• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TIDAL EFFECTS ON GROUNDWATER DYNAMICS IN COASTAL AQUIFER UNDER DIFFERENT BEACH SLOPES*

    2012-05-11 06:55:04LIUYi

    LIU Yi

    College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China, E-mail: yiliu19871017@126.com

    SHANG Song-hao

    State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

    MAO Xiao-min

    College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China

    TIDAL EFFECTS ON GROUNDWATER DYNAMICS IN COASTAL AQUIFER UNDER DIFFERENT BEACH SLOPES*

    LIU Yi

    College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China, E-mail: yiliu19871017@126.com

    SHANG Song-hao

    State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

    MAO Xiao-min

    College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China

    (Received August 30, 2011, Revised October 31, 2011)

    The tide induced groundwater fluctuation and the seawater intrusion have important effects on hydrogeology and ecology of coastal aquifers. Among previous studies, there were few quantitative evaluations of the joint effects of the beach slope and the tide fluctuation on the groundwater dynamics. In this article, a numerical model is built by using the software FEFLOW with consideration of seawater intrusion, tide effects, density dependent flow and beach sloping effects. The simulation results are validated by laboratory experimental data in literature. More numerical scenarios are designed in a practical scale with different beach slopes. Results show that the groundwater fluctuation decays exponentially with the distance to the beach, i.e.,= A , and our simulation further shows that the beach slope influencecan be expressed in the form of a logarithm function. While for the same location, the amplitude increases logarithmically with the beach angle in the formwhereand γ′ are related with the horizontal distance (x) in the form of a logarithm function. The beach slope has no influence on the phase lag, although the latter increases regularly with the distance from the sea. The beach slope effect on the seawater intrusion is investigated through the quantitative relationship among the relative intrusion length (λ), the relative enhancement of the tide induced seawater intrusion (κ) and the beach angle (α). It is shown that the tide effects on a milder beach is much greater than on a vertical one, and both λ and κ can be expressed in logarithm functions of α. The tidal effect on the flow field in the transition zone for a particular mild beach is also studied, with results showing that the tide induced fluctuation ofis similar to the groundwater table fluctuation whilezV shows a distinct variation along both directions.

    tidal effects, salt wedges, saline intrusion, beach slope, finite element method

    Introduction

    The coastal area is usually the most developed area in the world, where the groundwater would be over-exploited, with serious environmental problems, e.g., the ground surface subsidence and the seawater intrusion into the groundwater. Furthermore, the contaminants released from industrial production, municipal wastes and agricultural activities can be infiltrated into the groundwater, migrate towards the sea and threat the coastal ecology. The groundwater discharge into the sea and the contaminant migration have long been the investigation topics[1]. In this respect, it is important to understand the coastal groundwater dynamics under the tidal fluctuation and the seawater intrusion conditions.

    The groundwater dynamics and the seawater intrusion in coastal aquifers started to attract attentionsin the late 19th century. Early researches were mostly based on the Ghyben-Herzberg approach, a sharp interface model assuming that there is no mixing between seawater and freshwater. The seawater intrusion was further investigated under this assumption by extending to two and three dimensions, adding source and sink items[2], or including the wave action[3]. Although the sharp interface approach is convenient, the fact remains that the freshwater and the seawater are mixed. Henry (1964) established the first transition zone model for the seawater intrusion, and deduced an analytical solution at the steady state. In recent years, numerical models are widely used because it can handle complicated and real conditions[4], including the transition theory and various boundary conditions, e.g., the aquifer recharge, tidal effects and sloping beaches.

    It is generally recognized that the tidal fluctuation can accelerate the seawater intrusion into aquifers. Moreover, the tidal fluctuation would also influence the groundwater dynamics, such as the groundwater table fluctuation and the groundwater discharge towards sea. Based on experimental and numerical simulations, Parlange et al. (1984) deduced a steady periodic solution for the shallow-flow problem under the Boussinesq approximation, with an exponential reduction of the groundwater fluctuation. However, Parlange’s approximation was obtained by using a perturbation technique with the ratio of the tidal amplitude to the mean aquifer thickness as the perturbation parameter. In this way, the third or higher order solutions could not be obtained. Moreover, in that solution, only vertical beach is considered. Nielsen (1990) proposed a new solution for one-dimensional Boussinesq equation for inclined beaches by neglecting variations in the coastline and the beach slope. Parlange and Nielsen’s methods were improved by many subsequent studies. Song et al.[5]derived a new perturbation solution of the non-linear Boussinesq equation for one-dimensional tidal groundwater flow in a coastal unconfined aquifer. Xia et al.[6]analyzed the case where the beach was covered by a layer of less permeable sediments, and obtained a new solution for the tide induced groundwater table fluctuation based on a new perturbation solution. In 2002, Li and Jiao extended the analytical method to the L-shaped leaky coastal aquifer[7], and the coastal two-aquifer system[8]to study the groundwater fluctuation response to the tide. Li et al.[9]investigated the groundwater table response to both ocean and estuary fluctuations and derived a two-dimensional analytical solution with considerations of the interaction between the tidal waves cross and along the shore, instead of only focusing on the inland propagation of oceanic tides in the cross-shore direction as in the previous studies. But the beach slope effect was not considered in their work. This beach slope effect was later considered by Jeng et al.[10], who derived the analytical solution for two-dimensional problems with sloping beaches of different beach angles and multitidal signals.

