袁泓宇, 崔冬麗, John Seymour Heslop Harrison, 劉青
谷類作物-葡聚糖合成酶基因家族的研究進(jìn)展
袁泓宇1,2,3, 崔冬麗1,2,3, John Seymour Heslop Harrison1,2,4, 劉青1,2,5*
(1. 中國科學(xué)院華南植物園,中國科學(xué)院植物資源保護(hù)與可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,廣州 510650;2. 華南國家植物園,廣州 510650;3. 中國科學(xué)院大學(xué),北京 100049;4. 萊斯特大學(xué)遺傳學(xué)和基因組生物學(xué)系,萊斯特 LE1 7RH,英國;5. 中國科學(xué)院核心植物園,廣州 510650)
Beta-葡聚糖是由-(1,3)和-(1,4)糖苷鍵連接的非纖維素多糖,主要分布在谷類作物籽粒胚乳及糊粉層中,在高爾基體合成,經(jīng)由囊泡運(yùn)輸?shù)劫|(zhì)膜,最終在細(xì)胞壁上沉積。通過增加膽汁酸排泄,延遲葡萄糖吸收,-葡聚糖可有效降低膽固醇及血糖水平。Beta-葡聚糖合成酶基因家族成員最早在水稻()中得到鑒定,后在其他作物中陸續(xù)被發(fā)現(xiàn)。該基因家族包括3個(gè)主要成員:、和亞基因家族,起源于不同分支,經(jīng)過趨同演化,執(zhí)行合成-葡聚糖的功能。Beta-葡聚糖基因家族成員均受到負(fù)選擇壓力,演化過程中序列高度保守。亞家族基因成員相對(duì)較多,常在染色體上形成基因簇,是介導(dǎo)-葡聚糖合成的主效基因。亞家族在葉基部等幼嫩組織中表達(dá)水平相對(duì)較高,且明顯受到光照強(qiáng)度的影響;和亞家族成員較少,其中亞家族在葉尖等成熟組織中的表達(dá)水平高,而亞家族在籽粒中有較高的表達(dá)水平。該文綜述了-葡聚糖合成酶基因家族成員的系統(tǒng)發(fā)育關(guān)系、表達(dá)模式,-葡聚糖合成酶的亞細(xì)胞定位,以及作物中的定向育種研究進(jìn)展,提出-葡聚糖合成酶基因家族在染色體上的精準(zhǔn)定位是未來的研究趨勢(shì),以期推動(dòng)染色體工程在作物-葡聚糖定向育種中的應(yīng)用。
Beta-葡聚糖;谷類作物定向育種;基因家族演化;染色體工程
Beta-葡聚糖是籽粒胚乳和糊粉層細(xì)胞壁的主要非纖維素多糖[1],在谷類作物及其他單子葉植物中均有分布[2]。Beta-葡聚糖可增加膽汁酸排泄,延遲葡萄糖吸收[3],降低膽固醇及血糖水平[4],在食品、藥品等領(lǐng)域中具有較高的應(yīng)用價(jià)值。最初在水稻()基因組中鑒定到-葡聚糖合成酶基因家族成員亞基因家族[5],并通過異源表達(dá)實(shí)驗(yàn),證實(shí)亞基因家族編碼-葡聚糖合成酶[6]。之后46種被子植物的研究表明,和亞基因家族也具有合成-葡聚糖的功能[7]。
由于對(duì)-葡聚糖合成的調(diào)控網(wǎng)絡(luò),以及物種間-葡聚糖含量差異的遺傳因素缺乏精準(zhǔn)認(rèn)知, 作物-葡聚糖育種還停留在傳統(tǒng)育種階段。本文擬通過整理-葡聚糖合成酶基因家族研究進(jìn)展, 提出未來研究的方向,為作物-葡聚糖定向育種提供理論支撐。
Beta-葡聚糖是由d-吡喃葡萄糖苷單元通過-(1,3)和-(1,4)糖苷鍵連接組成的非纖維素多糖, 又名混合線性葡聚糖[Mixed-linkage (1,3;1,4)--d-glucan, MLG],無分支或取代基(圖1)。Beta-葡聚糖鏈中,- (1,4)糖苷鍵賦予葡聚糖鏈剛性,而隨機(jī)分布的-(1,3)糖苷鍵增加了葡聚糖鏈空間扭轉(zhuǎn)的靈活性[8]。鄰近的糖苷鍵相同時(shí),葡聚糖鏈空間扭曲度減弱,使葡聚糖鏈趨向聚合,即溶解度降低,水溶液凝膠特性增加[9]。
Beta-葡聚糖的精細(xì)結(jié)構(gòu),表現(xiàn)為寡糖聚合度(degree of polymerization, DP)的比值。地衣酶能特異地?cái)嚅_-(1,4)糖苷鍵還原端,獲得多種寡糖產(chǎn)物,其中以-纖維三糖(G4G4G3G)和-纖維四糖(G4 G4G4G3G)為主,兩者的比值DP3:DP4即為DP比值[11–12]。當(dāng)DP比值為1~2.5時(shí),-葡聚糖的溶解度較高[13]。燕麥-葡聚糖含量較高(6%~8%),具有較好的水溶性,是日常飲食中-葡聚糖的理想來源[14](表1)。
圖1 (1,3;1,4)-β-d-葡聚糖化學(xué)結(jié)構(gòu)(根據(jù)McFarlane等[10]重繪)
表1 作物中β-葡聚糖含量及溶解度
Beta-葡聚糖在植物生長發(fā)育過程中發(fā)揮重要功能[15]。缺失-葡聚糖的突變體,植株生長速率較低,細(xì)胞壁變薄,花藥和花絲變形導(dǎo)致雄性不育[16]。Beta-葡聚糖還與葡萄糖的貯藏利用有關(guān)[17],植物通過水解細(xì)胞壁中的-葡聚糖獲得葡萄糖,由維管束運(yùn)輸?shù)狡渌课?,提供代謝所需的能量[18–19]。
Beta-葡聚糖可有效降低血糖,改善血液中的胰島素水平[20–21],參與人體膽汁酸的調(diào)節(jié)、膽固醇代謝、影響腸道微生物組成[22]。在小鼠試驗(yàn)中,-葡聚糖能增強(qiáng)免疫系統(tǒng)應(yīng)答能力[23],降低呼吸道的易感性[24]。Chang等[25]報(bào)道穩(wěn)定攝入-葡聚糖,可改善腹部脂肪堆積情況,降低人體肥胖度。在食品中添加-葡聚糖,顯著降低血糖生成指數(shù),在烘焙類食物及肉奶制品中,常用-葡聚糖替代脂肪[26]。Beta-葡聚糖有良好的皮膚滲透性,臨床實(shí)驗(yàn)中表現(xiàn)出減少細(xì)紋生成[27],抑制微生物慢性感染,促進(jìn)皮膚損傷后的愈合過程等功效[28],相關(guān)產(chǎn)品已投入生產(chǎn)。然而,-葡聚糖對(duì)麥芽啤酒釀造會(huì)產(chǎn)生不良影響, 發(fā)酵過程中殘余的-葡聚糖增加過濾成本,并影響口感[29]。在單胃動(dòng)物的飼料中,-葡聚糖會(huì)降低動(dòng)物胃腸道的消化吸收效率[30]。
2.1.1亞基因家族
