• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    2012-05-11 06:54:52WANGDangwei
    水動力學研究與進展 B輯 2012年1期
    關鍵詞:家法胸襟

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    (Received August 12, 2011, Revised November 9, 2011)

    Imbalance arises when the Roe’s method is directly applied in the shallow water simulation. The reasons are different for the continuity equation and the momentum equations. Based on the Roe’s method, a partial surface method is proposed for a perfect balance for the continuity equation. In order to generate a mathematically hyperbolic formulation, the momentum equations are split, which causes incompatibility in the calculation of the momentum equations. In this article a numerical approach named the Slop Flux Method (SFM) is proposed to balance the source terms and the flux gradient based on the finite volume method. The method is first applied to shallow water equations. The model is verified by analytical results of classical test cases with good agreement. Finally the method is applied to a steady flow simulation over a practical complicated topography and the result shows good balance and conservation.

    shallow water simulation, Roe’s method, complicated topography, partial surface method, bed slop flux method

    Introduction

    The flows in rivers are very complex that failure often occurs in numerical simulations, especially, when there are shock waves involved[1]. For the equation system related with conservation laws, the Godunov-type methods can account for correct information in nearly all flow patterns even for cases including discontinuities by solving a set of Riemann problems over the entire computational domain. As the computational efficiency is too low when Riemann problems are solved directly, many approximate Riemann solvers are available that can provide good approximate results with much less computation time. The Roe’s method is one of the most robust approximate Riemann solvers widely used in aerodynamics and hydrodynamics. But difficulties still arise in solving the Riemann problems, especially, when the source terms are included in Shallow Water Equations (SWEs).

    In order to keep the equations as a hyperbolic system and adopt the Roe’s method directly, the flux gradients and the source terms of SWEs are split artificially. Thus a numerical imbalance will be found for flows over natural riverbeds often with complicated topographies. It is understood that the imbalance is caused solely because of mathematical splitting[2]. This problem is usually treated in two different ways, namely, by the numerical method and by the mathematical method. Mathematical method involves revi-sing the formulation of the governing equations before any numerical algorithms to be implemented. Nugic[3]obtained SWEs in a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gradients to the source terms. Rogers et al.[4]proposed an alternative splitting of the free surface gradient terms and derived a deviatoric form by subtracting an equilibrium solution that could refer to the still water conditions or the equilibrium conditions to allow one to drive a simulation to a steady state. Recently Liang[5,6]suggested another way for splitting free surface gradient terms to solve problems involving wetting and drying. On the other hand, the numerical methods make some revisions based on numerical algorithms without any change of the governing equations. Considerable progress was made in this direction[7-17]and the most representative work is Vázquez-Cendón’s[14]upwind scheme for the source terms, Zhou’s surface gradient method[15]and LeVeque’s[16,17]quasi-steady wave-propagation algorithm. Most of the above approaches are to keep a balance between the flux and the source terms in the motion equations but the conservative property of these approaches is usually not well addressed.

    In this article we apply the Roe’s method to discretize the conservative form SWEs. For the imbalance thus caused, different techniques are proposed for the continuity equation and the momentum equations, separately. An approach of balancing the source terms with the flux is presented based on the finite volume method and it can be easily extended to other approximate Riemann solvers. Besides keeping a strict balance, the model established in this article has a good performance for conservation.

    1. The nature of the problem

    1.1 Governing equations

    Neglecting the vertical acceleration of water particles and taking the pressure to be hydrostatic, the 2-D non-linear SWEs may be derived by depth-integrating the 3-D Reynolds averaged Navier-Stokes equations. In the matrix form, a conservation law of the 2-D non-linear shallow water equations can be written as

    where U, F, G and S are the vectors representing the conserved variables, the numerical fluxes in x- and y-directions, and the source terms, respectively. Ignoring the viscous terms, the surface stress caused by the wind, and the Coriolis effects, these vectors can be written as

    This is the popular form of the SWEs and it can be solved by Godunov-type schemes. In these expressions, h is the water depth, u and v are the depth averaged velocity in x- and y-directions, respectively, g is the acceleration due to the gravity,xs andys are the bed slopes in x- and y-directions, respectively, and are expressed as

    wherebz is the bed elevation,xf andyf are the bed friction due to the bed roughness in x- and y-directions, respectively and they can be estimated by empirical formulas as

    where n is the Manning coefficient.