    However, Boussinesq equations oversimplified the real circumstances. Therefore, numerical methods were applied to find relatively accurate solutions. Earlier simulations studied the seawater intrusion using various numerical methods, e.g., method of characteristics, finite element method, boundary integral method, finite difference method, boundary element method or lattice Boltzmann method. Later on, other application fields were considered, such as, the tide/wave induced water table fluctuation[4,5], the interaction among surface water, groundwater and seawater[11], and the tide induced density-dependent contaminant transport and groundwater dynamics in coastal areas[12].

    Besides analytical and numerical methods, many laboratory or field experiments were designed and carried out to investigate the coastal groundwater dynamics, with numerical methods being used for further analysis and forecast. Nielsen (1990) conducted field observations of the tide induced water table fluctuation. Li et al. (1997) used a numerical method to explain the field observation results, showing that the simulation can successfully reveal the three features of tide induced water table fluctuations. Mao et al.[13]combined the field monitoring and the numerical method to investigate the effect of the beach slope for a coastal aquifer adjacent to a low-relief estuary. Balugani and Antonellini[14]studied the tide and barometric effects on the groundwater table through field monitoring. Although field experiments and observations are more reliable, the field condition is difficult to control and the monitoring cost is high. Moreover, the field data are relatively difficult to interpret due to the field heterogeneity conditions. On the other hand, the laboratory scaled experiments can be conducted under controlled conditions and the heterogeneity conditions can be avoided. By laboratory experiments, Goswami and Clement[15]investigated the salt-wedge under both steady and transient conditions. Boufadel et al.[16]conducted an experiment to investigate the tidal effects on the solute transport. Wu and Zhuang[17]investigated the tide induced water table elevation. However, the laboratory scaled experiments often simplifies the real situation by neglecting some of influencing factors, such as the density difference in freshwater and seawater[17], or the beach slope[15].

    Although the tidal effect on the seawater intrusion and the groundwater dynamics is a much studied issue, the beach slope effects are mostly neglected despite the fact that beach slope vary greatly in nature. In this article, after the calibration with previous laboratory experiments, we use FEFLOW to investigatethe influences of different beach slopes on the tide induced water table fluctuation and the groundwater dynamics in the transition zone based on designed numerical scenarios.

    1. Simulation model for groundwater dynamics in coastal aquifer with sloping beach

    1.1 Mathematical formulations

    In variably saturated porous media, the governing equation for the variable density groundwater flow can be written as

    where θ is the water content, ρ is the fluid density, inρ is the density of the water entering from a source or leaving through a sink,inq is the volumetric flow rate per unit volume of the aquifer representing sources and sinks, t is the time and q is the specific discharge vector (Darcy flux) calculated as

    where K is the hydraulic conductivity related to the freshwater, which is a function of θ in the unsaturated zone and can be described by existing models (e.g., the Mualem model (1976)),uf is the ratio of the dynamic viscosity of the fluid to that of the freshwater, h is the hydraulic pressure head with respect to a freshwater of 103kg/m3in density in the saturated zone and the matrix potential of the soil water in the unsaturated zone, z is the vertical axis, positive upward.

    In saturated and unsaturated soil water conditions, the left term of Eq.(1) can be further expressed as

    where /hθ?? indicates the variation of the water content due to unit change of the soil water matrix potential, which can be calculated from the soil-water retention model (e.g., Van Genuchten (1980)), Ssis the specific storage, indicating the water released from the elastic change of the soil skeleton and the water,concentration.

    The commonly used convection and dispersion equation is applied to describe the solute transport. For the two-dimensional vertical model, it is usually expressed as

    where D is the hydrodynamic dispersion coefficient, in c is the total aqueous component concentration in the water coming from sources or sinks. Equat

    ions (1) and (4) are coupled because the water flow causes the solute transport, especially through advection, and the solute concentration influences the fluid density and thus causes the density dependent flow. For a salt water, the relationship between the concentration and the density can be simply described by a linear empirical relationship[18],

    where0ρ is the density of the freshwater, ε is the dimensionless difference between the reference saltwater and the freshwater,sc andsρ are the concentration and the density of the reference saltwater, respectively. In this study, the seawater is taken as the reference saltwater.

    1.2 Initial and boundary conditions

    The coastal aquifer with a sloping beach is modeled by the polygon ABCDEFGH in Fig.1. The groundwater is assumed to be in a stable state initially. Thus the initial water head and the initial fluid concentration of the fluid are described as

    where Ω is the simulation domain (ABCDEFGH in Fig.1),0H is the initial water head,0C is the initial fluid concentration.

    Fig.1 Sketch of coastal groundwater flow with sloping beach

    For the flow boundary, we have tidal flutuations along the beach, seepages along the upper part of the landward bounday, and no flow through other boundaries. Thus the boundary conditions for the groundwater flow can be written as

    wheretH is the tidal signal.

    For the mass transport, along the above no-flow boundaries, the concentration gradient is taken to be zero according to the third type of boundary conditions. While for the other types of flow boundaries, either the concentrations (i.e., Dirichlet boundary) or the advective flux (simplified from the third type of boundary) are specified.

    where g is the total mass flux (where the advective flux dominates) normal to the boundary,nq is the Darcy flux normal to the boundary.

    2. Model validation

    Wu et al.[19]carried out a laboratory experiment to investigate the tide-induced water table fluctuation and the over height of the groundwater table. The experiment was conducted by an automatic simulation system for tides, which contains a sand flume, a water storage tank and a control system.