Beta-葡聚糖合成酶基因家族包括3個(gè)主要成員:、和亞基因家族,都屬于類纖維素合酶(cellulose synthase-like)基因家族()。該基因家族與多種非纖維素多糖的合成有關(guān)。早期擬南芥()的研究表明,基因家族包括5個(gè)亞家族(~)[31]。2002年,Hazen等[5]在水稻基因組中鑒定到新的家族成員:和亞基因家族。由于雙子葉植物中未鑒定到這兩個(gè)亞基因家族存在,有學(xué)者推測(cè)和亞基因家族為單子葉植物特有的家族成員。
是首個(gè)被證實(shí)與-葡聚糖合成有關(guān)的亞基因家族。Burton等[6]將與-葡聚糖含量相關(guān)的數(shù)量性狀位點(diǎn)(quantitative trait locus, QTL)比對(duì)到水稻基因組中,在7號(hào)染色體上鑒定到6個(gè)基因組成的基因簇(、、、、和),在8號(hào)和10號(hào)染色體上鑒定到和基因。通過農(nóng)桿菌介導(dǎo)法,將3個(gè)基因、和轉(zhuǎn)入擬南芥基因組中異源表達(dá),在葉片表皮層細(xì)胞壁中檢測(cè)到微量的-葡聚糖,證實(shí)基因參與-葡聚糖合成[6]。
物種間亞基因家族成員的數(shù)目存在差異,且部分基因只存在于特定物種中(表2)。Burton等[32]在大麥() 2號(hào)染色體上鑒定到與水稻相同的基因簇,除、、外,還包括新的基因, 而、和等基因分布在其他染色體上。Schreiber等[33]在重新組裝的大麥基因組中,鑒定出3個(gè)在水稻中未發(fā)現(xiàn)的基因:、和。
基因的異源表達(dá)實(shí)驗(yàn)中,-葡聚糖的合成量較低,據(jù)此Doblin等[34]認(rèn)為可能存在其他基因共同調(diào)控合成-葡聚糖,如大麥Q(jìng)TL位點(diǎn)附近的基因。通過將轉(zhuǎn)入擬南芥中進(jìn)行異源表達(dá),Doblin等[34]報(bào)道葉片細(xì)胞壁中存在-葡聚糖沉積,證實(shí)家族參與-葡聚糖合成。亞基因家族在早熟禾亞科(Pooideae)的大麥和燕麥()中僅有單個(gè)成員,而在禾本科其他亞科的物種中則有多個(gè)成員[35]。
Little等[7]的研究指出,、和亞家族均可介導(dǎo)-葡聚糖的合成[7]。Farrokhi等[36]推測(cè)與和亞家族類似,單子葉植物中的亞家族可能參與-葡聚糖合成。其后在雙子葉植物中,也發(fā)現(xiàn)基因存在,而該基因的功能一直未得到確認(rèn)[37]。Little等[7]將雙子葉植物中的亞家族命名為,目前亞家族僅分布在單子葉植物中。通過異源表達(dá)實(shí)驗(yàn),Little等[7]證實(shí)亞基因家族成員基因參與-葡聚糖合成,表達(dá)活性類似亞家族。
燕麥-葡聚糖合成酶基因家族的研究不多。Newell等[38]比較了燕麥-葡聚糖含量相關(guān)的QTL位點(diǎn),有1個(gè)QTL標(biāo)記與水稻7號(hào)染色體上的基因簇具有序列同源性。Zhang等[39]采用同源序列搜索,在燕麥基因組中鑒定到5個(gè)基因家族成員(、、、和),與亞家族都僅具有單個(gè)成員,而基因簇在燕麥基因組中是否存在有待檢測(cè)。
2.1.2 主效基因
基因是-葡聚糖合成中的主效基因?;瘜W(xué)誘變實(shí)驗(yàn)表明,在大麥-葡聚糖缺失突變體中, 存在基因突變[40];敲除實(shí)驗(yàn)表明,、和基因敲除后,并不影響大麥籽粒-葡聚糖含量,而敲除基因后,大麥籽粒中檢測(cè)不到-葡聚糖含量[41];基因過表達(dá)后,大麥籽粒-葡聚糖含量平均增長45%,而過表達(dá)基因后,大麥籽粒-葡聚糖含量無顯著變化[18,42];在轉(zhuǎn)錄水平上,大麥籽粒基因的轉(zhuǎn)錄峰值時(shí)期與胚芽鞘中-葡聚糖含量達(dá)到峰值的時(shí)期相對(duì)應(yīng)[32,43]。水稻和小麥()中的基因研究也得到了相似結(jié)果[44–46]。亞家族其他成員在-葡聚糖合成過程中的功能尚不明確。
表2 作物中β-葡聚糖合成酶基因家族成員
2.2.1 系統(tǒng)發(fā)育關(guān)系
目前的觀點(diǎn)認(rèn)為,-葡聚糖基因家族出現(xiàn)在約130~140百萬年前,早于單雙子葉植物的分化時(shí)間[7]。Yin等[37]認(rèn)為-葡聚糖合成酶基因家族的祖先存在于陸地植物的共同祖先中,該家族的分化時(shí)間要早于陸地植物的分化。在陸地植物演化過程中,和亞家族在苔蘚中丟失,僅殘余序列片段。和亞家族的遠(yuǎn)緣關(guān)系說明,-葡聚糖合成酶基因家族來源于多次獨(dú)立的亞家族分化事件。
Beta-葡聚糖合成酶基因家族成員位于系統(tǒng)發(fā)育樹的不同分支:亞家族僅分布于部分鴨跖草類(Commelid)植物的分支,可能是由亞家族演化而來。而和亞家族在單子葉植物中廣泛存在,其中亞家族是亞家族(真雙子葉植物特有)的姊妹分支,亞家族是亞家族(廣義雙子葉植物特有)的姊妹分支,分別位于和分支[7]。
亞家族包括~共13個(gè)成員,成員間的演化關(guān)系較為清晰。與基因較早分化出來,其后通過復(fù)制事件產(chǎn)生基因簇,該基因簇包含除與外的大部分亞家族基因,并在禾本科物種中高度保守[47]。共線性分析的結(jié)果表明,基因簇來源于串聯(lián)重復(fù)事件[48]。復(fù)制事件后的基因后代容易發(fā)生功能分化,如和基因,其在系統(tǒng)發(fā)育樹上組成單獨(dú)的分支,它們可能與木葡聚糖的合成有關(guān)[49]。和亞家族成員較少,缺少系統(tǒng)發(fā)育關(guān)系的專門研究。
Beta-葡聚糖合成酶基因家族成員普遍受到負(fù)選擇壓力,表明作為細(xì)胞壁組成成分,-葡聚糖在演化過程中具有保守性[47]。亞家族部分基因受到顯著的正選擇壓力,如、、和基因,受到正選擇壓力的基因可能與植物的競爭優(yōu)勢(shì)有關(guān)。和亞家族受到的負(fù)選擇壓力稍弱,存在極高的核苷酸替換速率[47]。目前的研究多數(shù)是在大跨度進(jìn)化框架下,探究-葡聚糖合成酶基因家族的系統(tǒng)發(fā)育關(guān)系,而著眼于作物及野生近緣種之間精細(xì)差別的研究較少。
2.2.2 表達(dá)模式