    1.2 Discretizing by finite volume method The integral form of Eq.(1) is

    Applying Green’s theorem, Eq.(5) can be written as

    where E=(F, G), the n is the unit normal vectors of the cell boundary. The computational domain consists of quadrilateral cells and the variables are taken at the centre of each cell. So Eq.(3) becomes

    where AΔ is the area of the cell,ilΔ is the length of the boundary i,xn andyn are the Cartesian components of n in x- and y-directions, respectively, f?and g?denotes the numerical flux in x- and ydirections, respectively, which can be estimated by the Roe’s approximate Riemann solver as follows

    in whichlU andrU are the terms on the conservative left and right sides, separated by a discontinuity at the interface,andare the eigenvalue and the eigenvector of the linearized coefficient matrix of the SWEs. According to the principle of the Roe’s method, the linearized Jacobianfor Eq.(1) can be derived as

    So the eigenvalues and eigenvectors ofare as follows

    In the Roe’s method, the discontinuity at the interface of the computational element can be estimated by the eigen-decomposition algorithms as

    where ΔU is the jump value, or the difference between right and left Riemann states on either side of a cell interface of the variable U.

    For a quiescent still water without any input, the values in SWEs should be u=v=0. Substituting Eqs.(10)-(14) into Eq.(7), the discretized form of the SWEs by the Roe’s method can be written as

    It is obvious that the water will keep quiescent if there is no inflow current and the variables would not change with time, so the right matrix must be equal to 0. Now the key is to keep the terms in the right matrix equal to 0.

    1.3 Balancing methods

    The imbalances of the continuity equation and the momentum equation are different and they need to be solved separately.

    1.3.1 Partial surface method[18]for continuity equation

    In the start, the water is still. Thus the continuity equation should satisfy the condition

    But Eq.(16) does not always hold true. In fact, the condition of keeping Eq.(16) in equilibrium is so rigor for a riverbed that is rarely required in a natural environment and a flatterrain is one of conditions that may suit the needs. This problem is related to the physical nature of the Roe’s approximate Riemann solver. The Roe’s method is a kind of Godunov-type schemes, where the problem is treated as sets of Riemann problems over the entire computational domain, so the

    jump value should be the driving force. From the physical point of view, the water movement is a kind of gravity wave, while hΔ is definitely not the original driving force for a gravity-driven flow like the water flow. It is obvious that the jump value of the water level would not drive the water from still to motion, so Eq.(16) should be

    where z is the water level. Then the continuity equation should be written as

    With no riverbed deformation, it can be easily shown that Eq.(18) becomes a typical continuity equation in 2-D SWEs. So Eq.(17) is correct both physically and mathematically and the imbalance caused by the continuity equation is thus eliminated.

    1.3.2 Slop flux method for motion equations

    For still water, the motion equations discretized by the Roe’s method (in x-direction, for example) is

    The key is how to deal with the bed slope and the imbalance and the false flow caused by direct discretization. In order to solve this problem under the frame of FVM and keep the result conservative, the second term in Eq.(19) can be written as

    where c is a constant in a single cell. Applying Green’s theorem to the right side term of Eq.(20), we have

    It can be considered as a Riemann problem, so Eq.(17) can be written as

    Now we need to calculate the value of c with the still water state as a boundary condition for this problem. In the still water state, we have

    wherecz is the water level at the center of the cell. Substituting Eq.(24) into Eq.(22) we obtain the final discretization form of the bed slope in the source terms of the motion equations.

    In view of stability and computational efficiency, the self-adaptable time step method[19]is adopt for solving the bed shear stress terms.

    2. Results and discussion

    The numerical scheme is validated against benchmark tests. The results are first compared with analytical solutions, then the model is applied in a practical flow simulation in Songhuajiang River with complicated natural topography. In all cases, g= 9.81m/s2.