    The sand flume was 30 m long, 1.2 m wide and 1.5 m high, with the beach angle =α7o. Sixteen pressure sensors were used to measure the groundwater table change, at the bottom of the sand flume with the distance to the left end of the sand flume (beach) being 2.8 m, 3.4 m, 3.8 m, 4.2 m, 4.6 m, 5.1 m, 5.7 m, 6.3 m, 6.9 m, 7.4 m, 8.1 m, 8.6 m, 9.1 m, 10.3 m, 15 m and 25 m, respectively. The tide signal was the composition of two sine signals

    where1A and2A are the amplitudes of the two constituents, with values 0.09 m and 0.045 m, respectively,1ω and2ω are the angular frequencies of 64π d–1and 48π d–1, respectively, δ is the phase lag, andsH is the mean water table of 0.765 m.

    Table 1 Physical properties of the sand used in experiment of Wu et al.[19]and typical empirical parameters used in the numerical simulations

    Fig.2 Comparison of the numerical simulation and experimental measurement of Wu et al.[19]. Points No. 9 to 11 are 7.4 m, 8.1 m and 8.6 m to the left side of the sand flume, respectively

    As the freshwater was used for tiding in the experiment, the density difference is not considered in the simulation. However, to investigate the effect of the salt water density on the groundwater fluctuation, we consider two scenarios in the numerical simulation, scenario A with the freshwater as the tide and scenario B with the saltwater of 35 g/L NaCl as the tide.

    For simulating the experiment of Wu et al.[19], the hydraulic conductivity K and the effective porosityen are determined according to the experiment measurement, the parameters of the soil-water retention model are based on the empirical estimation for typical sand (Simunek et al. 1999), the saltwater densitysρ, the freshwater density0ρ and the parameters for mass transport are based on values in literature (Ataie-Ashtiani et al. 1999). Values of these parameters used in this model are listed in Table 1.

    The simulation results are compared with the experimental data, as shown in Fig.2. It is shown that the simulation results of scenario A (with freshwater as tide) compare reasonably well with the experiment ones. There are some differences for the peaks and troughs, especially at the points of the far inland and in the initial stage. It may be due to the fact that the initial condition and the hydraulic parameters used in the simulation cannot fully represent the real experiment condition. For scenario B with the salt water as the tide, the simulated water table fluctuation is similar with those of the experiment and scenario A, although with a little higher water level systematically.It is mainly because of the density effect, which induces the seawater intrusion and elevates the groundwater table. The comparison indicates that the numerical model designed for the software FEFLOW can properly simulate the tide induced water table fluctuations under inclined beach slopes.

    Fig.3 Points in the simulation domain used to analyze the tidal effect on groundwater fluctuation

    Fig.4 The simulation results of the tide induced groundwater table fluctuation and the variations of the fluctuation amplitude and phase

    3. Investigation of beach slope effect on groundwater table fluctuation and seawater intrusion

    To investigate the effects of the beach angle and the tidal fluctuation on the groundwater table and the seawater intrusion, further scenarios are designed in practical scales. The distance from Point C (see Fig.1) to the inner land is assumed to be 500 m, and the aquifer thickness is 45 m.

    The types of initial and boundary conditions are similar to those of the previous model, with the main difference in their specified values. The tide is assumed to be the seawater of 35 g/L NaCl. The tidal table is

    wheresH is the mean water table, with the value of 37 m, A is the amplitude, with the value of 1 m, ω is the angular frequency with the value of 4π d-1. The corresponding tidal period is 0.5 d or 12 h, which is close to the period of semidiurnal signals M2and S2. The initial groundwater head is 37 m, and the initial concentration of the groundwater is 0 g/l, the same as the landward freshwater.

    To investigate the effects of the beach slope, six typical scenarios are designed, i.e., scenarios 1 to 6, with the beach angle (α) taking values of 15o, 30o, 45o, 60o, 75oand 90o, respectively (Fig.1).

    The simulation is carried out until a periodically steady state is reached (the simulation time is over 365 d), i.e., the simulation results (e.g., the groundwater dynamics, the solute concentration in the aquifer) will not change for the same tide stage. Note that it is used as the initial point (0 d) for further simulations and analysis.

    Simulation results at 12 points are used to analyze the influence of the tide and the beach slope on the groundwater fluctuations (Points 1 to 12 in Fig.3). These points are classified into two groups, group 1 (Points 1 to 6) for all 6 scenarios and group 2 (Points1 and 7 to 12) only for scenario 1. Points in group 1 locate outside the transition zone and are close to the groundwater table, The distances of Points 1-6 in group 1 to Point C are 40 m, 80 m, 120 m, 160 m, 200 m and 240 m, respectively (Fig.3). Points of group 2 locate in the transition zone (Fig.3). In this group, Points 10, 11, 7 and 12 are in the same horizontal level with a spacing of 20 m between them, while Points 1, 7, 8 and 9 in the same vertical line with a spacing of 10 m between them.