亞家族基因主要在生長旺盛的幼嫩組織中表達(dá)?;虼貎?nèi)基因的表達(dá)模式并不相同, 例如基因在胚芽鞘組織中表達(dá)水平較高,而基因在葉基部組織中表達(dá)水平較高[32–33]?;蛟谧魑锏母狻⑷~基部、籽粒等幼嫩組織中都具有較高的表達(dá)水平,而基因的表達(dá)部位尚不清楚[48]。
亞家族在葉尖等成熟組織中具有較高的表達(dá)水平,可能與細(xì)胞停止生長后,化合物的沉積過程有關(guān)[50–51]。二穗短柄草()籽粒萌發(fā)過程中,基因的表達(dá)水平與基因相似,而大麥和小麥萌發(fā)籽粒中并未檢測(cè)到基因的表達(dá)[52]。亞家族表達(dá)模式的研究不多,僅在燕麥籽粒中檢測(cè)到較高的表達(dá)水平[39]。對(duì)于-葡聚糖合成酶基因家族成員之間的差異表達(dá)模式,一種觀點(diǎn)認(rèn)為與組織間-葡聚糖溶解性差異有關(guān)[51],其他觀點(diǎn)則認(rèn)為可能是基因家族擴(kuò)張后功能分化的結(jié)果[53]。
Beta-葡聚糖合成酶基因的表達(dá)水平受環(huán)境因素影響,尤其是光照。當(dāng)光照增加時(shí),玉米()胚軸中的表達(dá)水平增加,而的表達(dá)水平降低,推測(cè)與光照對(duì)生長素的調(diào)節(jié)有關(guān)[54–55]。Zhang等[39]在燕麥-葡聚糖合成酶基因家族的啟動(dòng)子區(qū)域(約2 000 bp)中檢測(cè)到大量的光響應(yīng)元件,并且葉片中基因的表達(dá)水平隨光照強(qiáng)度上升而增加,-葡聚糖含量也隨之增加[39]。除光照強(qiáng)度之外, 其他環(huán)境因素對(duì)作物-葡聚糖含量的影響尚未得到評(píng)估。
Beta-葡聚糖合成酶氨基酸序列主要包含有: (1) 親水催化功能域(PF00535);(2) 催化功能基序(D、D×D、D和Q××RW),其中Q是谷胺酰胺,R是精氨酸,W是色氨酸,×表示任意氨基酸;(3) 存在多個(gè)跨膜結(jié)構(gòu)域(transmembrane helices, TMH)[56](圖2)。
圖2 Beta-葡聚糖合成酶蛋白二級(jí)結(jié)構(gòu)的比較(根據(jù)Zhang等[39]重繪)
Beta-葡聚糖合成酶存在兩種催化活性,分別合成-(1,4)葡萄糖苷鍵和-(1,3)葡萄糖苷鍵。Fincher[57]認(rèn)為,-葡聚糖合成酶僅具有添加-(1,3)葡萄糖苷鍵的活性,-(1,4)葡萄糖苷鍵來源于異源表達(dá)實(shí)驗(yàn)中,植物細(xì)胞自身存在的-(1,4)葡聚糖合酶。Kim等[56]選擇無-(1,4)葡聚糖合酶的畢赤酵母作為材料,異源表達(dá)基因后成功檢測(cè)到-葡聚糖的合成。據(jù)此認(rèn)為,-葡聚糖合成酶具有催化兩種糖苷鍵合成的活性。
Beta-葡聚糖合成酶催化-葡聚糖合成的具體過程已得到初步研究。Schwerdt等[47]提出大麥HvCSLF6酶蛋白的同源模型,認(rèn)為在合成過程中存在明顯的跨膜運(yùn)輸和催化中心。Kim等[56]進(jìn)一步證明BdCSLF6酶蛋白的催化功能域、N-末端和C-末端都暴露在胞質(zhì)中。并推測(cè)-葡聚糖的合成過程為:胞質(zhì)內(nèi)的合成底物尿苷二磷酸葡萄糖(UDP- glucose, UDP-Glc),通過暴露在胞質(zhì)中的催化結(jié)構(gòu)域,不斷被添加到葡聚糖鏈上, 再穿過跨膜螺旋形成的膜孔,被運(yùn)輸?shù)侥さ牧硪粋?cè)。而-葡聚糖合成酶如何調(diào)控-(1,3)和-(1,4)糖苷鍵合成比例,以及克服合成過程中空間扭轉(zhuǎn)的合成機(jī)制問題,還需更多的研究來解答。
Beta-葡聚糖合成的亞細(xì)胞定位爭議未決。纖維素[-(1,4)糖苷鍵鏈接]和胼胝質(zhì)[-(1,3)糖苷鍵鏈接]在質(zhì)膜合成[10,58],而果膠和其余非纖維素多糖在高爾基體合成[59]。早期學(xué)者根據(jù)體外合成實(shí)驗(yàn),認(rèn)為高爾基體是細(xì)胞內(nèi)的-葡聚糖合成部位[60–61]。隨著免疫細(xì)胞學(xué)方法應(yīng)用[62],新的研究結(jié)果并不支持-葡聚糖在高爾基體上合成,小麥糊粉層細(xì)胞中的高爾基體僅有少量的免疫細(xì)胞學(xué)標(biāo)記信號(hào)[63],大麥胚芽鞘細(xì)胞的高爾基體上也檢測(cè)不到明顯信號(hào)[64]。2010年,Carpita等[65]提出,-葡聚糖的合成運(yùn)輸是一個(gè)動(dòng)態(tài)的過程,-葡聚糖在高爾基體中合成,經(jīng)由囊泡運(yùn)輸?shù)劫|(zhì)膜,最終在細(xì)胞壁上沉積。
Beta-葡聚糖合成酶的亞細(xì)胞定位也存在不同的觀點(diǎn)。Doblin等[35]將CSLH蛋白定位于高爾基體囊泡和內(nèi)質(zhì)網(wǎng)上。Kim等[56]將CSLF6蛋白定位于高爾基體,并觀察到通過分泌途徑的管腔轉(zhuǎn)運(yùn)。Wilson等[66]在內(nèi)質(zhì)網(wǎng)、高爾基體、分泌囊泡和質(zhì)膜中都發(fā)現(xiàn)了CSLF6和CSLH蛋白信號(hào),分布豐度不同。有學(xué)者認(rèn)為,在-葡聚糖分泌和運(yùn)輸過程中,伴隨著-葡聚糖合成酶蛋白從高爾基體到內(nèi)質(zhì)網(wǎng)的膜系統(tǒng)轉(zhuǎn)移,這也是導(dǎo)致-葡聚糖合成酶蛋白亞細(xì)胞定位爭議未決的根本原因[67]。
Beta-葡聚糖合成酶蛋白上的特定氨基酸位點(diǎn)突變后,可顯著影響-葡聚糖含量和精細(xì)結(jié)構(gòu),或可成為作物-葡聚糖定向育種的一種手段。通過構(gòu)建CSLF6片段嵌合體蛋白,并分析其在本氏煙草()葉片瞬時(shí)表達(dá)的結(jié)果, Jobling等[68]報(bào)道HVCSLF6中的I757L氨基酸位點(diǎn)突變,可導(dǎo)致-葡聚糖DP比值明顯下降,而在玉米ZMCSLF6中,同一位點(diǎn)突變則會(huì)導(dǎo)致DP比值明顯上升,實(shí)驗(yàn)證明,氨基酸位點(diǎn)突變可能是造成不同作物-葡聚糖水溶性差異的主要原因。Dimitroff等[69]采用相似的方法,觀察到SBCSLF6蛋白上G638D氨基酸位點(diǎn)突變后,會(huì)引起-葡聚糖產(chǎn)物DP比值變小, 且-葡聚糖含量隨之下降。根據(jù)-葡聚糖酶蛋白的三維結(jié)構(gòu),解析特定氨基酸位點(diǎn)突變對(duì)-葡聚糖含量和精細(xì)結(jié)構(gòu)的影響,是育種關(guān)注的研究方向。
