• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    2012-05-11 06:54:52WANGDangwei
    水動力學研究與進展 B輯 2012年1期
    關鍵詞:家法胸襟

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    THE SLOP FLUX METHOD FOR NUMERICAL BALANCE IN USING ROE’S APPROXIMATE RIEMANN SOLVER*

    WANG Dang-wei

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: wangdw17@126.com

    LIU Xiao-fang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

    CHEN Jian-guo, JI Zu-wen

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

    (Received August 12, 2011, Revised November 9, 2011)

    Imbalance arises when the Roe’s method is directly applied in the shallow water simulation. The reasons are different for the continuity equation and the momentum equations. Based on the Roe’s method, a partial surface method is proposed for a perfect balance for the continuity equation. In order to generate a mathematically hyperbolic formulation, the momentum equations are split, which causes incompatibility in the calculation of the momentum equations. In this article a numerical approach named the Slop Flux Method (SFM) is proposed to balance the source terms and the flux gradient based on the finite volume method. The method is first applied to shallow water equations. The model is verified by analytical results of classical test cases with good agreement. Finally the method is applied to a steady flow simulation over a practical complicated topography and the result shows good balance and conservation.

    shallow water simulation, Roe’s method, complicated topography, partial surface method, bed slop flux method

    Introduction

    The flows in rivers are very complex that failure often occurs in numerical simulations, especially, when there are shock waves involved[1]. For the equation system related with conservation laws, the Godunov-type methods can account for correct information in nearly all flow patterns even for cases including discontinuities by solving a set of Riemann problems over the entire computational domain. As the computational efficiency is too low when Riemann problems are solved directly, many approximate Riemann solvers are available that can provide good approximate results with much less computation time. The Roe’s method is one of the most robust approximate Riemann solvers widely used in aerodynamics and hydrodynamics. But difficulties still arise in solving the Riemann problems, especially, when the source terms are included in Shallow Water Equations (SWEs).

    In order to keep the equations as a hyperbolic system and adopt the Roe’s method directly, the flux gradients and the source terms of SWEs are split artificially. Thus a numerical imbalance will be found for flows over natural riverbeds often with complicated topographies. It is understood that the imbalance is caused solely because of mathematical splitting[2]. This problem is usually treated in two different ways, namely, by the numerical method and by the mathematical method. Mathematical method involves revi-sing the formulation of the governing equations before any numerical algorithms to be implemented. Nugic[3]obtained SWEs in a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gradients to the source terms. Rogers et al.[4]proposed an alternative splitting of the free surface gradient terms and derived a deviatoric form by subtracting an equilibrium solution that could refer to the still water conditions or the equilibrium conditions to allow one to drive a simulation to a steady state. Recently Liang[5,6]suggested another way for splitting free surface gradient terms to solve problems involving wetting and drying. On the other hand, the numerical methods make some revisions based on numerical algorithms without any change of the governing equations. Considerable progress was made in this direction[7-17]and the most representative work is Vázquez-Cendón’s[14]upwind scheme for the source terms, Zhou’s surface gradient method[15]and LeVeque’s[16,17]quasi-steady wave-propagation algorithm. Most of the above approaches are to keep a balance between the flux and the source terms in the motion equations but the conservative property of these approaches is usually not well addressed.

    In this article we apply the Roe’s method to discretize the conservative form SWEs. For the imbalance thus caused, different techniques are proposed for the continuity equation and the momentum equations, separately. An approach of balancing the source terms with the flux is presented based on the finite volume method and it can be easily extended to other approximate Riemann solvers. Besides keeping a strict balance, the model established in this article has a good performance for conservation.

    1. The nature of the problem

    1.1 Governing equations

    Neglecting the vertical acceleration of water particles and taking the pressure to be hydrostatic, the 2-D non-linear SWEs may be derived by depth-integrating the 3-D Reynolds averaged Navier-Stokes equations. In the matrix form, a conservation law of the 2-D non-linear shallow water equations can be written as

    where U, F, G and S are the vectors representing the conserved variables, the numerical fluxes in x- and y-directions, and the source terms, respectively. Ignoring the viscous terms, the surface stress caused by the wind, and the Coriolis effects, these vectors can be written as

    This is the popular form of the SWEs and it can be solved by Godunov-type schemes. In these expressions, h is the water depth, u and v are the depth averaged velocity in x- and y-directions, respectively, g is the acceleration due to the gravity,xs andys are the bed slopes in x- and y-directions, respectively, and are expressed as

    wherebz is the bed elevation,xf andyf are the bed friction due to the bed roughness in x- and y-directions, respectively and they can be estimated by empirical formulas as

    where n is the Manning coefficient.