    Fig.5 The tidal effects on the salt concentration distribution in the transition zonehH is the horizontal distance to Point 10,vH is the vertical distance to Point 1

    3.1 Tide induced groundwater table fluctuation under different beach slopes

    The simulation results of the tide induced groundwater table fluctuation and the variations of its amplitude and phase are shown in Fig.4. Obviously, the amplitude and the phase vary with the distance from the beach (see Fig.4(a)). With the increase of the distance from the beach, the amplitude of the groundwater fluctuation decreases (Fig.4(b)), the mean groundwater table increases (Fig.4(c)), with phase lags (Fig.4(d)). The results also demonstrate that the tide induced groundwater fluctuation has a skew shape in the inland area, i.e., the groundwater table rises faster and falls more slowly. This asymmetry is in accordance with the observation results and the numerical solution of Mao et al.[13].

    As shown in Fig.4(b), the amplitude of the groundwater fluctuation decreases exponentially with the distance to the beach, which can be expressed as

    where x represents the horizontal distance to the beach face, and1β and γ are regression coefficients. It is in accordance with the results obtained by Parlange et al. (1984), who derived the same relationship through the analytical solution for a two-dimensional flow problem without considering the density influence.

    Our simulation further demonstrates the influence of the beach slope on the coefficients in Eq.(12). The results show that γ does not change with the beach angle, which can be explained by the fact that γ represents the inverse wave length (Parlange et al. 1984) and is independent of the beach slope. As for 1β, it increases with the beach angle and their rela-0.5751 with the squared correlation coefficient2=0.9955 R. This result indicates that a milder beach tends to have a greater resistance for the growth of the amplitude, i.e., a sloping beach has a more important influence on the amplitude of the water fluctuation than a vertical beach. Jeng et al.[10]also found that water fluctuations vary inversely with the beach slope, although they have not derived a particular form of the relationship between the amplitude and the beach angle.

    As shown in Fig.4(c), the amplitude at the same point increases logarithmically with the beach angle, i.e.,

    where2β and γ′ are regression coefficients related to the horizontal distance to the beach (x). The regre-ssion results indicate that2β and γ′ are related with the horizontal distance (x) in the form of a loga-ln()cxd+ with both squared correlation coefficients greater than 0.99.

    Figure 4(d) shows that the phase lags linearly with the distance for beach angle =α15o. In fact, this linear lag is the case for all beach slopes, with the same slope value of -0.0087 and all with squared correlation coefficients greater than 0.98. This indicates that the phase lags regularly with the increase of the distance from the sea and is independent of the beach slope.

    3.2 Tidal effects on groundwater dynamics of transition zone under different beach angles

    3.2.1 Tidal effects on salt concentration distribution and intrusion length

    From the simulation results, the contour of the salt concentration at 1 d for beach angle of 15ois shown in Fig.5(a). In both the horizontal direction and the vertical direction, the concentrations in the transition zone are distributed linearly (see Fig.5(b)). There is no distinct difference for the concentration contours at different tide stages. However, the salt concentration of a particular point in the transition zone (e.g. Point 7) vibrates with the tidal fluctuation (Fig.5(c)), although the amplitude is small.

    From the contour of the salt concentration, the intrusion length with the tidal effect is defined as the length from the beach to the innermost point of the concentration contour of 0.15sc. The relative intrusion length λ is defined as the ratio of the intrusion length to the mean water table, i.e.,

    whereIL is the intrusion length under the tidal effect. Moreover, the relative enhancement of the tide induced seawater intrusion (κ) is used to describe the influence of the tide on the seawater intrusion, which is defined as

    wheresL is the intrusion length (for 0.15sc) without the tidal effect.

    The realtionships between the relative intrusion length (λ), the relative enhancement of the tide induced seawater intrusion (κ) and the beach angle (α) are shown in Fig.6. It is indicated that both λ and κ decrease logarithmically with the beach angle α (Fig.6), and one would have more intrusion range and more enhancement of the tide on the intrusion for a milder beach. Ataie-Ashtiani et al. (1999) also found that the influence of the tide on the intrusion length is much greater at a sloping beach than a vertical one.

    Fig.6 Realtionships between relative intrusion length λ, relative enhancement of tide induced seawater intrusion (κ) and beach angle (α)

    3.2.2 Tidal effects on the velocity field for a typical sloping beach (=α15o)

    Figure 7 shows the simulation results of the tide induced groundwater velocity in x and z directions. It is shown that the velocity fluctuates similar to the tidal signal (sine function), as a response to the tidal fluctuation. The horizontal velocity,xV, does not attenuate in the vertical direction (Fig.7(a)), but it attenuates exponentially with the horizontal distance to the beach (Fig.7(b)), similar to the attenuation of the groundwater table (Eq.(12)). The fitting results show that the attenuation coefficients (γ) for the groundwater table andxV in the horizontal direction are the same, which indicates they are both caused by the tide fluctuation because γ represents the attribute of the tidal fluctuation. Moreover, there is an obvious phase lag forxV in the horizontal direction (Fig.7(b)), because it takes time for the tidal influence to spread inland.

    The vertical velocity, Vz, is much smaller than Vx, and there is no distinct phase lag in both horizontal and vertical directions, mainly because the wave spreads along the horizontal direction, perpendicular to the vertical direction. As shown in Fig.7(c), at the higher points in the transition zone one usually hasa larger upward velocity, because the groundwater above the transition zone tends to discharge upward to the sea.zV near the center of the transition zone (e.g., Points 7 and 8) has a larger fluctuation, which indicates the significant influence of the tidal fluctuation on the transition zone. Figure 7(d) shows that the amplitude ofzV decreases quickly in the direction towards the inland area similar toxV, because the tidal influence is weakened towards the inland direction.