    2.1 Steady flow over a bump

    The bed elevation of a 25 m long channel with a bump is defined by

    which is a classical test problem used as a benchmark test case for numerical methods at the workshop on dam-break wave simulations. A discharge per unit width of q=0.18 m2/s is imposed at the upstream boundary and h=0.33m is specified as the downstream boundary condition and the bed shear stress is ignored. In this case, the flow is trans-critical with a sGhoouctka l[w15a].ve and the analytical result was given by

    The global relative error R is defined by

    Fig.1 Convergence history of global error

    Fig.2 Comparison of discharge

    Fig.3 Comparison of water surface

    Fig.4 Comparison of velocity

    Fig.5 Comparison of Froude number

    2.2 Tidal wave flow over an irregular bed

    絳蠟叢中一講廬,披圖想見過庭趨。塤篪韻事真馨逸,得許升堂展謁無。梓橋俯仰傍寒林,伴結幽芳夙抱深。家法豈惟傳治譜,先將鐵石煉胸襟。

    This is a 1-D problem with bed topography defined by

    A comparison of the numerical results with the asymptotic analytical solution at t=7 552s is shown in Figs.6 and 7. The agreement is excellent especially for the water surface. The largest difference between the numerical and analytical values of the velocity is about 0.004 m/s. This suggests that the proposed scheme is accurate for tidal flow problems.

    Fig.6 Comparison of water velocity

    Fig.7 Comparison of water surface

    2.3 Steady flow in Songhuajiang River with compli

    cated bed topography

    The model is used in Jiamusi reach of Songhuajiang River to evaluate the influence of building Liushudao dike on the flood control. The dike is built to protect people and animals on the island from flood disaster. The computational area is about 35 km2and the area of Liushudao Island is about 10 km2, as is shown in Fig.7. The whole computational domain is divided into 100×200 irregular quadrilateral grids. A discharge of 17 100 m3/s is imposed at the inlet and the corresponding water surface at the outlet is 79.290 m.

    The relative error of discharge between inlet and outlet is defined as

    Fig.8 Convergence history ofDR

    Fig.9 Change of water surface due to embankment around the island

    Fig.10 Velocity profile of a typical cross section

    Figure 8 shows the convergence history of RDand RD=0.9% when the steady state is reached after 6 000 s. It shows that the model can keep variables conservative perfectly. Figure 9 shows the contour of the water surface change due to the Liushudao dike. In most area, the water surface rises when the Liushudao dike is built and this is because the water can not flow over the island as it did without the dike. The largest rise is about 0.33 m, which is near the inlet of the left branch because of an anti-flow there. Figure 10 shows the profile of the velocity of a typical cross section which goes across the island. Barred by theLiushudao dike, the water can not flood the island, where the velocity is decreased to 0 while the velocity in the main channel is increased.

    3. Conclusion

    This article presents a numerical model by solving 2-D SWEs using the Roe’s method. Imbalance would occur when the Roe’s method is directly applied to solve the SWEs, therefore, the partial surface method is proposed for balancing the continuity equations based on the physical nature of the Roe’s method. The source terms, especially, the bed slope term, often cause imbalance in the simulation of 2-D shallow water over complicated topography. In this article we propose a numerical method based on FVM to keep the conservative property of the conservation laws. The model is verified by results of classical test cases and the Songhuajiang River is taken as an example to show that the numerical model in this article enjoys generality, balance and conservation.

    [1] YU Ming-hui, DENG Yin-ling and QIN Lian-chao et al. Numerical simulation of levee breach flows under complex boundary conditions[J]. Journal of Hydrodynamics, 2009, 21(5): 633-639

    [2] ROGERS B. D., BORTHWICK A. G. L. and TAYLOR P. H. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver[J]. Journal of Computational Physics, 2003, 192(2): 422-451.

    [3] NUGIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 1995, 33(1): 101-111.

    [4] ROGERS B., FUJIHARA M. and BORTHWICK A. G. L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280.

    [5] LIANG Q., BORTHWICK A. G. L. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234.