    1.2 Discretizing by finite volume method The integral form of Eq.(1) is

    Applying Green’s theorem, Eq.(5) can be written as

    where E=(F, G), the n is the unit normal vectors of the cell boundary. The computational domain consists of quadrilateral cells and the variables are taken at the centre of each cell. So Eq.(3) becomes

    where AΔ is the area of the cell,ilΔ is the length of the boundary i,xn andyn are the Cartesian components of n in x- and y-directions, respectively, f?and g?denotes the numerical flux in x- and ydirections, respectively, which can be estimated by the Roe’s approximate Riemann solver as follows

    in whichlU andrU are the terms on the conservative left and right sides, separated by a discontinuity at the interface,andare the eigenvalue and the eigenvector of the linearized coefficient matrix of the SWEs. According to the principle of the Roe’s method, the linearized Jacobianfor Eq.(1) can be derived as

    So the eigenvalues and eigenvectors ofare as follows

    In the Roe’s method, the discontinuity at the interface of the computational element can be estimated by the eigen-decomposition algorithms as

    where ΔU is the jump value, or the difference between right and left Riemann states on either side of a cell interface of the variable U.

    For a quiescent still water without any input, the values in SWEs should be u=v=0. Substituting Eqs.(10)-(14) into Eq.(7), the discretized form of the SWEs by the Roe’s method can be written as

    It is obvious that the water will keep quiescent if there is no inflow current and the variables would not change with time, so the right matrix must be equal to 0. Now the key is to keep the terms in the right matrix equal to 0.

    1.3 Balancing methods

    The imbalances of the continuity equation and the momentum equation are different and they need to be solved separately.

    1.3.1 Partial surface method[18]for continuity equation

    In the start, the water is still. Thus the continuity equation should satisfy the condition

    But Eq.(16) does not always hold true. In fact, the condition of keeping Eq.(16) in equilibrium is so rigor for a riverbed that is rarely required in a natural environment and a flatterrain is one of conditions that may suit the needs. This problem is related to the physical nature of the Roe’s approximate Riemann solver. The Roe’s method is a kind of Godunov-type schemes, where the problem is treated as sets of Riemann problems over the entire computational domain, so the

    jump value should be the driving force. From the physical point of view, the water movement is a kind of gravity wave, while hΔ is definitely not the original driving force for a gravity-driven flow like the water flow. It is obvious that the jump value of the water level would not drive the water from still to motion, so Eq.(16) should be

    where z is the water level. Then the continuity equation should be written as

    With no riverbed deformation, it can be easily shown that Eq.(18) becomes a typical continuity equation in 2-D SWEs. So Eq.(17) is correct both physically and mathematically and the imbalance caused by the continuity equation is thus eliminated.

    1.3.2 Slop flux method for motion equations

    For still water, the motion equations discretized by the Roe’s method (in x-direction, for example) is

    The key is how to deal with the bed slope and the imbalance and the false flow caused by direct discretization. In order to solve this problem under the frame of FVM and keep the result conservative, the second term in Eq.(19) can be written as

    where c is a constant in a single cell. Applying Green’s theorem to the right side term of Eq.(20), we have

    It can be considered as a Riemann problem, so Eq.(17) can be written as

    Now we need to calculate the value of c with the still water state as a boundary condition for this problem. In the still water state, we have

    wherecz is the water level at the center of the cell. Substituting Eq.(24) into Eq.(22) we obtain the final discretization form of the bed slope in the source terms of the motion equations.

    In view of stability and computational efficiency, the self-adaptable time step method[19]is adopt for solving the bed shear stress terms.

