or indirect analyses. Among them, the most important result is on the effect of the normalstress on the permeability of a single fracture. The representative formulas were obtained by Barton (1995) and Oda et al.[4], and the Barton’s formula is widely used at present. The studies of the impact of the shear stress on the permeability of a single fracture lagged behind and with fewer significant results. But it was confirmed by many studies that the shear stress has a significant effect on the rock permeability. The most influential results were obtained by Olsson and Barton[5], Lee and Cho[6], Makurat[7]. With the development of technology in the rock mechanics tests, the seepage characteristics of the natural fracture rock under the three-dimensional stress state were studied by Tang et al.[8], Tan et al.[9], Liu et al.[10]. Useful conclusions were obtained, which may serve as a guide for practical projects. (2) The theoretical formulas based on the conceptual model. Liu et al.[10]derived the permeability formula for fractured rock mass under complex conditions based on the relationships between the stress-seepage and the strain-seepage. In these studies, a common problem is a strong hypothesis towards the anisotropy of permeability. For instance, Liu et al.[10]assumed that the principal directions of seepage and stress were the same, which, strictly speaking, is unsubstantiated, and thus the practicability of the established model is limited. (3) Statistical laws based on a large number of numerical experiments. Many numerical experiments were carried out by using Discrete Fracture Network (DFN) and Discrete Element Model (DEM). The relationship between permeability and stress state, and loading path was obtained by statistical analyses of calculation results. This method is the most accurate in its consideration of anisotropy as compared with other methods, but so far they are limited to two-dimensional cases.

    Fig.1 Conceptual model of permeability evolution caused by microscopic micro-cracks changes in the process of deformation of brittle rock

    If the permeability is not adequately considered in the coupling analysis of the seepage field and the stress field, the practicability of the established coupled model will be limited and the true coupling rules of rock can not be revealed. This study focuses on the anisotropy of the permeability evolution in the process of rock deformation from a micromechanics view, to develop a reasonable mathematical model of fluidsolid coupling. The applicability of the proposed anisotropy permeability model is validated by simulating the in situ experiments and the laboratory experiments.

    1. Anisotropy permeability model

    1.1 Conceptual model

    Extensive rock micro-experiments and theoretical analyses[11,12]show that the micro-evolution of rock micro-cracks in the process of deformation is the main influencing factor for the increase of permeability within the rock system, and micro-cracks are the main channels of water flow. Based on a great number of test results of the stress-strain curves and the permeability curves under the triaxial compression[13,14], a conceptual model of the permeability evolution in different stress and strain processes is established, and the permeability evolution involves the following four phases (Fig.1):

    (1) Elastic compression stage. The compression force tends to close the initial micro-cracks and the deformation of micro-cracks is reversible at this stage, that is, the deformation of micro-cracks disappears after unloading, and the permeability decreases at this stage.

    (2) Stable stage of compression. The initial opening of micro-cracks is the minimum at this stage.The micro-cracks do not grow or slip and the permeability at this stage changes very little and can be approximately considered as a constant.

    (3) Rapid increase stage for permeability. The micro-cracks slip and expand with the increase of deformation, the fracture opening increases, and the fracture network connectivity is enhanced at this stage. Meanwhile, the new fissures within the rock system begin to crop up. These factors increase the water conductivity of rock by 2-4 orders of magnitude.

    (4) Post-peak phase. The material becomes softened at this stage, and the rock permeability is changed closely according to the confining pressure during the test. When the confining pressure is high, the formed macro-cracks have a tendency of compaction, thus the permeability decreases, when the confining pressure is low, the permeability further increases with the increase of rock deformation, but the increase rate is very small.

    In order to study the macroscopic phenomenon of anisotropic permeability changes in the stress and strain processes using the established model, one must establish the micro-mechanical properties of microcracks based on the following rules and assumptions:

    (1) The change of the stress (deformation) state will change the opening, density, and connectivity of micro-cracks, and thus will change the rock permeability, that is, the change in rock permeability is related with the opening, density, and connectivity of microcracks.

    (2) The water flow within the micro-cracks obeys the generalized flow law.

    (3) The critical starting gradient is not considered.