    [6] LIANG Qiuhua. A coupled morphodynamic model for applications involving wetting and drying[J]. Journal of Hydrodynamics, 2011, 23(3): 273-281.

    [7] AUDUSSE E., BOUCHUT F. and BRISTEAU M. O. et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal of Scientific Computation, 2004, 25(6): 2050-2065.

    [8] VALIANI A., BEGNUDELLI L. Divergence form for bed slope source term in shallow water equations[J]. Journal of Hydraulic Engineering, 2006, 132(7): 652-665.

    [9] TORNBERGA A. K., ENGQUIST B. Numerical approximations of singular source terms in differential equations[J]. Journal of Computational Physics, 2004, 200(2): 462-488.

    [10] LIANG Q., MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.

    [11] XING Y., SHU C. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[J]. Communications in Computational Physics, 2006, 1(1): 100-134.

    [12] BEGNUDELLI L., BRETT F. S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132(4): 371-384

    [13] NOELLEA S., XING Y. and SHU C. High-order wellbalanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226(1): 29-58.

    [14] GARCíA-NAVARRO P., VáZQUEZ-CENDóN M. E. On numerical treatment of the source terms in the shallow water equations[J]. Computers and Fluids, 2000, 29(1): 951-979

    [15] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [16] LEVEQUE R. J. Finite volume methods for hyperbolic problems[M]. Cambridge, UK: Cambridge University Press, 2002.

    [17] BALE D. S., LEVEQUE R. J. and MITRAN S. et al. A wave propagation method for conservation laws and balance laws with spatially varying flux functions[J]. Journal on Scientific Computing, 2002, 24(3): 955-978.

    [18] WANG Dang-wei, YU Ming-hui and CHEN Jian-guo et al. Improve on WENO-Roe method for simulation of shallow water with complicated topography[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 249-253(in Chinese).

    [19] WANG Xin, CAO Zhi-xian and YUE Zhi-yuan. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 56-62(in Chinese).

    10.1016/S1001-6058(11)60219-9

    * Project supported by the National Basic Research and Development Program of China (973 Program, Grant No. 2011CB409901), the Special Funds for Public Welfare Project (Grant No. 200901014), and the “12th Five-Year Plan” to Support Science and Technology Project (Grant No. 2012BAB02B01).