    2. Results and discussion

    The numerical scheme is validated against benchmark tests. The results are first compared with analytical solutions, then the model is applied in a practical flow simulation in Songhuajiang River with complicated natural topography. In all cases, g= 9.81m/s2.

    2.1 Steady flow over a bump

    The bed elevation of a 25 m long channel with a bump is defined by

    which is a classical test problem used as a benchmark test case for numerical methods at the workshop on dam-break wave simulations. A discharge per unit width of q=0.18 m2/s is imposed at the upstream boundary and h=0.33m is specified as the downstream boundary condition and the bed shear stress is ignored. In this case, the flow is trans-critical with a sGhoouctka l[w15a].ve and the analytical result was given by

    The global relative error R is defined by

    Fig.1 Convergence history of global error

    Fig.2 Comparison of discharge

    Fig.3 Comparison of water surface

    Fig.4 Comparison of velocity

    Fig.5 Comparison of Froude number

    2.2 Tidal wave flow over an irregular bed

    絳蠟叢中一講廬,披圖想見過庭趨。塤篪韻事真馨逸,得許升堂展謁無。梓橋俯仰傍寒林,伴結幽芳夙抱深。家法豈惟傳治譜,先將鐵石煉胸襟。

    This is a 1-D problem with bed topography defined by

    A comparison of the numerical results with the asymptotic analytical solution at t=7 552s is shown in Figs.6 and 7. The agreement is excellent especially for the water surface. The largest difference between the numerical and analytical values of the velocity is about 0.004 m/s. This suggests that the proposed scheme is accurate for tidal flow problems.

    Fig.6 Comparison of water velocity

    Fig.7 Comparison of water surface

    2.3 Steady flow in Songhuajiang River with compli

    cated bed topography

    The model is used in Jiamusi reach of Songhuajiang River to evaluate the influence of building Liushudao dike on the flood control. The dike is built to protect people and animals on the island from flood disaster. The computational area is about 35 km2and the area of Liushudao Island is about 10 km2, as is shown in Fig.7. The whole computational domain is divided into 100×200 irregular quadrilateral grids. A discharge of 17 100 m3/s is imposed at the inlet and the corresponding water surface at the outlet is 79.290 m.

    The relative error of discharge between inlet and outlet is defined as

    Fig.8 Convergence history ofDR

    Fig.9 Change of water surface due to embankment around the island

    Fig.10 Velocity profile of a typical cross section

    Figure 8 shows the convergence history of RDand RD=0.9% when the steady state is reached after 6 000 s. It shows that the model can keep variables conservative perfectly. Figure 9 shows the contour of the water surface change due to the Liushudao dike. In most area, the water surface rises when the Liushudao dike is built and this is because the water can not flow over the island as it did without the dike. The largest rise is about 0.33 m, which is near the inlet of the left branch because of an anti-flow there. Figure 10 shows the profile of the velocity of a typical cross section which goes across the island. Barred by theLiushudao dike, the water can not flood the island, where the velocity is decreased to 0 while the velocity in the main channel is increased.

    3. Conclusion

    This article presents a numerical model by solving 2-D SWEs using the Roe’s method. Imbalance would occur when the Roe’s method is directly applied to solve the SWEs, therefore, the partial surface method is proposed for balancing the continuity equations based on the physical nature of the Roe’s method. The source terms, especially, the bed slope term, often cause imbalance in the simulation of 2-D shallow water over complicated topography. In this article we propose a numerical method based on FVM to keep the conservative property of the conservation laws. The model is verified by results of classical test cases and the Songhuajiang River is taken as an example to show that the numerical model in this article enjoys generality, balance and conservation.

    [1] YU Ming-hui, DENG Yin-ling and QIN Lian-chao et al. Numerical simulation of levee breach flows under complex boundary conditions[J]. Journal of Hydrodynamics, 2009, 21(5): 633-639

    [2] ROGERS B. D., BORTHWICK A. G. L. and TAYLOR P. H. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver[J]. Journal of Computational Physics, 2003, 192(2): 422-451.

    [3] NUGIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 1995, 33(1): 101-111.

    [4] ROGERS B., FUJIHARA M. and BORTHWICK A. G. L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280.