    (4) The rock is regarded as a binary system composed of the rock matrix and micro-cracks. The rock permeability depends on the following two factors: the single fracture permeability, and the connectivity degree of the micro-cracks.

    (5) The rock mass has a Representative Element Volume (REV).

    (6) The shape of the rock fracture is assumed to follow the Baecher disk model.

    (7) The interaction between micro-cracks is neglected, and the mechanical effect of all micro-cracks is in line with the superposition principle.

    1.2 Permeability of a single micro-crack

    The generalized flow law can be expressed as follows when the hydraulic opening of a single fracture is more than 50 μm

    where Q is the flow in unit time at the cross-section of micro-cracks, HΔ is the hydraulic gradient,wρ is the density of water, g is the gravity acceleration, μ is the viscosity of water, b is the mechanical opening of micro-cracks, ξ is the index of mechanical opening of micro-cracks, and f is the roughness of the surface of micro-cracks.

    It can be seen from Eq.(1) that the generalized flow law would be turned into a cubic law when ξ is equal to three. Equation (1) can be expressed in the form of Darcy’s law as

    Equation (2) can be expressed in the tensor form as

    whereijδ is the unit vector, andin andjn are normal unit vectors of fracture surfaces.

    Therefore, the permeability coefficient K of the single micro-cracks is expressed as

    The relationship between the permeability coefficient and the permeability is as follows

    Thus, the permeability k of a single microcrack can be written in the following form

    By comparing Eq.(4) with Eq.(6), it can be seen that the permeability k is only related to the transport characteristics of fracture networks, while the permeability coefficient K is related to fluid properties in addition to the fracture network.

    The macro-permeability of a single group microcrack can be obtained by the homogenization method:according to assumption (6), and for describe the geometric properties of a group of micro-cracks, the following three variables are required, that is,,, and aτ, whereis the normal vector of the ith group microcrack (τ=1,n), and Ντand aτdenote the numbers and radii of micro-cracks in unit volume, respectively. Here, the fracture density can be expressed as dτ=Nτaτ3. The volume integral is defined as follows for the flow velocity within all micro-cracks in REV, in order to obtain the average velocity within a group of micro-cracks

    where viis the actual velocity vector of water within the rock mass,is the actual velocity vector of water flow along the fracture within the rock mass, and Ωcis the volume occupied by fractures.

    As for the group of micro-cracks with the unit normal vector ofn, the average openings of microcracks in the same direction in the REV are assumed to have the same value, and thus Ωccan be written as

    Equations (3) and (8) are substituted into Eq.(7), which is then integrated on unit spheres, to obtain the following equation

    Therefore, the macro-permeability and permeability coefficients of a group of micro-cracks can be expressed as:

    1.3 Permeability of groups of micro-cracks

    Generally, the fractures can be classified according to whether they are connected or disconnected as far as the permeable fractures containing water are concerned. The connected fractures would form a water flow channel, and disconnected fractures are not involved in the water flow and the cycle alternation and need not be considered in the seepage calculation. Therefore, it is necessary to introduce a parameter to describe the overall connectivity of micro fracture networks in the permeability tensor.

    We assume that λ is the fracture connectivity factor with values in the range [0,1]. =0λ indicates that various micro-cracks are isolated and they cannot form a water flow network, while =1λ indicates that the micro-cracks are fully developed, and each micro-crack is involved in the water flow. Obviously, the fracture connectivity is related to the fracture density: the greater the density, the greater the connectivity will be. Accordingly, the connectivity factor can be expressed as

    where0λ is the initial connectivity factor of microcrack groups,0d is the initial density of micro-crack groups, and d is the average density of micro-crack groups under the current load.

    Fig.2 The test curves of permeability of Lac du Bonnet granite (σc=5 MPa )

    Fig.3 The test curves of permeability of Lac du Bonnet granite (σc=10 MPa )

    Table 1 Parameters of numerical simulation of Lac du Bonnet granite in seepage test

    In order to determine the superimposed effect of micro-cracks in all directions, the density of microcracks in all directions is integrated over the unit sphere2=,=1 Sn n, and then the average density {} of micro-cracks in the macroscopic scale is obtained as

    where m denotes the number of integration points, and wτis the micro-crack integral weight in the nτdirection, which can be obtained by a look-up table using the integral method[15].