染色體工程是一種常見的育種手段,通過附加、代換、消減和易位等染色體操作,改變研究對(duì)象的染色體組成,定向調(diào)整作物遺傳特性[70]。通過染色體工程導(dǎo)入異源-葡聚糖合成酶基因后,如將大麥或山羊草屬()物種中包含基因的染色體轉(zhuǎn)移到小麥中,可觀察到籽粒中-葡聚糖含量的增高[71–72]。
采用熒光原位雜交技術(shù),實(shí)現(xiàn)基因在染色體上的精準(zhǔn)定位,可應(yīng)用于作物染色體工程育種。小麥D亞基因組上的基因,被認(rèn)為在籽粒-葡聚糖合成中的貢獻(xiàn)更大,通過導(dǎo)入異源基因,替換AB亞基因組上的基因后,小麥籽粒中的-葡聚糖含量明顯增加[73]。Fogarty等[74]報(bào)道在-葡聚糖產(chǎn)量高的燕麥品種中,_C基因表達(dá)較低,而在-葡聚糖含量低的燕麥品種中,其表達(dá)水平較高,推測(cè)C基因組的_C基因在-葡聚糖合成中起負(fù)向調(diào)節(jié)作用,但對(duì)于燕麥中基因的分布,還缺乏染色體定位證據(jù)。
物種間的-葡聚糖含量的差異,是作物-葡聚糖定向育種研究的基礎(chǔ)。燕麥屬A、C基因組二倍體物種間存在明顯的-葡聚糖含量差異,大西洋燕麥(, AA)的-葡聚糖含量,約為偏肥燕麥(, CC)的4倍[75]。小麥屬近緣種中, 山羊草(, DD)籽粒的-葡聚糖含量, 約為烏拉圖小麥(AA)的4倍[76]。Garcia-Gimenez等[77]報(bào)道,-葡聚糖在籽粒發(fā)育過程中,表現(xiàn)為明顯的基因型依賴性積累。并且無論在何種生長條件下,高-葡聚糖品種籽粒的-葡聚糖含量, 均高于在同等條件下的低-葡聚糖品種[78]。因此,研究-葡聚糖含量形成的遺傳機(jī)制,具有十分重要的育種價(jià)值。
Beta-葡聚糖可以顯著降低食品的血糖生成指數(shù),改善人體脂肪堆積情況,對(duì)威脅人類健康的高血脂癥和高血糖具有防治作用。燕麥中-葡聚糖含量較高,且具有良好的溶解度,是食物中理想的-葡聚糖來源。近年來在功能食品及化妝品領(lǐng)域,燕麥-葡聚糖相關(guān)的產(chǎn)品已形成一定的市場(chǎng)規(guī)模,而燕麥-葡聚糖育種仍然停留在雜交育種階段,無法滿足市場(chǎng)需求。通過染色體工程導(dǎo)入異源-葡聚糖合成酶基因,可顯著改變作物籽粒中-葡聚糖含量。其中-葡聚糖合成酶基因在染色體上的定位, 是檢測(cè)異源基因是否成功導(dǎo)入的關(guān)鍵。設(shè)計(jì)特異性探針,完成主效基因的染色體定位,是提高燕麥籽粒中-葡聚糖含量的突破口,可推動(dòng)染色體工程在燕麥-葡聚糖定向育種中的應(yīng)用。
隨著燕麥屬物種基因組數(shù)據(jù)積累,通過比較基因組學(xué)方法,探討-葡聚糖合成酶基因家族的基因拷貝數(shù)目、染色體分布模式等特征與-葡聚糖含量的相關(guān)性,為在基因水平解釋物種間-葡聚糖含量差異形成的原因提供可能性,也為燕麥屬野生種質(zhì)資源的開發(fā)利用提供科技支撐。結(jié)合作物不同發(fā)育時(shí)期的轉(zhuǎn)錄組數(shù)據(jù),可篩選出與-葡聚糖合成酶基因家族成員共表達(dá)的基因,確定關(guān)鍵的調(diào)控基因或轉(zhuǎn)錄因子,來構(gòu)建-葡聚糖合成的調(diào)控網(wǎng)絡(luò)。
本文綜述了-葡聚糖的化學(xué)特性、功能應(yīng)用,-葡聚糖合成酶基因家族成員的系統(tǒng)發(fā)育關(guān)系、表達(dá)模式、-葡聚糖合成酶的亞細(xì)胞定位,及作物-葡聚糖定向育種中的研究進(jìn)展。并提出開發(fā)燕麥屬野生種質(zhì)資源,促進(jìn)染色體工程在作物-葡聚糖定向育種中的應(yīng)用,是厘清-葡聚糖合成酶基因家族的調(diào)控網(wǎng)絡(luò)的研究方向。
[1] SHEWRY P R, WAN Y F, HAWKESFORD M J, et al. Spatial distri- bution of functional components in the starchy endosperm of wheat grains [J]. J Cereal Sci, 2020, 91: 102869. doi: 10.1016/j.jcs.2019. 102869.
[2] STINARD P S, NEVINS D J. Distribution of noncellulosic-d- glucans in grasses and other monocots [J]. Phytochemistry, 1980, 19(7): 1467–1468. doi: 10.1016/0031-9422(80)80196-8.
[3] NIRMALA PRASADI P V, JOYE I J. Dietary fibre from whole grains and their benefits on metabolic health [J]. Nutrients, 2020, 12(10): 3045. doi: 10.3390/nu12103045.
[4] SHVACHKO N A, LOSKUTOV I G, SEMILET T V, et al. Bioactive components in oat and barley grain as a promising breeding trend for functional food production [J]. Molecules, 2021, 26(8): 2260. doi: 10. 3390/molecules26082260.
[5] HAZEN S P, SCOTT-CRAIG J S, WALTON J D. Cellulose synthase- like genes of rice [J]. Plant Physiol, 2002, 128(2): 336–340. doi: 10. 1104/pp.010875.