    [5] LIANG Q., BORTHWICK A. G. L. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234.

    [6] LIANG Qiuhua. A coupled morphodynamic model for applications involving wetting and drying[J]. Journal of Hydrodynamics, 2011, 23(3): 273-281.

    [7] AUDUSSE E., BOUCHUT F. and BRISTEAU M. O. et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal of Scientific Computation, 2004, 25(6): 2050-2065.

    [8] VALIANI A., BEGNUDELLI L. Divergence form for bed slope source term in shallow water equations[J]. Journal of Hydraulic Engineering, 2006, 132(7): 652-665.

    [9] TORNBERGA A. K., ENGQUIST B. Numerical approximations of singular source terms in differential equations[J]. Journal of Computational Physics, 2004, 200(2): 462-488.

    [10] LIANG Q., MARCHE F. Numerical resolution of wellbalanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.

    [11] XING Y., SHU C. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[J]. Communications in Computational Physics, 2006, 1(1): 100-134.

    [12] BEGNUDELLI L., BRETT F. S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of Hydraulic Engineering, 2006, 132(4): 371-384

    [13] NOELLEA S., XING Y. and SHU C. High-order wellbalanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226(1): 29-58.

    [14] GARCíA-NAVARRO P., VáZQUEZ-CENDóN M. E. On numerical treatment of the source terms in the shallow water equations[J]. Computers and Fluids, 2000, 29(1): 951-979

    [15] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [16] LEVEQUE R. J. Finite volume methods for hyperbolic problems[M]. Cambridge, UK: Cambridge University Press, 2002.

    [17] BALE D. S., LEVEQUE R. J. and MITRAN S. et al. A wave propagation method for conservation laws and balance laws with spatially varying flux functions[J]. Journal on Scientific Computing, 2002, 24(3): 955-978.

    [18] WANG Dang-wei, YU Ming-hui and CHEN Jian-guo et al. Improve on WENO-Roe method for simulation of shallow water with complicated topography[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 249-253(in Chinese).

    [19] WANG Xin, CAO Zhi-xian and YUE Zhi-yuan. Numerical modeling of shallow flows over irregular topography[J]. Journal of Hydrodynamics, Ser. A, 2009, 24(1): 56-62(in Chinese).

    10.1016/S1001-6058(11)60219-9

    * Project supported by the National Basic Research and Development Program of China (973 Program, Grant No. 2011CB409901), the Special Funds for Public Welfare Project (Grant No. 200901014), and the “12th Five-Year Plan” to Support Science and Technology Project (Grant No. 2012BAB02B01).