    According to assumption (4), combining Eq.(10) with Eq.(12) and following the superposition principle, the permeability coefficient and the permeability of multiple groups of micro-cracks can be obtained, respectively, as:

    It can be seen from Eq.(15) that the permeability of rock is not a constant during the process of loading, but rather a variable related to the micro-crack state within the rock mass, the density, the connectivity, and other factors.

    Fig.4 Numerical simulation of permeability behaviors of Lac du Bonnet granite (σc=5 MPa )

    2. Validation for the proposed model of permeability evolution

    To test whether the established evolution equation matches the real macro test characteristics of brittle rock, according to in situ and experimental data, the evolution law of the permeability tensor with the changes of stress and strain under load is numerically simulated.

    Fig.5 Numerical simulation of permeability behaviors of Lac du Bonnet granite (σc=10 MPa )

    Fig.6 The test curve of permeability-strain of Los ancient basalt

    2.1 Validation through in situ test

    In order to evaluate the simulation effectiveness of the proposed model under more complex conditions, the classic and universally accepted in situ test results are used to validate the permeability evolution model. For example, the Lac du Bounet granite, stored in the Nuclear Waste Underground Research Laboratory (URL) in Canada, was extensively studied in literature[13]. The permeability evolution curves of two groups of Lac du Bonnet granite samples, taken froma depth of 240 m underground in the Canadian URL, are shown in Figs.2 and 3. In figures, the (σ3?σ1) at the vertical axis indicates the deviatoric stress.

    Table 2 Parameters of numerical simulation of Los ancient basalt in seepage test

    Because the two groups of rock samples are taken from deep underground, most of the initial micro-cracks within the rock are in the closed state, as verified by images of electron microscopy. Thus the initial permeability of the rock is very low, within a range from 10 m2-18 m2to 10 m2-19 m2. It can be seen from Figs.2 and 3 that the permeability decreases by 1-2 magnitude in the elastic compressive stage and increases by 2-3 magnitude at the stage of slip and expansion of the micro-cracks. Because the initial permeability and the changes of permeability of the two groups of rock samples are quite different, two sets of parameters are used to simulate the permeability curves, as shown in Table 1.

    In Table 1, Esand vsare the elastic modulus and Poisson’s ratio of the rock matrix, respectively, η is a material constant used to describe the material’s expansibility for resisting the tensile stress, kcis used to describe the material’s surface energy when the micro-cracks are in the states of compression and shear, c is the rock cohesion, ρ is the critical friction of the micro-crack surface when the rock is in the states of compression and shear, f is used to describe the roughness of the fracture surface, Kniis the initial compressibility when the micro-cracks are in the state of elastic compression, b0and bcare the initial opening and the maximum closure opening of the micro-cracks, respectively, and λ0is the initial connectivity rate of micro-crack groups. The simulation results are shown in Figs.4 and 5.

    From Fig.4 and Fig.5, it is shown that the curves of the numerical simulation agree well with the test data with a clear indications of the four test stages of elastic compression, stable stage of permeability, dramatic increase of permeability, and slowing down of increase of permeability.

    2.2 Validation through laboratory test

    According to the permeability test under loading for the Los ancient basalt samples in Liangshan, Sichuan Province, the results are shown in Fig.6 and the test was carried out on MTS815.02 servo testing machine.

    Because the two rock samples are selected from the same basalt, their physical properties are similar and the mechanical laws they follow are relatively uniform. The parameters used in the numerical simulation are shown in Table 2 and the simulation results are shown in Fig.7 and Fig.8.

    Fig.7 Numerical simulations of permeability behaviors of Los ancient basalt (σc=5 MPa )

    Fig.8 Numerical simulations of permeability behaviors of Los ancient basalt (σc=10 MPa )

    From Fig.7 and Fig.8, it is shown that the proposed model can well describe the permeability evolution behaviors before the peak stage of Los ancient basalt, and also the relation between permeability evolution and confining pressure, but the post-peak stage of the permeability evolution behaviors can not be well described by this model, because the changes of permeability at the post-peak stage are very complex, which is not adequately reflected in the proposed model. In fact, the micro to macro-break phenomena of rock under loading are difficult to be described by the continuum mechanics alone, other angles should be considered.