    Fig.7 Periodic change of velocity at Points 1, 7 to 12

    From Fig.7, it is seen that the flow velocity at the top of the aquifer, especially, near the discharge face (e.g., Point 12), is much greater than that at the bottom. Ataie-Ashtiani et al. (1999) and Mao et al.[13]also investigated the velocity of the seawater intrusion through their numerical models, but those studies mainly focused on the overall velocity field at a particular tidal stage. Here by analyzing the simulation data at different locations, the influence of the tide and the beach angle on the groundwater dynamics is revealed quantitatively.

    4. Conclusions

    To investigate the tide induced groundwater dynamics under different beach slopes, a numerical model is built with the software FEFLOW. The model is firstly examined by comparing with the laboratory experiment of Wu et al.[19], who monitored the water table fluctuation induced by the tide on inclined beaches. It is shown that the numerical model can describe the tide induced water table fluctuations under an inclined beach, and it is also indicated that the water table is elevated when considering the salt water intrusion.

    More numerical scenarios are designed with different beach slopes in the practical scale. The results have not only confirmed the previously established relationships between the tide induced groundwater table fluctuation and the distance to the sea, but have also further revealed the influence of the beach slope on the relationship coefficients quatitatively. The tidal effects on the seawater intrusion and the velocity field for cases with sloping beaches are also quantified.

    Despite the fact that some quantitative relationships among beach slope, tide signal, seawater intrusion and groundwater dynamics are obtained, the numerical scenarios we have designed are based on a specific case, with simplified tidal signal, constant beach slope and homogenous aquifer. To understand the influence of the beach slope thoroughly, more complex cases should be studied in future researches and the results need to be verified under the real circumstances.

    [1] BROVELLI A., MAO X. M. and BARRY D. A. Numerical modeling of tidal influence on density-dependent contaminant transport[J]. Water Resources Research, 2007, 43: W10428.

    [2] SHI L., CUI L. and PARK N. et al. Applicability of a sharp-interface model for estimating steady-state salinity at pumping wells-validation against sand tank experiments[J]. Journal of Contaminant Hydrology, 2011, 124(1-4): 35-42.

    [3] BAKHTYAR R., BROVELLI A. and BARRY D. A. et al. Wave-induced water table fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments[J]. Coastal Engineering, 2011, 58(1): 103-118.

    [4] ABD-ELHAMID H. F., JAVADI A. A. A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers[J]. Journal of Hydrology, 2011, 401(3-4): 259-271.

    [5] SONG Z. Y., LI L. and KONG J. et al. A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer[J]. Journal of Hydrology, 2007, 340(3-4): 256-260.

    [6] XIA Yu-qiang, LI Hai-long and BOUFADEL M. C. A new perturbation solution of groundwater table fluctuations in tidal beaches[J]. Journal of Hydrodynamics, 2010, 22(5 Suppl.): 55-60.

    [7] LI H. L., JIAO J. J. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system[J]. Journal of Hydrology, 2002, 268(1-4): 234-243.

    [8] LI H. L., JIAO J. J. Analytical solutions of tidal groundwater flow in coastal two-aquifer system[J]. Advances in Water Resources, 2002, 25(4): 417-426.

    [9] LI L., BARRY D. A. and STAGNITTI F. et al. Beach water table fluctuations due to spring-neap tides: Moving boundary effects[J]. Advances in Water Resources, 2000, 23(8): 817-824.

    [10] JENG D. S., BARRY D. A. and SEYMOUR B. R. et al. Two-dimensional approximation for tide-induced water table fluctuations in a sloping sandy beach[J]. Advances in Water Resources, 2005, 28(10): 1040-1047.

    [11] LANGEVIN C., SWAIN E. and WOLFERT M. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary[J]. Journal of Hydrology, 2005, 314(1-4): 212-234.

    [12] LI H. L., BOUFADEL M. C. and WEAVER J. W. Tideinduced seawater–groundwater circulation in shallow beach aquifers[J]. Journal of Hydrology, 2008, 352(1-2): 211-224.

    [13] MAO X., ENOT P. and BARRY D. A. et al. Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary[J]. Journal of Hydrology, 2006, 327(1-2): 110-127.

    [14] BALUGANI E., ANTONELLINI M. Barometric pressure influence on water table fluctuations in coastal aquifers of partially enclosed seas: An example from the adriatic coast, Italy[J]. Journal of Hydrology, 2011, 400(1-2): 176-186.

    [15] GOSWAMI R. R., CLEMENT T. P. Laboratory-scale investigation of saltwater intrusion dynamics[J]. Water Resources Research, 2007, 43: W04418.

    [16] BOUFADEL M. C., XIA Y. Q. and LI H. L. Modeling solute transport and transient seepage in a laboratory beach under tidal influence[J]. Environmental Modelling and Software, 2011, 26(7): 899-912.

    [17] WU Long-hua, ZHUANG Shui-ying. Experimental investigation of effect of tide on coastal groundwater table[J]. Journal of Hydrodynamics, 2010, 22(1): 66-72.

    [18] MAO X., PROMMER H., and BARRY D. A. et al. Three-dimensional model for multi-component reactive transport with variable density groundwater flow[J]. Environmental Modelling and Software, 2006, 21(5): 615-628.