    Biography: WANG Dang-wei (1982-), Male, Ph. D., Engineer

    2012,24(1):58-64

    猜你喜歡
    家法胸襟
    新的開始
    家法
    家法:整齊門內,提斯子孫
    新傳奇(2018年15期)2018-05-14 17:41:26
    中秋節(jié)里的“家法”
    家長(2017年11期)2017-12-04 03:30:53
    寬闊的胸襟
    員工上班打盹5分鐘被除名,企業(yè)嚴格執(zhí)行“家法”合不合法?
    女性天地(2017年7期)2017-07-21 13:54:05
    從包拯家法說起
    家庭服務(2017年11期)2017-03-11 09:45:34
    書畫家要有胸襟氣度與人生境界
    中國篆刻(2016年12期)2016-09-26 07:43:33
    要有合作的胸襟
    海的高度
    讀者(2013年9期)2013-12-25 02:12:52
    欧美高清成人免费视频www| 哪个播放器可以免费观看大片| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| 国模一区二区三区四区视频| 草草在线视频免费看| 免费大片18禁| av黄色大香蕉| 搡女人真爽免费视频火全软件| 美女高潮的动态| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| 久久久精品欧美日韩精品| 在线 av 中文字幕| 不卡视频在线观看欧美| 91狼人影院| 亚洲精品一二三| xxx大片免费视频| 国产淫语在线视频| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 亚洲在久久综合| 久久久成人免费电影| 在线免费十八禁| 色5月婷婷丁香| 777米奇影视久久| 国产老妇伦熟女老妇高清| 亚洲欧美日韩卡通动漫| 精品国内亚洲2022精品成人| 亚洲av福利一区| 婷婷色综合www| 久久精品夜色国产| 一个人看的www免费观看视频| 97在线视频观看| 我要看日韩黄色一级片| 国产日韩欧美在线精品| 国产有黄有色有爽视频| 欧美精品一区二区大全| 韩国av在线不卡| h日本视频在线播放| 国产黄色小视频在线观看| 中文字幕久久专区| 亚洲欧洲日产国产| 黄色一级大片看看| 在现免费观看毛片| 黑人高潮一二区| 亚洲最大成人中文| 2021少妇久久久久久久久久久| 精华霜和精华液先用哪个| 国产探花在线观看一区二区| 亚洲高清免费不卡视频| 国产一区亚洲一区在线观看| 三级经典国产精品| 亚洲av男天堂| 波野结衣二区三区在线| 亚洲国产精品国产精品| 成人漫画全彩无遮挡| 神马国产精品三级电影在线观看| 精品久久久噜噜| 身体一侧抽搐| 亚洲美女搞黄在线观看| 禁无遮挡网站| 国产一区亚洲一区在线观看| 99久久九九国产精品国产免费| 日本-黄色视频高清免费观看| 免费黄频网站在线观看国产| 午夜免费激情av| 久久久国产一区二区| 身体一侧抽搐| 欧美日韩一区二区视频在线观看视频在线 | ponron亚洲| 久久久久久久久久人人人人人人| 国产成人一区二区在线| 狠狠精品人妻久久久久久综合| 日本免费a在线| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 欧美bdsm另类| 在线a可以看的网站| 亚洲精品一区蜜桃| 91在线精品国自产拍蜜月| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 美女高潮的动态| 亚洲av免费在线观看| 在线天堂最新版资源| 国产伦理片在线播放av一区| 成人二区视频| 日本免费a在线| 久久久午夜欧美精品| 女人久久www免费人成看片| 99热这里只有精品一区| 国产黄色视频一区二区在线观看| 啦啦啦中文免费视频观看日本| 亚洲av日韩在线播放| 狂野欧美白嫩少妇大欣赏| 精品人妻视频免费看| 日本三级黄在线观看| 啦啦啦中文免费视频观看日本| 汤姆久久久久久久影院中文字幕 | 久久草成人影院| 国产精品女同一区二区软件| 蜜臀久久99精品久久宅男| 大又大粗又爽又黄少妇毛片口| 永久网站在线| 精品国产一区二区三区久久久樱花 | 国产大屁股一区二区在线视频| 午夜免费观看性视频| 日日摸夜夜添夜夜添av毛片| 亚洲经典国产精华液单| 成年女人看的毛片在线观看| 日韩av不卡免费在线播放| 精品人妻视频免费看| 91av网一区二区| 男人舔女人下体高潮全视频| 亚洲欧美成人综合另类久久久| 美女黄网站色视频| 一级毛片电影观看| 日韩制服骚丝袜av| av专区在线播放| 国产精品伦人一区二区| 91av网一区二区| 亚洲国产精品sss在线观看| 汤姆久久久久久久影院中文字幕 | 少妇高潮的动态图| 欧美激情久久久久久爽电影| 久久久久久久久久成人| 青春草视频在线免费观看| 午夜免费观看性视频| 国产又色又爽无遮挡免| 99re6热这里在线精品视频| 