    Biography: WANG Dang-wei (1982-), Male, Ph. D., Engineer

    2012,24(1):58-64

    猜你喜歡
    家法胸襟
    新的開始
    家法
    家法:整齊門內,提斯子孫
    新傳奇(2018年15期)2018-05-14 17:41:26
    中秋節(jié)里的“家法”
    家長(2017年11期)2017-12-04 03:30:53
    寬闊的胸襟
    員工上班打盹5分鐘被除名,企業(yè)嚴格執(zhí)行“家法”合不合法?
    女性天地(2017年7期)2017-07-21 13:54:05
    從包拯家法說起
    家庭服務(2017年11期)2017-03-11 09:45:34
    書畫家要有胸襟氣度與人生境界
    中國篆刻(2016年12期)2016-09-26 07:43:33
    要有合作的胸襟
    海的高度
    讀者(2013年9期)2013-12-25 02:12:52
    午夜福利视频在线观看免费| 国产精品av久久久久免费| 久久人妻熟女aⅴ| 汤姆久久久久久久影院中文字幕| 久久这里只有精品19| 性色av乱码一区二区三区2| 91国产中文字幕| 国产极品粉嫩免费观看在线| 2018国产大陆天天弄谢| 中文字幕高清在线视频| 热re99久久精品国产66热6| 人人妻,人人澡人人爽秒播| 久久久久久久国产电影| 国产精品国产av在线观看| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 国产极品粉嫩免费观看在线| 黄片播放在线免费| 老司机影院成人| 久久久久久久大尺度免费视频| 日本欧美视频一区| 在线亚洲精品国产二区图片欧美| 在线永久观看黄色视频| 捣出白浆h1v1| 99国产精品一区二区蜜桃av | 两个人看的免费小视频| 我要看黄色一级片免费的| 亚洲欧美激情在线| 精品一区二区三卡| 国产男女超爽视频在线观看| 成人手机av| 狂野欧美激情性xxxx| 色视频在线一区二区三区| 老司机亚洲免费影院| 纯流量卡能插随身wifi吗| 极品少妇高潮喷水抽搐| av视频免费观看在线观看| 欧美精品高潮呻吟av久久| 999久久久国产精品视频| 精品久久久精品久久久| 老司机靠b影院| 免费少妇av软件| 欧美日本中文国产一区发布| 视频在线观看一区二区三区| 国产男女内射视频| 一本久久精品| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 伦理电影免费视频| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| av在线老鸭窝| 国产精品.久久久| 久久精品成人免费网站| www.精华液| 99久久99久久久精品蜜桃| 建设人人有责人人尽责人人享有的| av在线老鸭窝| 久久天躁狠狠躁夜夜2o2o| 桃花免费在线播放| 国产免费一区二区三区四区乱码| 国产欧美日韩一区二区三区在线| 精品乱码久久久久久99久播| 美女大奶头黄色视频| 一区二区av电影网| 9色porny在线观看| 欧美精品亚洲一区二区| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 久久久国产成人免费| 伦理电影免费视频| 亚洲精品第二区| av天堂在线播放| 99精品欧美一区二区三区四区| 最近最新中文字幕大全免费视频| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频 | 人人妻人人添人人爽欧美一区卜| a 毛片基地| 人人妻,人人澡人人爽秒播| 99国产精品免费福利视频| 啪啪无遮挡十八禁网站| 久久久国产一区二区| 一区二区三区乱码不卡18| 成人av一区二区三区在线看 | 制服人妻中文乱码| 国产精品99久久99久久久不卡| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| 精品熟女少妇八av免费久了| 久久青草综合色| 久热爱精品视频在线9| 国产野战对白在线观看| 午夜福利免费观看在线| 精品熟女少妇八av免费久了| 一区二区三区四区激情视频| 999精品在线视频| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 悠悠久久av| 精品亚洲成a人片在线观看| 午夜免费观看性视频| 国产有黄有色有爽视频| 在线av久久热| 又黄又粗又硬又大视频| 亚洲成人免费av在线播放| www.av在线官网国产| 欧美在线一区亚洲| av又黄又爽大尺度在线免费看| 9191精品国产免费久久| 精品少妇一区二区三区视频日本电影| 国产xxxxx性猛交| 国产男女超爽视频在线观看| 国产极品粉嫩免费观看在线| 三级毛片av免费| 国产成人欧美在线观看 | 成年女人毛片免费观看观看9 | 老司机影院毛片| 亚洲熟女精品中文字幕| 啦啦啦视频在线资源免费观看| 老司机靠b影院| 国产又色又爽无遮挡免| 免费看十八禁软件| 久久久久精品国产欧美久久久 | 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 婷婷丁香在线五月| 欧美乱码精品一区二区三区| 亚洲全国av大片| 国产欧美日韩精品亚洲av| 