[6] BURTON R A, WILSON S M, HRMOVA M, et al. Cellulose synthase-likegenes mediate the synthesis of cell wall (1,3;1,4)-- d-glucans [J]. Science, 2006, 311(5769): 1940–1942. doi: 10.1126/ science.1122975.
[7] LITTLE A, SCHWERDT J G, SHIRLEY N J, et al. Revised phylogeny of thegene superfamily: Insights into cell wall evolution [J]. Plant Physiol, 2018, 177(3): 1124–1141. doi: 10.1104/ pp.17.01718.
[8] STAUDTE R G, WOODWARD J R, FINCHER G B, et al. Water- soluble (1→3),(1→4)--d-glucans from barley () endosperm: III. Distribution of cellotriosyl and cellotetraosyl residues [J]. Carbohydr Polym, 1983, 3(4): 299–312. doi: 10.1016/0144-8617 (83)90027-9.
[9] MIKKELSEN M S, JESPERSEN B M, LARSEN F H, et al. Molecular structure of large-scale extracted-glucan from barley and oat: Identification of a significantly changed block structure in a high-glucan barley mutant [J]. Food Chem, 2013, 136(1): 130–138. doi: 10.1016/j.foodchem.2012.07.097.
[10] MCFARLANE H E, D?RING A, PERSSON S. The cell biology of cellulose synthesis [J]. Annu Rev Plant Biol, 2014, 65: 69–94. doi: 10. 1146/annurev-arplant-050213-040240.
[11] BULONE V, SCHWERDT J G, FINCHER G B. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses [J]. Front Plant Sci, 2019, 10: 1009. doi: 10.3389/fpls.2019.01009.
[12] CHANG S C, SALDIVAR R K, LIANG P H, et al. Structures, biosynthesis, and physiological functions of (1,3;1,4)--d-glucans [J]. Cells, 2021, 10(3): 510. doi: 10.3390/cells10030510.
[13] LAZARIDOU A, BILIADERIS C G. Molecular aspects of cereal- glucan functionality: Physical properties, technological applications and physiological effects [J]. J Cereal Sci, 2007, 46(2): 101–118. doi: 10.1016/j.jcs.2007.05.003.
[14] KIM H J, WHITE P J. Impact of the molecular weight, viscosity, and solubility of-glucan onoat starch digestibility [J]. J Agric Food Chem, 2013, 61(13): 3270–3277. doi: 10.1021/jf305348j.
[15] KIEMLE S N, ZHANG X, ESKER A R, et al. Role of (1,3)(1,4)-- glucan in cell walls: Interaction with cellulose [J]. Biomacromolecules, 2014, 15(5): 1727–1736. doi: 10.1021/bm500 1247.
[16] BAIN M, VAN DE MEENE A, COSTA R, et al. Characterisation of cellulose synthase like F6 () mutants shows altered carbon metabolism in-d-(1,3;1,4)-glucan deficient grain in[J]. Front Plant Sci, 2021, 11: 602850. doi: 10.3389/fpls. 2020.602850.
[17] MORRALL P, BRIGGS D E. Changes in cell wall polysaccharides of germinating barley grains [J]. Phytochemistry, 1978, 17(9): 1495–1502. doi: 10.1016/S0031-9422(00)94628-4.
[18] BURTON R A, COLLINS H M, KIBBLE N A J, et al. Over-expression of specificcellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)--d-glucans and alters their fine structure [J]. Plant Biotechnol J, 2011, 9(2): 117–135. doi: 10. 1111/j.1467-7652.2010.00532.x.