    3. Conclusion

    The seepage field and the stress field coupling in the rock mass is an important issue in rock mechanics. The established mathematical models of seepagestress coupling mainly involve the relationships between the permeability and the stress or strain, without a due consideration of the anisotropy and nonhomogeneity of the permeability, which has restricted their applicability. In this study, based on the micromechanics theory and the evolution law of microcrack opening, density, connectivity, and the loading process, an anisotropic permeability evolution model is established and is simultaneously homogenized to the macroscopic scale by mathematical methods, and then the established evolution equation is validated by experimental data. Numerical simulation results show that the proposed model can well describe the permeability evolution law of different brittle rocks under different confining pressures, and especially, the before-peak macro-test phenomenon of permeability evolution behaviors on the macro-scale.

    [1] SCHULZE O., POPP T. and KERN H. Development of damage and permeability in deforming rock salt[J]. Engineering Geology, 2001, 61(2-3): 163-180.

    [2] WANG Xiao-dong, ZHOU Ying-fang and LUO Wanjing. A study on transient fluid flow of horizontal wells in dual-permeability media[J]. Journal of Hydrodynamics, 2010, 22(1): 44-50.

    [3] WANG J. A., PARK H. D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering Geology, 2002, 63(3-4): 291-300.

    [4] ODA M. T., TAKEMURA A. and AOKI T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials, 2002, 34(6): 313-331.

    [5] OLSSON R., BARTON N. An improved model for hydro mechanical coupling during shearing of rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 317-329.

    [6] LEE H. S., CHO T. F. Hydraulics characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318.

    [7] SEILER K. P., WOHNLICH S. New approaches characterizing groundwater flow[M]. Rotterdam, The Netherlands: A. A. Balkema, 2001, 845-846.

    [8] TANG C. A., THAM L. G. and LEE P. K. K. et al. Coupled analysis of flow, stress and damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Science, 2002, 39(4): 477-489.

    [9] TAN Ye-fei, ZHOU Zhi-fang and HUANG Yong. Solute transport in natural fractures based on digital image technology[J]. Journal of Hydrodynamics, 2009, 21(2): 219-227.

    [10] LIU J., ELSWORTH D. and BRADY B. H. et al. Strain-dependent fluid flow defined through rock mass classification schemes[J]. Rock Mechanics and Rock Engineering, 2000, 33(3): 75-92.

    [11] TAKEMURA T., GOLSHANI A. and ODA M. et al. Preferred orientation of open microcrack in granite and their relation with anisotropic elasticity[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 443-454.

    [12] ZHOU J. J., SHAO J. F., XU W. Y. Coupled modeling of damage growth and permeability variation in brittle rocks[J]. Mechanics Research Communications, 2003, 33(4): 450-459.

    [13] SOULEY M., HOMAND F. and PEPA S. et al. Damage-induce permeability change in granite: A case study at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 297-310.

    [14] WANG H. L., XU W. Y. and YANG S. Q. Experimental investigation on permeability evolution law during course of deformation and failure of rock specimen[J]. Rock and Soil Mechanics, 2006, 27(10): 101-106(in Chinese).

    [15] PENSEE V., KONDO D. and DORMIEUX L. Micromechanical analysis anisotropic damage in brittle materials[J]. Journal of Engineering Mechanics, 2002, 128(8): 889-897.

    10.1016/S1001-6058(11)60215-1

    * Project supported by the Natural National Science Foundation of China (Grant Nos. 51009052, 11172090), the Three Gorge Research Center for Geo-Hazards, the Ministry of Education (Grant No. TGRC201026), the Fundamental Research Funds for the Central Universities (Grant No. 2010B02514), and the Key Laboratory of Coastal Disasters and Defence of Ministry of Education, Hohai University (Grant No. 2010016).