老鸭窝网址在线观看| 精品久久蜜臀av无| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 日韩三级视频一区二区三区| 99精品久久久久人妻精品| 人人澡人人妻人| 国产精品国产三级国产专区5o| 国产主播在线观看一区二区| 亚洲第一青青草原| 国产精品九九99| 亚洲av日韩在线播放| 日韩人妻精品一区2区三区| 欧美日韩一级在线毛片| 成人国产av品久久久| 精品国内亚洲2022精品成人 | 在线av久久热| 九色亚洲精品在线播放| 欧美精品高潮呻吟av久久| 久久人妻福利社区极品人妻图片| 99久久国产精品久久久| 午夜福利视频精品| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 免费人妻精品一区二区三区视频| 午夜免费鲁丝| www.自偷自拍.com| 少妇裸体淫交视频免费看高清 | 男女床上黄色一级片免费看| 麻豆av在线久日| 国产激情久久老熟女| 女性被躁到高潮视频| 一个人免费看片子| 国产成人精品无人区| 在线av久久热| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 亚洲国产精品一区二区三区在线| 午夜激情久久久久久久| 超碰成人久久| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码| 在线观看舔阴道视频| 亚洲伊人色综图| 日韩熟女老妇一区二区性免费视频| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 国产主播在线观看一区二区| 美女大奶头黄色视频| 久久久国产一区二区| 欧美性长视频在线观看| 国产亚洲精品第一综合不卡| cao死你这个sao货| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 久久狼人影院| 日韩大码丰满熟妇| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 国产真人三级小视频在线观看| 国产有黄有色有爽视频| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 国产真人三级小视频在线观看| 亚洲av日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 午夜影院在线不卡| 精品国产乱码久久久久久男人| 一本—道久久a久久精品蜜桃钙片| 天天躁日日躁夜夜躁夜夜| 97在线人人人人妻| 99国产综合亚洲精品| 日韩制服骚丝袜av| 国产精品一区二区精品视频观看| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 久久亚洲精品不卡| 最新的欧美精品一区二区| 各种免费的搞黄视频| 国产日韩一区二区三区精品不卡| 久久热在线av| 国产亚洲精品一区二区www | 国产1区2区3区精品| 成人18禁高潮啪啪吃奶动态图| 久久综合国产亚洲精品| 久久99热这里只频精品6学生| 国产成人a∨麻豆精品| 中国国产av一级| 2018国产大陆天天弄谢| 亚洲欧洲精品一区二区精品久久久| 91大片在线观看| 亚洲 欧美一区二区三区| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区mp4| 男人舔女人的私密视频| 国产欧美日韩一区二区三 | 在线观看www视频免费| 新久久久久国产一级毛片| 1024香蕉在线观看| 国产av精品麻豆| 两性夫妻黄色片| 中文字幕色久视频| 热re99久久国产66热| 一本综合久久免费| 精品人妻在线不人妻| 中文欧美无线码| 一级毛片精品| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 精品第一国产精品| 97在线人人人人妻| 纵有疾风起免费观看全集完整版| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 精品一区二区三卡| 后天国语完整版免费观看| 久久青草综合色| 精品亚洲成国产av| 亚洲国产欧美一区二区综合| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 久久中文字幕一级| 免费av中文字幕在线| 一本久久精品| 亚洲精品一二三| 麻豆国产av国片精品| 亚洲av片天天在线观看| 午夜影院在线不卡| 成年美女黄网站色视频大全免费| 久久影院123| 丰满饥渴人妻一区二区三| 日韩三级视频一区二区三区| 夜夜夜夜夜久久久久| 手机成人av网站| 免费在线观看完整版高清| 免费观看a级毛片全部| 亚洲av成人一区二区三| 久热这里只有精品99| 这个男人来自地球电影免费观看| 少妇猛男粗大的猛烈进出视频| 蜜桃国产av成人99| av超薄肉色丝袜交足视频| 国产男女内射视频| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 国产亚洲一区二区精品| 国产av精品麻豆| 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 性高湖久久久久久久久免费观看| 欧美日韩一级在线毛片| 午夜91福利影院| 成年动漫av网址| 