[19] BURTON R A, FINCHER G B. Current challenges in cell wall biology in the cereals and grasses [J]. Front Plant Sci, 2012, 3: 130. doi: 10. 3389/fpls.2012.00130.
[20] SCHUSTER J, BENINCá G, VITORAZZI R, et al. Effects of oats on lipid profile, insulin resistance and weight loss [J]. Nutr Hosp, 2015, 32(5): 2111–2116. doi: 10.3305/nh.2015.32.5.9590.
[21] YANG C J, CHEN M S, DAI T T, et al. Research advances in func- tional properties and application of oat-glucan [J]. J Chin Inst Food Sci Technol, 2021, 21(6): 301–311. [楊成峻, 陳明舜, 戴濤濤, 等. 燕麥-葡聚糖功能與應(yīng)用研究進(jìn)展 [J]. 中國食品學(xué)報(bào), 2021, 21(6): 301–311. doi: 10.16429/j.1009-7848.2021.06.036.]
[22] JOYCE S A, KAMIL A, FLEIGE L, et al. The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome [J]. Front Nutr, 2019, 6: 171. doi: 10. 3389/fnut.2019.00171.
[23] PAN W, HAO S S, ZHENG M X, et al. Oat-derived-glucans induced trained immunity through metabolic reprogramming [J]. Inflammation, 2020, 43(4): 1323–1336. doi: 10.1007/s10753-020-01211-2.
[24] CHEN O, MAH E, DIOUM E, et al. The role of oat nutrients in the immune system: A narrative review [J]. Nutrients, 2021, 13(4): 1048. doi: 10.3390/nu13041048.
[25] CHANG H C, HUANG C N, YEH D M, et al. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans [J]. Plant Foods Hum Nutr, 2013, 68(1): 18–23. doi: 10.1007/s11130-013- 0336-2.
[26] ZHU F M, DU B, XU B J. A critical review on production and industrial applications of beta-glucans [J]. Food Hydrocoll, 2016, 52: 275–288. doi: 10.1016/j.foodhyd.2015.07.003.
[27] FU H, WU D, BING X, et al. Study on the skin care effect of oat- glucan extracted by bidirectional fermentation [J]. China Surfactant Deterg Cosmet, 2021, 51(4): 324–330. [付豪, 吳迪, 邴雪, 等. 雙向發(fā)酵提取燕麥-葡聚糖的護(hù)膚功效研究 [J]. 日用化學(xué)工業(yè), 2021, 51(4): 324–330. doi: 10.3969/j.issn.1001-1803.2021.04.010.]
[28] RIBEIRO D M L, CARVALHO JúNIOR A R, VALE DE MACEDO G H R, et al. Polysaccharide-based formulations for healing of skin- related wound infections: Lessons from animal models and clinical trials [J]. Biomolecules, 2019, 10(1): 63. doi: 10.3390/biom 10010063.
[29] GUPTA M, ABU-GHANNAM N, GALLAGHAR E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products [J]. Compr Rev Food Sci Food Saf, 2010, 9(3): 318–328. doi: 10.1111/j.1541-4337.2010.00112.x.
[30] BRENNAN C S, CLEARY L J. The potential use of cereal (1→3;1→4)--d-glucans as functional food ingredients [J]. J Cereal Sci, 2005, 42(1): 1–13. doi: 10.1016/j.jcs.2005.01.002.
[31] RICHMOND T A, SOMERVILLE C R. The cellulose synthase super- family [J]. Plant Physiol, 2000, 124(2): 495–498. doi: 10.1104/pp.124. 2.495.
[32] BURTON R A, JOBLING S A, HARVEY A J, et al. The genetics and transcriptional profiles of the cellulose synthase-likegene family in barley [J]. Plant Physiol, 2008, 146(4): 1821–1833. doi: 10.1104/pp.107.114694.
[33] SCHREIBER M, WRIGHT F, MACKENZIE K, et al. The barley genome sequence assembly reveals three additional members of the(1,3;1,4)--glucan synthase gene family [J]. PLoS One, 2014, 9 (3): e90888. doi: 10.1371/journal.pone.0090888.
[34] DOBLIN M S, PETTOLINO F A, WILSON S M, et al. A barley cellulose synthase-likegene mediates (1,3;1,4)-beta-d-glucan synthesis in transgenic[J]. Proc Natl Acad Sci USA, 2009, 106(14): 5996–6001. doi: 10.1073/pnas.0902019106.
[35] WU B, ZHANG Z W. Cloning and analysis of β-glucan synthase geneinL. [J]. Acta Agron Sin, 2011, 37(4): 723–728. [吳斌, 張宗文. 燕麥葡聚糖合酶基因的克隆及特征分析 [J]. 作物學(xué)報(bào), 2011, 37(4): 723–728. doi: 10.3724/SP.J.1006.2011. 00723.]
[36] FARROKHI N, BURTON R A, BROWNFIELD L, et al. Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes [J]. Plant Biotechnol J, 2006, 4(2): 145–167. doi: 10.1111/j.1467-7652.2005.00169.x.
[37] YIN Y B, HUANG J L, XU Y. The cellulose synthase superfamily in fully sequenced plants and algae [J]. BMC Plant Biol, 2009, 9(1): 99. doi: 10.1186/1471-2229-9-99.
[38] NEWELL M A, ASORO F G, SCOTT M P, et al. Genome-wide association study for oat (L.) beta-glucan concentration using germplasm of worldwide origin [J]. Theor Appl Genet, 2012, 125(8): 1687–1696. doi: 10.1007/s00122-012-1945-0.
[39] ZHANG J, YAN L, LIU M X, et al. Analysis of-d-glucan bio- synthetic genes in oat reveals glucan synthesis regulation by light [J]. Ann Bot, 2021, 127(3): 371–380. doi: 10.1093/aob/mcaa185.
[40] TAKETA S, YUO T, TONOOKA T, et al. Functional characterization of barley betaglucanless mutants demonstrates a unique role forin (1,3;1,4)--d-glucan biosynthesis [J]. J Exp Bot, 2012, 63(1): 381– 392. doi: 10.1093/jxb/err285.
[41] GARCIA-GIMENEZ G, BARAKATE A, SMITH P, et al. Targeted mutation of barley (1,3;1,4)--glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content [J]. Plant J, 2020, 104(4): 1009–1022. doi: 10.1111/tpj.14977.