精品国产露脸久久av麻豆 | 亚洲欧洲国产日韩| 国内揄拍国产精品人妻在线| 成人国产麻豆网| 久久久久久久久大av| 午夜日本视频在线| 国产av在哪里看| 精华霜和精华液先用哪个| 国产 亚洲一区二区三区 | 少妇人妻一区二区三区视频| 久久精品国产自在天天线| 99久久中文字幕三级久久日本| 国产一区亚洲一区在线观看| a级毛片免费高清观看在线播放| 七月丁香在线播放| 国产视频首页在线观看| 亚洲欧美清纯卡通| 亚洲国产精品国产精品| 国产探花极品一区二区| 午夜福利在线观看免费完整高清在| 男的添女的下面高潮视频| 永久免费av网站大全| 久久久午夜欧美精品| 日本免费在线观看一区| 国产免费福利视频在线观看| 日韩av不卡免费在线播放| 国产 一区精品| 婷婷色综合大香蕉| 精品一区二区免费观看| 国产亚洲午夜精品一区二区久久 | 欧美日韩亚洲高清精品| 成人av在线播放网站| 亚洲人与动物交配视频| 精品人妻一区二区三区麻豆| 大又大粗又爽又黄少妇毛片口| 国产成人精品福利久久| 日韩欧美 国产精品| 中文字幕av成人在线电影| 日本色播在线视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产av新网站| 免费不卡的大黄色大毛片视频在线观看 | 国产 一区精品| 男人舔奶头视频| av免费观看日本| 亚洲熟女精品中文字幕| 日本免费a在线| 国产91av在线免费观看| 99久久九九国产精品国产免费| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 淫秽高清视频在线观看| 免费大片18禁| 亚洲国产精品成人久久小说| 中文字幕亚洲精品专区| 国产伦在线观看视频一区| 欧美日韩在线观看h| av一本久久久久| 久久精品久久精品一区二区三区| 大香蕉97超碰在线| 国产精品蜜桃在线观看| 日韩欧美一区视频在线观看 | 久久久a久久爽久久v久久| 日韩制服骚丝袜av| av一本久久久久| 亚洲最大成人手机在线| 日韩一区二区三区影片| 国产免费又黄又爽又色| www.av在线官网国产| 久久久久免费精品人妻一区二区| 国产69精品久久久久777片| 国产视频内射| 日韩欧美国产在线观看| 国产欧美日韩精品一区二区| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 九色成人免费人妻av| 精品久久久久久久末码| 麻豆精品久久久久久蜜桃| av专区在线播放| 天堂中文最新版在线下载 | 看免费成人av毛片| 色视频www国产| 免费播放大片免费观看视频在线观看| 深夜a级毛片| 国产精品一区二区三区四区久久| 日韩欧美三级三区| 欧美xxⅹ黑人| 纵有疾风起免费观看全集完整版 | 国内精品一区二区在线观看| 欧美日本视频| 国产男女超爽视频在线观看| ponron亚洲| 久久这里只有精品中国| 日本免费a在线| 久99久视频精品免费| 欧美极品一区二区三区四区| 最近最新中文字幕大全电影3| 中国美白少妇内射xxxbb| 欧美日韩综合久久久久久| 亚洲乱码一区二区免费版| 久久久久久伊人网av| 久久精品综合一区二区三区| 国产黄色小视频在线观看| 嫩草影院新地址| 高清欧美精品videossex| 国产精品嫩草影院av在线观看| 高清毛片免费看| 亚洲成色77777| 亚洲国产欧美在线一区| 一级二级三级毛片免费看| 麻豆精品久久久久久蜜桃| 国产伦一二天堂av在线观看| av网站免费在线观看视频 | 亚洲丝袜综合中文字幕| 欧美一级a爱片免费观看看| 国产高清三级在线| 美女内射精品一级片tv| 欧美一区二区亚洲| 国产国拍精品亚洲av在线观看| 久久这里只有精品中国| 久久99蜜桃精品久久| 日韩三级伦理在线观看| 午夜福利视频1000在线观看| 国产高清三级在线| 国产有黄有色有爽视频| 亚州av有码| 国产精品久久久久久av不卡| 亚洲国产色片| 老女人水多毛片| 大又大粗又爽又黄少妇毛片口| 日韩视频在线欧美| 男女下面进入的视频免费午夜| 国产成人精品久久久久久| 99视频精品全部免费 在线| av天堂中文字幕网| 成年免费大片在线观看| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 国产精品爽爽va在线观看网站| 日韩一区二区三区影片| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 丰满人妻一区二区三区视频av| videossex国产| 久久久久久久亚洲中文字幕| 免费观看在线日韩| 亚洲自偷自拍三级| 天堂俺去俺来也www色官网 | 亚洲成人久久爱视频| 十八禁国产超污无遮挡网站| 成人一区二区视频在线观看| 国产永久视频网站| 亚洲国产欧美人成| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 国产精品一区二区在线观看99 | 黄片wwwwww| 精品久久国产蜜桃| 高清欧美精品videossex| 久久久久久久久久久丰满| 三级男女做爰猛烈吃奶摸视频| 