成年人黄色毛片网站| 国产亚洲精品一区二区www | 国产人伦9x9x在线观看| 国产欧美日韩一区二区三区在线| 19禁男女啪啪无遮挡网站| 日韩中文字幕视频在线看片| 亚洲精品第二区| 国产三级黄色录像| 少妇的丰满在线观看| 日韩中文字幕欧美一区二区| 肉色欧美久久久久久久蜜桃| 91老司机精品| 搡老岳熟女国产| 国产黄频视频在线观看| 国产亚洲精品一区二区www | 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 亚洲美女黄色视频免费看| 午夜日韩欧美国产| 少妇精品久久久久久久| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 青春草亚洲视频在线观看| 久久久久久人人人人人| 久久免费观看电影| 两个人看的免费小视频| 亚洲国产看品久久| 日韩有码中文字幕| 亚洲专区国产一区二区| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 自线自在国产av| 69av精品久久久久久 | av国产精品久久久久影院| 免费少妇av软件| 欧美精品一区二区免费开放| 高清欧美精品videossex| 久久中文看片网| 久久99一区二区三区| 国产精品欧美亚洲77777| 丝袜在线中文字幕| 亚洲黑人精品在线| 在线观看免费高清a一片| 国产野战对白在线观看| 无遮挡黄片免费观看| 国产精品一区二区在线观看99| 国产色视频综合| 黄片播放在线免费| 国产精品香港三级国产av潘金莲| 亚洲免费av在线视频| 午夜激情av网站| 精品久久久久久久毛片微露脸 | 国产亚洲一区二区精品| 亚洲精品中文字幕一二三四区 | av在线老鸭窝| 久久久精品国产亚洲av高清涩受| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 欧美 日韩 精品 国产| 制服诱惑二区| 婷婷成人精品国产| 欧美日韩福利视频一区二区| 美女视频免费永久观看网站| 一区在线观看完整版| 另类精品久久| 亚洲熟女精品中文字幕| 午夜精品国产一区二区电影| 操出白浆在线播放| 黑人巨大精品欧美一区二区蜜桃| 国产精品自产拍在线观看55亚洲 | 国内毛片毛片毛片毛片毛片| av天堂久久9| 在线观看人妻少妇| 国产国语露脸激情在线看| av免费在线观看网站| 免费高清在线观看日韩| 免费在线观看日本一区| 另类亚洲欧美激情| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 日韩三级视频一区二区三区| av天堂久久9| 亚洲成人免费av在线播放| 两性夫妻黄色片| 成年人午夜在线观看视频| 国产免费现黄频在线看| 亚洲情色 制服丝袜| 国产精品久久久av美女十八| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 日日摸夜夜添夜夜添小说| 久久人人97超碰香蕉20202| 国产男女超爽视频在线观看| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 美女脱内裤让男人舔精品视频| 亚洲情色 制服丝袜| 男人添女人高潮全过程视频| 国产成人影院久久av| 国产在视频线精品| 热99久久久久精品小说推荐| 一级片'在线观看视频| www.自偷自拍.com| 大香蕉久久成人网| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| 国产精品一区二区在线不卡| 午夜影院在线不卡| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 国产精品成人在线| av在线播放精品| 久久中文看片网| 老司机福利观看| 亚洲伊人色综图| 欧美xxⅹ黑人| 亚洲成人手机| 99re6热这里在线精品视频| 欧美中文综合在线视频| 国产精品久久久av美女十八| 欧美精品一区二区免费开放| 亚洲精品第二区| 亚洲欧美一区二区三区黑人| 99国产精品99久久久久| 亚洲精品国产精品久久久不卡| 男女国产视频网站| 美女中出高潮动态图| 亚洲国产av影院在线观看| 国产精品久久久久久精品电影小说| 国产免费现黄频在线看| 脱女人内裤的视频| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久av美女十八| bbb黄色大片| 国产精品国产三级国产专区5o| 永久免费av网站大全| 国产免费视频播放在线视频| 国产91精品成人一区二区三区 | 亚洲国产av影院在线观看| 午夜视频精品福利| 久久精品成人免费网站| 老司机在亚洲福利影院| 欧美xxⅹ黑人| 天天躁日日躁夜夜躁夜夜| 国产av一区二区精品久久| 中文字幕色久视频| 午夜影院在线不卡| 久久久久久亚洲精品国产蜜桃av| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 亚洲欧美精品自产自拍| 丝袜美足系列| 黄色视频不卡| xxxhd国产人妻xxx| 91精品三级在线观看| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 美女视频免费永久观看网站| 国产成人精品久久二区二区91| 精品国产国语对白av| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 