[42] LIM W L, COLLINS H M, SINGH R R, et al. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta- glucan [J]. J Integr Plant Biol, 2018, 60(5): 382–396. doi: 10.1111/ jipb.12625.
[43] GIBEAUT D M, PAULY M, BACIC A, et al. Changes in cell wall polysaccharides in developing barley () coleoptiles [J]. Planta, 2005, 221(5): 729–738. doi: 10.1007/s00425-005-1481-0.
[44] NEMETH C, FREEMAN J, JONES H D, et al. Down-regulation of thegene results in decreased (1,3;1,4)--d-glucan in endosperm of wheat [J]. Plant Physiol, 2010, 152(3): 1209–1218. doi: 10.1104/pp. 109.151712.
[45] VEGA-SáNCHEZ M E, VERHERTBRUGGEN Y, CHRISTENSEN U, et al. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice [J]. Plant Physiol, 2012, 159(1): 56–69. doi: 10.1104/pp.112.195495.
[46] MARCOTULI I, COLASUONNO P, BLANCO A, et al. Expression analysis of cellulose synthase-like genes in durum wheat [J]. Sci Rep, 2018, 8(1): 15675. doi: 10.1038/s41598-018-34013-6.
[47] SCHWERDT J G, MACKENZIE K, WRIGHT F, et al. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses [J]. Plant Physiol, 2015, 168(3): 968–983. doi: 10.1104/pp.15.00140.
[48] WANG L Q, GUO K, LI Y, et al. Expression profiling and integrative analysis of thesuperfamily in rice [J]. BMC Plant Biol, 2010, 10(1): 282. doi: 10.1186/1471-2229-10-282.
[49] LITTLE A, LAHNSTEIN J, JEFFERY D W, et al. A novel (1,4)-- linked glucoxylan is synthesized by members of the cellulose synthase- like F gene family in land plants [J]. ACS Cent Sci, 2019, 5(1): 73–84. doi: 10.1021/acscentsci.8b00568.
[50] ERMAWAR R A, COLLINS H M, BYRT C S, et al. Distribution, structure and biosynthetic gene families of (1,3;1,4)--glucan in[J]. J Integr Plant Biol, 2015, 57(4): 429–445. doi: 10. 1111/jipb..
[51] ERMAWAR R A, COLLINS H M, BYRT C S, et al. Genetics and physiology of cell wall polysaccharides in the model C4grass,spp [J]. BMC Plant Biol, 2015, 15(1): 236. doi: 10.1186/s 12870-015-0624-0.
[52] CHRISTENSEN U, ALONSO-SIMON A, SCHELLER H V, et al. Characterization of the primary cell walls of seedlings of: A potential model plant for temperate grasses [J]. Phytochemistry, 2010, 71(1): 62–69. doi: 10.1016/j.phytochem.2009. 09.019.
[53] ZHANG G B, GE C X, XU P P, et al. The reference genome ofilluminates the evolution of Saccharinae [J]. Nat Plants, 2021, 7(5): 608–618. doi: 10.1038/s41477-021-00908-y.
[54] VAN ERP H, WALTON J D. Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl [J]. Planta, 2009, 229(4): 885–897. doi: 10.1007/s00425-008-0881-3.
[55] DARAS G, TEMPLALEXIS D, AVGERI F, et al. Updating insights into the catalytic domain properties of plant cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins [J]. Molecules, 2021, 26(14): 4335. doi: 10.3390/molecules26144335.
[56] KIM S J, ZEMELIS S, KEEGSTRA K, et al. The cytoplasmic locali- zation of the catalytic site of CSLF6 supports a channeling model for the biosynthesis of mixed-linkage glucan [J]. Plant J, 2015, 81(4): 537– 547. doi: 10.1111/tpj.12748.
[57] FINCHER G B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses [J]. Plant Physiol, 2009, 149 (1): 27–37. doi: 10.1104/pp.108.130096.
[58] SCHELLER H V, ULVSKOV P. Hemicelluloses [J]. Annu Rev Plant Biol, 2010, 61: 263–289. doi: 10.1146/annurev-arplant-042809-112315.
[59] ATMODJO M A, HAO Z Y, MOHNEN D. Evolving views of pectin biosynthesis [J]. Annu Rev Plant Biol, 2013, 64: 747–779. doi: 10. 1146/annurev-arplant-042811-105534.
[60] GIBEAUT D M, CARPITA N C. Synthesis of (1→3),(1→4)-beta-d- glucan in the golgi apparatus of maize coleoptiles [J]. Proc Natl Acad Sci USA, 1993, 90(9): 3850–3854. doi: 10.1073/pnas.90.9.3850.
[61] URBANOWICZ B R, RAYON C, CARPITA N C. Topology of the maize mixed linkage (1→3),(1→4)--d-glucan synthase at the golgi membrane [J]. Plant Physiol, 2004, 134(2): 758–768. doi: 10.1104/pp. 103.032011.
[62] MEIKLE P J, HOOGENRAAD N J, BONIG I, et al. A (1→3,1→4)--glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1→3,1→4)--glucans [J]. Plant J, 1994, 5(1): 1–9. doi: 10.1046/j.1365-313x. 1994.5010001.x.
[63] PHILIPPE S, SAULNIER L, GUILLON F. Arabinoxylan and (1→3), (1→4)--glucan deposition in cell walls during wheat endosperm development [J]. Planta, 2006, 224(2): 449–461. doi: 10.1007/s00425- 005-0209-5.
[64] WILSON S M, BURTON R A, DOBLIN M S, et al. Temporal and spatial appearance of wall polysaccharides during cellularization of barley () endosperm [J]. Planta, 2006, 224(3): 655– 667. doi: 10.1007/s00425-006-0244-x.
[65] CARPITA N C, MCCANN M C. The maize mixed-linkage (1→3), (1→4)--d-glucan polysaccharide is synthesized at the golgi membrane [J]. Plant Physiol, 2010, 153(3): 1362–1371. doi: 10.1104/pp.110. 156158.
[66] WILSON S M, HO Y Y, LAMPUGNANI E R, et al. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3;1,4)--d-glucan in grasses [J]. Plant Cell, 2015, 27(3): 754–771. doi: 10.1105/tpc.114.135970.