3wmmmm亚洲av在线观看| av国产久精品久网站免费入址| 亚洲婷婷狠狠爱综合网| 嘟嘟电影网在线观看| 国产又色又爽无遮挡免| 亚洲精品亚洲一区二区| 国产永久视频网站| 国产男人的电影天堂91| 好男人在线观看高清免费视频| 免费看日本二区| 青春草视频在线免费观看| ponron亚洲| 激情 狠狠 欧美| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 精品人妻视频免费看| 精品一区在线观看国产| 综合色av麻豆| 午夜福利视频精品| 特大巨黑吊av在线直播| 亚洲天堂国产精品一区在线| 国产色爽女视频免费观看| 五月天丁香电影| 欧美激情在线99| 亚洲成人一二三区av| 欧美+日韩+精品| 免费观看av网站的网址| 日韩av在线免费看完整版不卡| 日韩伦理黄色片| 国国产精品蜜臀av免费| 91久久精品国产一区二区成人| 高清欧美精品videossex| 国产精品一二三区在线看| 国产高清三级在线| 国产伦理片在线播放av一区| 天堂中文最新版在线下载 | 夜夜爽夜夜爽视频| 欧美激情久久久久久爽电影| 两个人的视频大全免费| 五月伊人婷婷丁香| 成人特级av手机在线观看| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 神马国产精品三级电影在线观看| 男女下面进入的视频免费午夜| 97超视频在线观看视频| 一区二区三区四区激情视频| 日韩 亚洲 欧美在线| av黄色大香蕉| 国产探花极品一区二区| ponron亚洲| 免费电影在线观看免费观看| 女人十人毛片免费观看3o分钟| 欧美xxxx性猛交bbbb| 亚洲在线自拍视频| 国产黄片美女视频| 91aial.com中文字幕在线观看| 高清av免费在线| 一级毛片我不卡| 免费黄网站久久成人精品| 亚洲性久久影院| 22中文网久久字幕| 最近最新中文字幕免费大全7| 免费观看的影片在线观看| 天天一区二区日本电影三级| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 一区二区三区四区激情视频| 建设人人有责人人尽责人人享有的 | 久久久久久国产a免费观看| 亚洲综合精品二区| 成年av动漫网址| 麻豆成人av视频| 亚洲av中文av极速乱| 精品久久久久久久久av| 国产亚洲av嫩草精品影院| 亚洲图色成人| 国产精品.久久久| 精品人妻视频免费看| 久久久久久久午夜电影| 国产精品嫩草影院av在线观看| 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看| 久久99精品国语久久久| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| 国产色爽女视频免费观看| 免费观看在线日韩| 有码 亚洲区| 欧美xxxx性猛交bbbb| 免费看不卡的av| 日韩精品青青久久久久久| 激情 狠狠 欧美| 一级黄片播放器| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 视频中文字幕在线观看| 丝袜美腿在线中文| 美女高潮的动态| 少妇熟女aⅴ在线视频| 黄片wwwwww| videossex国产| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 日韩av免费高清视频| 午夜爱爱视频在线播放| 久久久欧美国产精品| 街头女战士在线观看网站| 欧美性感艳星| 男人狂女人下面高潮的视频| 黄色一级大片看看| 热99在线观看视频| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 人体艺术视频欧美日本| 国产 亚洲一区二区三区 | 两个人视频免费观看高清| 如何舔出高潮| 女人久久www免费人成看片| 七月丁香在线播放| 麻豆成人午夜福利视频| 91精品一卡2卡3卡4卡| av国产免费在线观看| 欧美日韩国产mv在线观看视频 | 五月伊人婷婷丁香| 欧美xxxx黑人xx丫x性爽| 国产一区有黄有色的免费视频 | 久久久久久久久久黄片| 成人二区视频| 国产男女超爽视频在线观看| 少妇人妻一区二区三区视频| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线 | 国产av码专区亚洲av| 99久久精品热视频| 超碰97精品在线观看| 国产探花极品一区二区| 久久综合国产亚洲精品| 亚洲在线自拍视频| 午夜日本视频在线| 美女cb高潮喷水在线观看| 日韩国内少妇激情av| 99久久精品热视频| 麻豆精品久久久久久蜜桃| av网站免费在线观看视频 | 亚洲在线自拍视频| 高清日韩中文字幕在线| 国产美女午夜福利| 亚洲av日韩在线播放| 免费观看的影片在线观看| 国产男女超爽视频在线观看| 国产免费视频播放在线视频 | 青春草亚洲视频在线观看| 国产淫语在线视频| 美女黄网站色视频| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 