    Biography: WANG Huan-ling (1976-), Female,

    Ph. D., Associate Professor

    2012,24(1):25-31

    国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 亚洲欧洲日产国产| 国产v大片淫在线免费观看| 国产高清有码在线观看视频| 一级片'在线观看视频| 亚洲精品aⅴ在线观看| 少妇人妻 视频| 啦啦啦啦在线视频资源| 天天躁日日操中文字幕| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| 可以在线观看毛片的网站| 亚洲国产成人一精品久久久| 亚洲欧美精品自产自拍| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 国产乱来视频区| 日本-黄色视频高清免费观看| 国产精品人妻久久久久久| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 日韩制服骚丝袜av| 精品熟女少妇av免费看| 97超碰精品成人国产| 在线观看一区二区三区激情| 黑人高潮一二区| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| 国产毛片在线视频| 一边亲一边摸免费视频| 联通29元200g的流量卡| 国产日韩欧美在线精品| 美女国产视频在线观看| 国产久久久一区二区三区| 亚洲欧美日韩另类电影网站 | 不卡视频在线观看欧美| 精品视频人人做人人爽| 少妇人妻 视频| 中文在线观看免费www的网站| 国产精品国产三级国产专区5o| 亚洲精品乱码久久久久久按摩| 欧美xxxx性猛交bbbb| 毛片一级片免费看久久久久| 69人妻影院| 日韩成人av中文字幕在线观看| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 又黄又爽又刺激的免费视频.| 99热这里只有精品一区| 国产 一区 欧美 日韩| 人妻系列 视频| 亚洲精品自拍成人| 精品久久久噜噜| 亚洲国产最新在线播放| 亚洲精华国产精华液的使用体验| 亚洲美女视频黄频| 一区二区三区精品91| 午夜爱爱视频在线播放| 国产免费一区二区三区四区乱码| 亚洲最大成人中文| 搞女人的毛片| 色综合色国产| 女人久久www免费人成看片| 高清av免费在线| 亚洲av不卡在线观看| 男人和女人高潮做爰伦理| 国产精品熟女久久久久浪| 国产极品天堂在线| 欧美日韩亚洲高清精品| av一本久久久久| 亚洲经典国产精华液单| 亚洲国产日韩一区二区| 一级毛片我不卡| 卡戴珊不雅视频在线播放| 神马国产精品三级电影在线观看| 欧美日本视频| 国产探花在线观看一区二区| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 久久精品国产自在天天线| 日韩中字成人| 久久99热这里只有精品18| 亚洲精品,欧美精品| 免费少妇av软件| 久久久久久久午夜电影| 亚洲精品色激情综合| 亚洲怡红院男人天堂| 亚洲av成人精品一区久久| 中文在线观看免费www的网站| 久久精品国产鲁丝片午夜精品| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 国精品久久久久久国模美| 黄片无遮挡物在线观看| 欧美变态另类bdsm刘玥| 69av精品久久久久久| 亚洲av一区综合| 一级毛片久久久久久久久女| 男男h啪啪无遮挡| 婷婷色综合大香蕉| 亚洲天堂av无毛| 少妇的逼水好多| 春色校园在线视频观看| 好男人视频免费观看在线| 欧美日韩一区二区视频在线观看视频在线 | 欧美激情在线99| 狂野欧美激情性xxxx在线观看| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 国产老妇女一区| 亚洲电影在线观看av| 国产女主播在线喷水免费视频网站| 午夜爱爱视频在线播放| 国产精品一区www在线观看| 久久国内精品自在自线图片| 亚洲va在线va天堂va国产| 在线 av 中文字幕| 精品久久久久久久久亚洲| 亚洲一区二区三区欧美精品 | 免费大片18禁| av又黄又爽大尺度在线免费看| 国产高清三级在线| 久久精品国产a三级三级三级| 一区二区av电影网| 久久久色成人| 免费大片18禁| 日日摸夜夜添夜夜爱| 日韩 亚洲 欧美在线| 国产成人aa在线观看| 国产精品蜜桃在线观看| 精华霜和精华液先用哪个| 少妇丰满av| 欧美国产精品一级二级三级 | 中文字幕久久专区| 又爽又黄a免费视频| 尤物成人国产欧美一区二区三区| 国产 一区 欧美 日韩| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 视频区图区小说| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说 | 人人妻人人爽人人添夜夜欢视频 | 国产免费福利视频在线观看| 国产成人福利小说| 午夜福利网站1000一区二区三区| 麻豆国产97在线/欧美| 国产欧美另类精品又又久久亚洲欧美| 国产又色又爽无遮挡免| 激情五月婷婷亚洲| 成人高潮视频无遮挡免费网站| 在线a可以看的网站| 神马国产精品三级电影在线观看| 精品国产乱码久久久久久小说| 又黄又爽又刺激的免费视频.