欧美97在线视频| 国产精品偷伦视频观看了| 久久国产精品影院| 亚洲黑人精品在线| 精品国产国语对白av| 亚洲国产日韩一区二区| xxxhd国产人妻xxx| 亚洲男人天堂网一区| √禁漫天堂资源中文www| 欧美在线黄色| 日本一区二区免费在线视频| 成人av一区二区三区在线看 | 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av | 日本欧美视频一区| 大片电影免费在线观看免费| 国产成人系列免费观看| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 亚洲专区国产一区二区| 水蜜桃什么品种好| 人妻 亚洲 视频| 高清黄色对白视频在线免费看| 精品国产乱码久久久久久小说| 久久国产精品人妻蜜桃| 国产精品免费视频内射| 久久亚洲国产成人精品v| 亚洲一区二区三区欧美精品| 久久久久久亚洲精品国产蜜桃av| 大片免费播放器 马上看| 啦啦啦免费观看视频1| 亚洲美女黄色视频免费看| 一级毛片精品| 精品视频人人做人人爽| 国产欧美日韩一区二区精品| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 狂野欧美激情性xxxx| 成人av一区二区三区在线看 | 一区二区三区激情视频| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 欧美另类亚洲清纯唯美| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| a 毛片基地| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 在线永久观看黄色视频| 人妻久久中文字幕网| 国产野战对白在线观看| 操出白浆在线播放| 秋霞在线观看毛片| 51午夜福利影视在线观看| av在线播放精品| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 97精品久久久久久久久久精品| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡动漫免费视频| 美女视频免费永久观看网站| 视频在线观看一区二区三区| 五月天丁香电影| 精品免费久久久久久久清纯 | 美女脱内裤让男人舔精品视频| 日日爽夜夜爽网站| 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 成人av一区二区三区在线看 | 动漫黄色视频在线观看| 日韩大码丰满熟妇| 久久国产精品影院| 亚洲av欧美aⅴ国产| 丝袜脚勾引网站| 高清黄色对白视频在线免费看| 一本综合久久免费| 永久免费av网站大全| 国产无遮挡羞羞视频在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美老熟妇乱子伦牲交| 91九色精品人成在线观看| 午夜福利在线观看吧| 成人国产一区最新在线观看| 多毛熟女@视频| 国产欧美亚洲国产| 一边摸一边抽搐一进一出视频| 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 脱女人内裤的视频| 大型av网站在线播放| 超碰97精品在线观看| 少妇的丰满在线观看| 中文字幕人妻丝袜一区二区| 亚洲自偷自拍图片 自拍| 后天国语完整版免费观看| 极品少妇高潮喷水抽搐| 久久午夜综合久久蜜桃| 丝袜美腿诱惑在线| 动漫黄色视频在线观看| 婷婷丁香在线五月| av有码第一页| 国产精品免费视频内射| 亚洲av男天堂| 高清视频免费观看一区二区| www日本在线高清视频| 午夜精品久久久久久毛片777| avwww免费| 在线观看免费高清a一片| 一级,二级,三级黄色视频| 乱人伦中国视频| 国产日韩一区二区三区精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 日韩一区二区三区影片| 亚洲国产av影院在线观看| 蜜桃在线观看..| 中文字幕精品免费在线观看视频| 亚洲美女黄色视频免费看| 搡老岳熟女国产| 亚洲色图综合在线观看| 伊人亚洲综合成人网| 99久久人妻综合| 成人影院久久| 国产av一区二区精品久久| 国产精品免费大片| 国产精品香港三级国产av潘金莲| 久久香蕉激情| 亚洲精品成人av观看孕妇| 国产精品久久久久久人妻精品电影 | 国产日韩欧美在线精品| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 亚洲视频免费观看视频| 老司机午夜十八禁免费视频| 日韩一区二区三区影片| 久久人妻福利社区极品人妻图片| 精品卡一卡二卡四卡免费| 在线精品无人区一区二区三| 成年女人毛片免费观看观看9 | 日韩精品免费视频一区二区三区| 老司机福利观看| 啦啦啦免费观看视频1| 欧美中文综合在线视频| 国产av一区二区精品久久| www.熟女人妻精品国产| 欧美激情 高清一区二区三区| 亚洲国产精品一区三区| 高清视频免费观看一区二区| 久久久久久久久免费视频了| 人妻一区二区av| 高清在线国产一区| 天天影视国产精品| 国产97色在线日韩免费| 亚洲精品在线美女| 亚洲精品国产精品久久久不卡| 日韩大片免费观看网站|