国产单亲对白刺激| 日韩精品青青久久久久久| 亚洲国产精品成人久久小说| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 狂野欧美激情性xxxx在线观看| 色综合亚洲欧美另类图片| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 久久久欧美国产精品| 天堂√8在线中文| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 国产成人一区二区在线| 久久久久久久午夜电影| 乱码一卡2卡4卡精品| 哪个播放器可以免费观看大片| 99热全是精品| 国产精品久久久久久久电影| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 热99在线观看视频| 中文字幕亚洲精品专区| 日韩欧美精品v在线| 青春草国产在线视频| 国产爱豆传媒在线观看| 国产亚洲av嫩草精品影院| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 精品一区二区三卡| 久久精品国产自在天天线| 亚洲一区高清亚洲精品| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 国产欧美另类精品又又久久亚洲欧美| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 久久久国产一区二区| 国产成人a区在线观看| 久久这里只有精品中国| 久久久久久久国产电影| 黄片wwwwww| a级毛色黄片| 国产av码专区亚洲av| 国产视频首页在线观看| 看黄色毛片网站| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站| 搡老乐熟女国产| 天堂av国产一区二区熟女人妻| 色吧在线观看| 99热这里只有精品一区| 国产高潮美女av| 成年人午夜在线观看视频 | 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 亚洲,欧美,日韩| 黑人高潮一二区| av线在线观看网站| 国产 一区精品| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 午夜爱爱视频在线播放| 国产免费福利视频在线观看| 日韩av在线大香蕉| 亚洲最大成人中文| 青青草视频在线视频观看| av专区在线播放| 国产 亚洲一区二区三区 | 晚上一个人看的免费电影| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区黑人 | 免费av毛片视频| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 一区二区三区高清视频在线| 大片免费播放器 马上看| 国产探花极品一区二区| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 七月丁香在线播放| 直男gayav资源| 看非洲黑人一级黄片| 麻豆av噜噜一区二区三区| 国产女主播在线喷水免费视频网站 | 乱系列少妇在线播放| 夜夜看夜夜爽夜夜摸| 欧美日韩国产mv在线观看视频 | 久久99热这里只频精品6学生| 国产亚洲精品av在线| 久久久久久久午夜电影| 国产淫语在线视频| 国产精品人妻久久久影院| 老女人水多毛片| 99热网站在线观看| 直男gayav资源| 亚洲精品日韩av片在线观看| 韩国av在线不卡| 男女边摸边吃奶| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99 | 秋霞在线观看毛片| 国产精品综合久久久久久久免费| 亚洲精品日本国产第一区| 成年女人看的毛片在线观看| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 夜夜爽夜夜爽视频| 亚洲精品色激情综合| 国产精品麻豆人妻色哟哟久久 | 极品教师在线视频| 国产一区二区三区av在线| 午夜爱爱视频在线播放| av网站免费在线观看视频 | 国产91av在线免费观看| 哪个播放器可以免费观看大片| 日本黄色片子视频| 久久热精品热| 在线免费十八禁| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 两个人的视频大全免费| 在线 av 中文字幕| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 少妇人妻精品综合一区二区| 国产乱人视频| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| a级毛色黄片| 亚洲熟女精品中文字幕| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 精品一区二区免费观看| 男人爽女人下面视频在线观看| 大香蕉久久网| av国产久精品久网站免费入址|