| 午夜视频国产福利| 欧美高清性xxxxhd video| 国产成人精品一,二区| 国产黄a三级三级三级人| 免费不卡的大黄色大毛片视频在线观看| 成年女人在线观看亚洲视频 | 欧美精品一区二区大全| 婷婷色av中文字幕| a级毛片免费高清观看在线播放| 超碰av人人做人人爽久久| 国产精品久久久久久av不卡| 禁无遮挡网站| 韩国高清视频一区二区三区| 午夜激情久久久久久久| 高清在线视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜爱爱视频在线播放| 亚洲精品成人av观看孕妇| 日韩伦理黄色片| 午夜免费男女啪啪视频观看| 免费黄色在线免费观看| 高清日韩中文字幕在线| 男女下面进入的视频免费午夜| 久久99热这里只有精品18| 少妇被粗大猛烈的视频| 一边亲一边摸免费视频| 久久久久国产网址| 最近中文字幕2019免费版| 国产视频内射| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 免费av不卡在线播放| av在线亚洲专区| 国产男女超爽视频在线观看| 国产亚洲一区二区精品| 亚洲怡红院男人天堂| 欧美日韩亚洲高清精品| 亚洲内射少妇av| 久久99热这里只频精品6学生| 色网站视频免费| 建设人人有责人人尽责人人享有的 | 成人一区二区视频在线观看| 欧美老熟妇乱子伦牲交| 最近手机中文字幕大全| 亚洲四区av| 干丝袜人妻中文字幕| 男女那种视频在线观看| 尾随美女入室| 夜夜看夜夜爽夜夜摸| 国产极品天堂在线| videos熟女内射| 一区二区三区四区激情视频| 亚洲精品,欧美精品| 不卡视频在线观看欧美| 精品一区二区三卡| 国产成年人精品一区二区| 大片免费播放器 马上看| 人妻一区二区av| 嫩草影院新地址| 一级毛片我不卡| 香蕉精品网在线| 亚洲内射少妇av| 综合色丁香网| 狂野欧美白嫩少妇大欣赏| 韩国高清视频一区二区三区| 少妇人妻 视频| 亚洲av二区三区四区| 欧美精品人与动牲交sv欧美| 免费观看的影片在线观看| 精品亚洲乱码少妇综合久久| 亚洲av电影在线观看一区二区三区 | 国产亚洲最大av| 99热这里只有是精品50| 麻豆成人av视频| 久久久久久久精品精品| 女人久久www免费人成看片| 亚洲图色成人| 人人妻人人爽人人添夜夜欢视频 | 交换朋友夫妻互换小说| 成年av动漫网址| kizo精华| 国产精品国产三级国产专区5o| 国产精品精品国产色婷婷| 国产在视频线精品| 美女主播在线视频| 新久久久久国产一级毛片| 噜噜噜噜噜久久久久久91| 免费观看性生交大片5| 欧美日韩在线观看h| 久久久精品94久久精品| 在线观看免费高清a一片| 各种免费的搞黄视频| 美女脱内裤让男人舔精品视频| 九九爱精品视频在线观看| 国产精品国产av在线观看| 男人和女人高潮做爰伦理| 18禁动态无遮挡网站| 日韩欧美精品免费久久| 男人和女人高潮做爰伦理| 国产精品久久久久久av不卡| 男插女下体视频免费在线播放| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 3wmmmm亚洲av在线观看| 久久97久久精品| 一区二区三区精品91| 99久久人妻综合| 观看美女的网站| 亚洲综合精品二区| 亚洲国产精品专区欧美| 美女被艹到高潮喷水动态| 黄色日韩在线| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 久久久a久久爽久久v久久| 久久久久国产网址| 五月伊人婷婷丁香| 我要看日韩黄色一级片| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 波野结衣二区三区在线| 视频区图区小说| 国产成人一区二区在线| 日韩欧美 国产精品| 七月丁香在线播放| 寂寞人妻少妇视频99o| 国产一区二区在线观看日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 国产亚洲91精品色在线| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| 大陆偷拍与自拍| 人妻系列 视频| 校园人妻丝袜中文字幕| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频 | 免费看a级黄色片| 九色成人免费人妻av| 王馨瑶露胸无遮挡在线观看| 高清日韩中文字幕在线| 一本久久精品| 麻豆国产97在线/欧美| 国产片特级美女逼逼视频| 黄色欧美视频在线观看| 