    [19] WU Long-hua, ZHUANG Shui-ying and LI Ling et al. Experimental investigation of tidal effects on groundwater table fluctuation along shore[J]. Journal of Hohai University (Natural Sciences), 2009, 37(2): 228-231(in Chinese).

    10.1016/S1001-6058(11)60223-0

    * Project supported by the Program for New Century Excellent Talents in Universities (Grant No. 07-0814).

    Biography: LIU Yi (1987- ), Male, Master Candidate

    MAO Xiao-min,

    E-mail: maoxiaomin@cau.edu.cn

    2012,24(1):97-106

    亚洲欧美日韩无卡精品| 国产精品一区二区性色av| 日韩欧美国产在线观看| 国产精品久久久久久av不卡| 欧美性猛交╳xxx乱大交人| 免费av不卡在线播放| 国产精品不卡视频一区二区| 国产精品一区二区免费欧美| 久久久久久久亚洲中文字幕| 老司机福利观看| xxxwww97欧美| 啦啦啦啦在线视频资源| 极品教师在线视频| 国产精品久久久久久久久免| 精品久久久久久久久久久久久| bbb黄色大片| 亚洲欧美激情综合另类| 欧美中文日本在线观看视频| 91麻豆av在线| 国产大屁股一区二区在线视频| 啦啦啦观看免费观看视频高清| 国产亚洲精品综合一区在线观看| 精品久久久久久久久久免费视频| 少妇熟女aⅴ在线视频| 精品福利观看| 国内精品久久久久精免费| 免费av观看视频| 天天一区二区日本电影三级| 一a级毛片在线观看| 我要搜黄色片| 欧美成人免费av一区二区三区| 中文字幕av在线有码专区| 女同久久另类99精品国产91| 在线免费观看的www视频| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 一个人看的www免费观看视频| 搡老岳熟女国产| 国产精品女同一区二区软件 | 亚洲三级黄色毛片| ponron亚洲| 国产精品免费一区二区三区在线| 日本欧美国产在线视频| 美女被艹到高潮喷水动态| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 在现免费观看毛片| 国产aⅴ精品一区二区三区波| 国产黄片美女视频| 午夜a级毛片| 亚洲av熟女| 免费看日本二区| 在线播放无遮挡| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 日韩欧美精品免费久久| 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 欧美黑人欧美精品刺激| 午夜免费激情av| 亚洲第一电影网av| 婷婷精品国产亚洲av| 国产不卡一卡二| 国产高清有码在线观看视频| 中文字幕免费在线视频6| 天天一区二区日本电影三级| 高清日韩中文字幕在线| 国产精品嫩草影院av在线观看 | 美女免费视频网站| 中亚洲国语对白在线视频| 男人狂女人下面高潮的视频| 黄色一级大片看看| 搡女人真爽免费视频火全软件 | 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 不卡一级毛片| 国产高清视频在线观看网站| 亚洲欧美激情综合另类| 色综合色国产| 国产精品,欧美在线| 性色avwww在线观看| 久久国产精品人妻蜜桃| 午夜福利高清视频| 国产亚洲91精品色在线| 国产成人av教育| 中文字幕高清在线视频| 亚洲精品日韩av片在线观看| 天美传媒精品一区二区| 日韩欧美国产在线观看| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 女人被狂操c到高潮| 一个人看视频在线观看www免费| 国产一区二区三区av在线 | 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 一级黄色大片毛片| 国产av不卡久久| 好男人在线观看高清免费视频| 国产欧美日韩精品一区二区| 国产午夜精品久久久久久一区二区三区 | 国产精品亚洲一级av第二区| 美女黄网站色视频| 久久久国产成人免费| 国产欧美日韩精品一区二区| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 国产一区二区三区视频了| 欧美精品国产亚洲| 亚洲成a人片在线一区二区| 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 国产私拍福利视频在线观看| 在线免费十八禁| 国产精品不卡视频一区二区| 久久精品91蜜桃| 国内精品一区二区在线观看| 国语自产精品视频在线第100页| 亚洲午夜理论影院| 看免费成人av毛片| 成人精品一区二区免费| 麻豆一二三区av精品| 精品久久久久久久久久免费视频| 中文字幕高清在线视频| 人妻制服诱惑在线中文字幕| 国产午夜精品论理片| 日韩国内少妇激情av| 一区二区三区激情视频| 色噜噜av男人的天堂激情| 丰满的人妻完整版| 91久久精品电影网| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区| 悠悠久久av| 欧美区成人在线视频| 精品人妻1区二区| 免费不卡的大黄色大毛片视频在线观看 | 中亚洲国语对白在线视频| 中国美女看黄片| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 亚洲电影在线观看av| 国产毛片a区久久久久| 亚洲不卡免费看| 免费高清视频大片| 一进一出好大好爽视频| 亚洲性夜色夜夜综合| 亚洲va在线va天堂va国产| 国产69精品久久久久777片| 久久久久久久亚洲中文字幕| 亚洲国产精品合色在线| 神马国产精品三级电影在线观看| АⅤ资源中文在线天堂| 男女视频在线观看网站免费| 久久99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 国产在视频线在精品| 国产一级毛片七仙女欲春2| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 久久久久精品国产欧美久久久| .