[67] KIM S J, ZEMELIS-DURFEE S, JENSEN J K, et al. In the grass species, the production of mixed-linkage (1,3;1,4)--glucan (MLG) occurs in the golgi apparatus [J]. Plant J, 2018, 93(6): 1062–1075. doi: 10.1111/tpj.13830.
[68] JOBLING S A. Membrane pore architecture of the CslF6 protein controls (1–3,1–4)--glucan structure [J]. Sci Adv, 2015, 1(5): e1500069. doi: 10.1126/sciadv.1500069.
[69] DIMITROFF G, LITTLE A, LAHNSTEIN J, et al. (1,3;1,4)--glucan biosynthesis by the CSLF6 enzyme: Position and flexibility of catalytic residues influence product fine structure [J]. Biochemistry, 2016, 55(13): 2054–2061. doi: 10.1021/acs.biochem.5b01384.
[70] YANG X Y, SU H D, ZHANG M Z, et al. Polyploidization and domestication [J]. Sci Sin Vitae, 2021, 51(10): 1457–1466. [楊學(xué)勇, 蘇漢東, 張夢(mèng)卓, 等. 多倍化和馴化研究進(jìn)展與展望 [J]. 中國科學(xué): 生命科學(xué), 2021, 51(10): 1457–1466. doi: 10.1360/SSV-2021-0220.]
[71] RAKSZEGI M, MOLNáR I, LOVEGROVE A, et al. Addition ofU and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour [J]. Front Plant Sci, 2017, 8: 1529. doi: 10.3389/fpls.2017.01529.
[72] DANILOVA T V, FRIEBE B, GILL B S, et al. Development of a complete set of wheat-barley group-7 robertsonian translocation chro- mosomes conferring an increased content of-glucan [J]. Theor Appl Genet, 2018, 131(2): 377–388. doi: 10.1007/s00122-017-3008-z.
[73] DANILOVA T V, POLAND J, FRIEBE B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain-glucan content [J]. Theor Appl Genet, 2019, 132(11): 3129– 3141. doi: 10.1007/s00122-019-03411-3.
[74] FOGARTY M C, SMITH S M, SHERIDAN J L, et al. Identification of mixed linkage-glucan quantitative trait loci and evaluation ofhomoeologs in hexaploid oat [J]. Crop Sci, 2020, 60(2): 914– 933. doi: 10.1002/csc2.20015.
[75] TANG X Q. Determination of-glucan content andgene cloning amongspecies [D]. Ya’an: Sichuan Agricultural University, 2014. [唐雪琴. 燕麥屬物種-葡聚糖含量測(cè)定及基因克隆 [D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2014.]
[76] MARCOTULI I, COLASUONNO P, CUTILLO S, et al.-glucan content in a panel ofandgenotypes [J]. Genet Resour Crop Evol, 2019, 66(4): 897–907. doi: 10.1007/s10722-019- 00753-1.
[77] GARCIA-GIMENEZ G, RUSSELL J, AUBERT M K, et al. Barley grain (1,3;1,4)--glucan content: Effects of transcript and sequence variation in genes encoding the corresponding synthase and endohy- drolase enzymes [J]. Sci Rep, 2019, 9(1): 17250. doi: 10.1038/s41598- 019-53798-8.
[78] DOEHLERT D C, MCMULLEN M S, HAMMOND J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota [J]. Crop Sci, 2001, 41(4): 1066–1072. doi: 10.2135/ cropsci2001.4141066x.
Research Progress of-Glucan Synthase Gene Families in Cereal Crops
YUAN Hongyu1,2,3, CUI Dongli1,2,3, John Seymour Heslop HARRISON1,2,4, LIU Qing1,2,5*
(1. Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China; 2. South China National Botanical Garden,Guangzhou 510650, China; 3. University of Chinese Academy of Sciences,Beijing100049, China; 4. Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK; 5. Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences,Guangzhou510650, China)
Beta-glucan is a noncellulosic polysaccharide linked by-(1,3) and-(1,4) glycosidic bonds, mainly distributed in the endosperm and aleurone layer of cereal crop grains with the synthesis in the Golgi apparatus, transportation to the plasma membrane by vesicles, and deposition in the cell wall. Beta-glucan is effective in reducing cholesterol and blood sugar levels by increasing bile acid excretion and delaying glucose absorption. Members of the-glucan synthase gene families were firstly identified in rice (), and subsequently discovered in other cereal crops. There are three main subfamilies (,and) in-glucan synthase with the formation via convergent evolution. These three subfamilies originated from different clades and evolved their respective functions independently.During evolution, the purifying selection pressure resulted in the high conservation of sequences for members of-glucan synthase gene families.subfamily members are relatively large and often form gene clusters on chromosomes, andis the key gene mediating-glucan synthesis.subfamily members showed the relatively high expression levels in young tissues such as leaf bases, and they were affected by light intensity obviously. There are relatively few members inandsubfamilies,genes presented the relatively high expression levels in mature tissues such as leaf tips, whilegenes showed the relatively high expression levels in young one like grains. The research progress on the phylogenetic relationships for members of-glucan synthase gene families, the subcellular localization of-glucan synthase, and the directional breeding in cereal crops were summarized. The accurate localization of-glucan synthase genes on chromosomes is prospected for the future research. The review aims to promote the directionally breeding of cereal crops with high-glucan content by the chromosome engineering.
Beta-glucan; Cereal crop directional breeding; Gene family evolution; Chromosome engineering
10.11926/jtsb.4645
2022-03-30
2022-05-08
國家自然科學(xué)基金項(xiàng)目(32070359);廣東省自然科學(xué)基金面上項(xiàng)目(2021A1515012410);科學(xué)技術(shù)部高端外國專家引進(jìn)計(jì)劃(G2021030013);中國科學(xué)院華南植物園海外知名學(xué)者項(xiàng)目(No. Y861041001)資助
This work was supported by the National Natural Science Foundation of China (Grant No. 32070359), the project for Natural Science in Guangdong (Grant No. 2021A1515012410), the Project for High-end Foreign Expert of Ministry of Science and Technology of the People’s Republic of China (Grant No. G2021030013), and the Project for Overseas Distinguished Scholar of SCBG (Grant No. Y861041001).
袁泓宇(1998年生),男,在讀碩士生,主要從事作物野生種基因組資源和分子細(xì)胞遺傳學(xué)研究。E-mail: yuanhongyu@scbg.ac.cn
通訊作者Corresponding author.E-mail: liuqing@scbg.ac.cn