男人舔奶头视频| 一级二级三级毛片免费看| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 久久久久久久国产电影| 亚洲av免费高清在线观看| 夜夜爽夜夜爽视频| 我要看日韩黄色一级片| 舔av片在线| 日本欧美国产在线视频| 黄色欧美视频在线观看| 国产一区二区三区综合在线观看 | 高清毛片免费看| www.av在线官网国产| 亚洲图色成人| 精品国产一区二区三区久久久樱花 | 我的女老师完整版在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲图色成人| 亚洲无线观看免费| 精品人妻视频免费看| 欧美zozozo另类| av线在线观看网站| 一级黄片播放器| 国产成人午夜福利电影在线观看| 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 简卡轻食公司| 午夜视频国产福利| 日韩一本色道免费dvd| 一级二级三级毛片免费看| 少妇人妻 视频| h日本视频在线播放| 一区二区av电影网| a级一级毛片免费在线观看| 国产精品99久久久久久久久| 制服丝袜香蕉在线| 成人综合一区亚洲| 国产午夜福利久久久久久| 777米奇影视久久| 色综合色国产| 中文字幕av成人在线电影| 久久ye,这里只有精品| 在线观看av片永久免费下载| 一级片'在线观看视频| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 国产欧美日韩一区二区三区在线 | 嫩草影院入口| 久久国内精品自在自线图片| 精品99又大又爽又粗少妇毛片| .国产精品久久| 99热国产这里只有精品6| 久久久久国产网址| 亚洲精品日韩在线中文字幕| 国产伦在线观看视频一区| 人妻夜夜爽99麻豆av| 又粗又硬又长又爽又黄的视频| 国产乱人视频| 日韩强制内射视频| 麻豆乱淫一区二区| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕| 日本熟妇午夜| 黑人高潮一二区| 在线免费观看不下载黄p国产| 亚洲国产精品999| 日日啪夜夜爽| 美女高潮的动态| 国产探花极品一区二区| 黄片wwwwww| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 男女啪啪激烈高潮av片| 69人妻影院| 亚洲在线观看片| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩东京热| 精品久久久久久电影网| 午夜日本视频在线| 欧美区成人在线视频| 五月玫瑰六月丁香| 水蜜桃什么品种好| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 亚洲色图av天堂| 免费不卡的大黄色大毛片视频在线观看| 爱豆传媒免费全集在线观看| 色吧在线观看| 秋霞在线观看毛片| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 久久97久久精品| 久久久久久久午夜电影| 国产91av在线免费观看| 高清午夜精品一区二区三区| 亚洲美女搞黄在线观看| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂| 99热这里只有是精品在线观看| 搞女人的毛片| 久久久久久伊人网av| 99热6这里只有精品| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 色视频www国产| 在线精品无人区一区二区三 | 日韩国内少妇激情av| 日本色播在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 女人久久www免费人成看片| 高清在线视频一区二区三区| 欧美3d第一页| 国产精品一区二区在线观看99| 高清视频免费观看一区二区| 又黄又爽又刺激的免费视频.| 国产黄色免费在线视频| 亚洲精品aⅴ在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 禁无遮挡网站| 在线精品无人区一区二区三 | 男的添女的下面高潮视频| 少妇的逼水好多| 国产精品成人在线| 成年女人看的毛片在线观看| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 欧美极品一区二区三区四区| 国产黄片美女视频| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色日韩在线| av卡一久久| 中文字幕亚洲精品专区| 国产老妇伦熟女老妇高清| 日韩免费高清中文字幕av| 国产av国产精品国产| 啦啦啦在线观看免费高清www| 黑人高潮一二区| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 91久久精品电影网| 六月丁香七月| 