国产精品久久| 久久久久久久久大av| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 久久精品国产亚洲网站| 日韩精品中文字幕看吧| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 精品一区二区三区人妻视频| 俄罗斯特黄特色一大片| 黄色欧美视频在线观看| 国产高清激情床上av| 亚洲av免费高清在线观看| 天堂av国产一区二区熟女人妻| av在线观看视频网站免费| 91久久精品国产一区二区成人| 十八禁国产超污无遮挡网站| 嫩草影视91久久| 免费不卡的大黄色大毛片视频在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 午夜福利成人在线免费观看| 日本一本二区三区精品| 在线观看免费视频日本深夜| 久久这里只有精品中国| 69人妻影院| x7x7x7水蜜桃| netflix在线观看网站| 此物有八面人人有两片| 有码 亚洲区| 简卡轻食公司| 免费在线观看日本一区| 国产视频一区二区在线看| 99久久精品热视频| 日韩欧美精品免费久久| 国产在视频线在精品| 免费观看在线日韩| 日韩欧美三级三区| 久久6这里有精品| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 男人的好看免费观看在线视频| 成人一区二区视频在线观看| 国产91精品成人一区二区三区| 非洲黑人性xxxx精品又粗又长| 少妇高潮的动态图| 色哟哟·www| 精品日产1卡2卡| 日韩欧美 国产精品| 嫩草影院新地址| 99精品在免费线老司机午夜| 日本 av在线| 国产精品一区www在线观看 | 最近在线观看免费完整版| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 久久精品国产99精品国产亚洲性色| 欧美三级亚洲精品| 91久久精品国产一区二区成人| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 一进一出抽搐动态| 国产亚洲精品久久久久久毛片| 狂野欧美激情性xxxx在线观看| 午夜久久久久精精品| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 成人永久免费在线观看视频| 九色成人免费人妻av| 亚洲av不卡在线观看| 人妻夜夜爽99麻豆av| 亚洲黑人精品在线| 国产激情偷乱视频一区二区| 美女黄网站色视频| 色尼玛亚洲综合影院| 国产三级在线视频| 无人区码免费观看不卡| 1000部很黄的大片| 亚洲国产欧美人成| av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 欧美黑人欧美精品刺激| 中文字幕人妻熟人妻熟丝袜美| 人人妻,人人澡人人爽秒播| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 亚洲国产欧洲综合997久久,| 精品久久久久久成人av| 国产精品无大码| 成人av在线播放网站| 免费无遮挡裸体视频| av在线天堂中文字幕| 免费在线观看日本一区| 99久久精品热视频| 久久久色成人| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区免费毛片| 日本欧美国产在线视频| 国产av麻豆久久久久久久| 村上凉子中文字幕在线| 日韩欧美免费精品| 日本三级黄在线观看| 欧美最新免费一区二区三区| 亚洲av中文av极速乱 | 久久久色成人| 天堂av国产一区二区熟女人妻| 欧美又色又爽又黄视频| 极品教师在线免费播放| 99久国产av精品| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 悠悠久久av| 听说在线观看完整版免费高清| 午夜激情福利司机影院| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区 | 欧美三级亚洲精品| 成人特级av手机在线观看| 日韩欧美国产在线观看| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 12—13女人毛片做爰片一| 午夜老司机福利剧场| av在线亚洲专区| 国产精品日韩av在线免费观看| 99热这里只有是精品50| 日韩欧美三级三区| 观看免费一级毛片| 黄色女人牲交| 高清在线国产一区| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 中文字幕免费在线视频6| 中文字幕av在线有码专区| 999久久久精品免费观看国产| 男女做爰动态图高潮gif福利片| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 国产成人福利小说| 老司机福利观看| 欧美日韩黄片免| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片 | 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 亚洲无线观看免费| www.色视频.com| 日本欧美国产在线视频| 色5月婷婷丁香| 我的女老师完整版在线观看| 99精品久久久久人妻精品| 国产免费男女视频| 亚洲av美国av| 最新在线观看一区二区三区| 国产探花极品一区二区| 99久久精品热视频| 国产成人影院久久av| 精品国内亚洲2022精品成人| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 波多野结衣高清作品| 国产亚洲欧美98| 欧美区成人在线视频| 最近视频中文字幕2019在线8| 亚洲avbb在线观看| av在线蜜桃| av视频在线观看入口| 免费人成在线观看视频色| 精品久久久久久久久亚洲 | 成年版毛片免费区| 十八禁网站免费在线| 中出人妻视频一区二区| 国内精品美女久久久久久| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 美女免费视频网站| 乱系列少妇在线播放| 小说图片视频综合网站| 日韩欧美免费精品| 观看免费一级毛片| 99久久九九国产精品国产免费| av在线观看视频网站免费| 岛国在线免费视频观看| 久久精品国产99精品国产亚洲性色| .国产精品久久| 天堂√8在线中文| 韩国av在线不卡| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| xxxwww97欧美| 小说图片视频综合网站| 十八禁网站免费在线| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 久久久久久大精品| 女的被弄到高潮叫床怎么办 | 性色avwww在线观看| 亚洲性久久影院| 国产精品一区二区三区四区久久| 免费看日本二区| 一a级毛片在线观看| 国产人妻一区二区三区在| 亚洲av二区三区四区| 琪琪午夜伦伦电影理论片6080| 97碰自拍视频| 99riav亚洲国产免费| 日韩,欧美,国产一区二区三区 | 亚洲精品一区av在线观看| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 天堂影院成人在线观看| 亚洲电影在线观看av| 夜夜爽天天搞| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 久久草成人影院| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 97人妻精品一区二区三区麻豆| 国产成人影院久久av| 特级一级黄色大片| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 看十八女毛片水多多多| 美女黄网站色视频| 91精品国产九色| 国产高潮美女av| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 男人舔奶头视频| 久久九九热精品免费| 黄色一级大片看看| 欧美性猛交黑人性爽| 久久人妻av系列| 精品人妻视频免费看| 美女cb高潮喷水在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 免费高清视频大片| 黄色丝袜av网址大全| 一a级毛片在线观看| 麻豆精品久久久久久蜜桃| 999久久久精品免费观看国产| 免费搜索国产男女视频| 欧美日本视频| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| 欧美成人a在线观看| 日本成人三级电影网站| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 亚洲av不卡在线观看| 久久久成人免费电影| 中文在线观看免费www的网站| 波多野结衣高清作品| 少妇的逼水好多| 成人特级av手机在线观看| 亚洲性久久影院| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 99在线视频只有这里精品首页| 国产三级中文精品| 欧美色欧美亚洲另类二区| 不卡视频在线观看欧美| 国产伦人伦偷精品视频| 亚洲av二区三区四区| 免费观看的影片在线观看| 亚洲成人久久性| 亚洲欧美激情综合另类| 国内揄拍国产精品人妻在线| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 人人妻人人看人人澡| 我要搜黄色片| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 此物有八面人人有两片| 91精品国产九色| 日本 av在线| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 两个人的视频大全免费| xxxwww97欧美| 黄色女人牲交| 免费人成在线观看视频色| 欧美性感艳星| 网址你懂的国产日韩在线| 午夜精品在线福利| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 国产精品人妻久久久影院| 日韩欧美在线乱码| 夜夜爽天天搞| 欧美一区二区精品小视频在线| 欧美色欧美亚洲另类二区| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| 十八禁网站免费在线| 中文资源天堂在线| 丝袜美腿在线中文| 国产免费一级a男人的天堂| 夜夜夜夜夜久久久久| 少妇丰满av| 淫妇啪啪啪对白视频| 久久久久久大精品| 国产黄片美女视频| 午夜爱爱视频在线播放| 国产 一区精品| 黄色丝袜av网址大全| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 最后的刺客免费高清国语| 日韩人妻高清精品专区| 91精品国产九色| 在线免费观看的www视频| 日韩欧美在线乱码| 国产精品久久视频播放| 嫩草影视91久久| 欧美成人免费av一区二区三区| 亚州av有码| 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 亚洲一区二区三区色噜噜| 啦啦啦啦在线视频资源| 美女黄网站色视频| 亚洲无线观看免费| 午夜免费激情av| 久久久午夜欧美精品| 日韩欧美在线二视频| 国产成人福利小说| 成人国产综合亚洲| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 午夜久久久久精精品| or卡值多少钱| 麻豆成人av在线观看| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 欧美激情在线99| 悠悠久久av| 极品教师在线视频| 波多野结衣高清作品| 搞女人的毛片| 精品欧美国产一区二区三| 日本与韩国留学比较| 日本在线视频免费播放| 少妇的逼好多水| 日韩国内少妇激情av| 日韩亚洲欧美综合| 欧美日韩精品成人综合77777| 国产色婷婷99| av视频在线观看入口| 12—13女人毛片做爰片一| 老司机福利观看| 哪里可以看免费的av片| 99久久九九国产精品国产免费| 别揉我奶头~嗯~啊~动态视频| 黄片wwwwww| 成人美女网站在线观看视频| 天美传媒精品一区二区| 免费在线观看影片大全网站| 免费看日本二区| 88av欧美| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 黄片wwwwww| av专区在线播放| 毛片一级片免费看久久久久 | av在线天堂中文字幕| 亚洲成人免费电影在线观看| 成人鲁丝片一二三区免费| 免费电影在线观看免费观看| 中文资源天堂在线| 一区二区三区免费毛片| 一进一出抽搐gif免费好疼| 免费看日本二区| 搡女人真爽免费视频火全软件 | 欧美日韩亚洲国产一区二区在线观看| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 女人十人毛片免费观看3o分钟| 欧美日韩黄片免| 日本黄色片子视频| 在线免费观看的www视频| 少妇的逼水好多| 久久午夜福利片| 成人毛片a级毛片在线播放| 国产v大片淫在线免费观看| 日本精品一区二区三区蜜桃| 国产午夜精品论理片| 日韩欧美精品免费久久| 最好的美女福利视频网| 十八禁国产超污无遮挡网站| 极品教师在线免费播放| 韩国av一区二区三区四区| 免费观看人在逋| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线| 久久久午夜欧美精品| 美女高潮喷水抽搐中文字幕| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 淫妇啪啪啪对白视频| 美女黄网站色视频| 99热这里只有是精品50| 长腿黑丝高跟| 少妇的逼水好多| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 亚洲精品国产成人久久av| 可以在线观看毛片的网站| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 嫩草影院新地址| 日韩,欧美,国产一区二区三区 | 国产爱豆传媒在线观看| 亚洲人与动物交配视频| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| 老司机福利观看| 国产成人福利小说| 亚洲最大成人中文| 国产精品美女特级片免费视频播放器| 精品国产三级普通话版| 午夜精品一区二区三区免费看| 制服丝袜大香蕉在线| 亚洲第一区二区三区不卡| 蜜桃亚洲精品一区二区三区|