街头女战士在线观看网站| 99视频精品全部免费 在线| 在线观看国产h片| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 国产av国产精品国产| 99久国产av精品国产电影| av天堂中文字幕网| 一区二区三区四区激情视频| 日日摸夜夜添夜夜爱| 亚洲人成网站在线观看播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费视频播放在线视频| 少妇猛男粗大的猛烈进出视频 | 国产av不卡久久| 亚洲久久久久久中文字幕| 男女啪啪激烈高潮av片| 国产在视频线精品| 水蜜桃什么品种好| 最近的中文字幕免费完整| 亚洲成人av在线免费| 嫩草影院新地址| 人妻 亚洲 视频| 人人妻人人爽人人添夜夜欢视频 | 天堂俺去俺来也www色官网| 久久久久久久国产电影| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 国产 精品1| 干丝袜人妻中文字幕| 天堂中文最新版在线下载 | 欧美丝袜亚洲另类| 国产精品99久久99久久久不卡 | a级毛色黄片| 制服丝袜香蕉在线| 国产精品.久久久| 色综合色国产| 亚洲精品国产成人久久av| 精品亚洲乱码少妇综合久久| 在线亚洲精品国产二区图片欧美 | 男的添女的下面高潮视频| 欧美精品人与动牲交sv欧美| 国产老妇女一区| 久久综合国产亚洲精品| 亚洲av成人精品一区久久| 亚洲一区二区三区欧美精品 | 在线a可以看的网站| 免费大片18禁| 国产一区有黄有色的免费视频| 亚洲国产成人一精品久久久| 麻豆精品久久久久久蜜桃| 日韩欧美 国产精品| 亚洲精品国产av成人精品| 午夜爱爱视频在线播放| 免费观看av网站的网址| 街头女战士在线观看网站| 成人国产麻豆网| 婷婷色av中文字幕| 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 亚洲精品中文字幕在线视频 | 亚洲国产精品成人久久小说| 热re99久久精品国产66热6| 久久精品国产a三级三级三级| 直男gayav资源| 久久久久精品久久久久真实原创| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 男女边吃奶边做爰视频| 80岁老熟妇乱子伦牲交| 国产欧美亚洲国产| 精品国产一区二区三区久久久樱花 | 国产乱人偷精品视频| 国产 一区精品| av女优亚洲男人天堂| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 高清午夜精品一区二区三区| 男女啪啪激烈高潮av片| 麻豆乱淫一区二区| 亚洲天堂av无毛| 国产精品三级大全| av在线老鸭窝| 国产成人免费观看mmmm| 亚洲av电影在线观看一区二区三区 | 日本熟妇午夜| 免费观看性生交大片5| 男男h啪啪无遮挡| 毛片女人毛片| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 内射极品少妇av片p| 美女xxoo啪啪120秒动态图| 尾随美女入室| 免费大片18禁| 高清视频免费观看一区二区| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 国产精品一区二区三区四区免费观看| 国产熟女欧美一区二区| 美女内射精品一级片tv| 亚洲经典国产精华液单| videossex国产| 九九在线视频观看精品| 亚洲精品国产av成人精品| 婷婷色av中文字幕| 一级av片app| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 免费观看a级毛片全部| 免费电影在线观看免费观看| 精品亚洲乱码少妇综合久久| 欧美高清成人免费视频www| 免费大片18禁| av福利片在线观看| 美女cb高潮喷水在线观看| 久久久久国产网址| 男插女下体视频免费在线播放| 国产乱人视频| 亚洲精品456在线播放app| 日韩制服骚丝袜av| 男女边吃奶边做爰视频| 又黄又爽又刺激的免费视频.| 欧美另类一区| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| av免费在线看不卡| 涩涩av久久男人的天堂| 成人亚洲精品一区在线观看 | 我的女老师完整版在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区国产| 国产色爽女视频免费观看| 高清av免费在线| 青春草亚洲视频在线观看| 久久久久久国产a免费观看| 日韩国内少妇激情av| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 日本午夜av视频| 欧美成人一区二区免费高清观看| 中文天堂在线官网| 有码 亚洲区| 国产又色又爽无遮挡免| av在线观看视频网站免费| 免费黄网站久久成人精品| 大码成人一级视频| 五月天丁香电影| 天堂网av新在线|