• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on(111)Si

    2023-03-13 09:20:12ZhenZhuoZhang張臻琢JingYang楊靜DeGangZhao趙德剛FengLiang梁鋒PingChen陳平andZongShunLiu劉宗順
    Chinese Physics B 2023年2期
    關(guān)鍵詞:楊靜陳平

    Zhen-Zhuo Zhang(張臻琢) Jing Yang(楊靜) De-Gang Zhao(趙德剛) Feng Liang(梁鋒)Ping Chen(陳平) and Zong-Shun Liu(劉宗順)

    1State Key Laboratory of Integrated Optoelectronics,Institute of Semiconductor,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: GaN,Si substrate,AlN buffer layer,stress control

    1.Introduction

    As a wide band gap semiconductor,GaN is attracting increasing attention in microelectronics and optoelectronics devices, such as high electron mobility transistors (HEMT),[1]light emitting diodes(LED),[2]and laser diodes(LD).[3]Compared to sapphire, SiC and GaN, using Si as the substrate is expected to reduce costs and achieve integration.Unfortunately, the reaction between Ga and Si, namely, the meltback etching effect, and the large mismatch in lattice constants (17%) and thermal expansion coefficients (56%) between Si and GaN severely restrict the development of GaNon-Si growth technology.[4]Choosing AlN instead of GaN as the material of the buffer layer is an effective way to isolate Ga atoms from Si and thus avoid melt-back etching.[5]To solve the mismatch in the coefficient of thermal expansion (CTE)and reduce the high density of threading dislocations (TDD)causing by the large lattice mismatch, several methods were used to enhance compressive stress to compensate the tensile stress generated during the cooling process and also to reduce the threading dislocations during the growth process, such as using a multiple AlGaN intermediate layer,[6]low temperature AlN (LT-AlN) insert layer,[7]AlGaN/GaN superlattice buffer layer[8]and so on.Nevertheless,these techniques have to introduce additional layers into the system,and the complicated techniques would reduce device reliability and would not be conducive to cost reduction,[9]which is one of the original purposes of GaN-on-Si growth technology.

    A GaN/AlN heterostructure interface can introduce a theoretically large enough compressive stress in both the growth process and cooling process due to the smaller lattice parameter and smaller thermal expansion coefficient of AlN compared to GaN.[10]However,it is known that the growth mode of the AlN buffer layer on Si is normally the Vollmer-Weber mode and its initial stage is nucleation and island coalescence.[11]A high TDD will be unavoidably formed in the AlN buffer layer during the coalescence of island boundaries.[12]Due to the high TDD in the AlN buffer layer, the compressive stress relaxes and transforms to tensile stress due to the low quality AlN buffer layer[13,14]and thus an ideal result cannot be achieved.

    Nowadays, with deepening understanding of AlN crystal growth, a higher quality AlN buffer layer can be achieved.[15,16]Therefore, the hope of using a simple buffer layer structure to realize crack-free GaN-on-Si has been rekindled again in recent years.[16-24]In this field, some teams focus on optimizing TMA[20,21]or ammonia[22,23]preflow conditions or AlN buffer layer design by modifying the temperature[12,16,25]to further improve the quality of the AlN buffer layer, and thus increase the compressive stress applied to GaN and achieve thicker crack-free GaN-on-Si with a low density of threading dislocations.However, due to the huge lattice mismatch between AlN and Si(19%),the thickness of AlN is limited to several hundred nanometers,[16]which also limits the further improvement of the quality of the AlN buffer layer.[26]Thus, improving the quality of the AlN buffer layer is not easy,and additional measures need to be found.

    In this work,it is found that the in-plane stress at the initial stage of GaN growth is sensitive to the lattice parameter of the AlN buffer layer.The results of further orthogonal experiments show that the most important factor affecting the lattice parameter of the AlN buffer layer is its growth rate.By optimizing the lattice parameter of the AlN buffer layer,a 0.8μm thick GaN film without cracks(except the edge zone)and with full widths at half maximum(FWHM)for(002)and(102) x-ray diffraction (XRD) rocking curves of 717 arcsec and 838 arcsec,respectively,are achieved.

    2.Experiment

    AlN and GaN were all grown on a 2-inch (111) Si substrate by an Aixtron 6×2 inch close-coupled showerhead reactor metal-organic chemical vapor deposition (MOCVD)system.The (111) Si substrate wafer used in the MOCVD growth was prepared by the floating-zone technique and was epi-ready.The resistivity of the substrate was higher than 1000 Ω·cm.Due to the vacuum package and the N2atmosphere in the glove box,no additional cleaning procedure was needed before the Si wafer was moved into the reaction chamber.Trimethygallium(TMG),trimethylaluminum(TMA),and ammonia (NH3) were used as the Ga, Al and N sources, and H2and N2were used as carrier gases.The Si substrate was baked at~1050°C in a H2atmosphere for 5 min to remove the native surface oxidation layer.Then,TMA was introduced in the reactor to prevent the formation of amorphous SixNydue to the possible reaction between the Si substrate and residual ammonia in the reactor.Subsequently, ammonia was introduced into the reactor and an AlN buffer layer with a thickness of 200 nm was grown.The main growth parameter variables of these three samples are listed in Table 1.Other parameters except those listed in Table 1,such as the thickness of the AlN buffer layer, V/III mole ratio and so on, were kept constant(the growth rate was controlled by modifying the flow rates of MO sources and ammonia).After the growth of AlN,0.8μm GaN films were grown at 1050°C on the AlN buffer layer under the same condition.The reactor pressures of AlN and GaN growth were 100 mbar and 260 mbar,respectively.

    Table 1.Main growth conditions of the AlN buffer layers for samples A,B,and C.

    Thein-situcurvature of the samples was monitored during MOCVD growth by Lay-tec EpiCurve?TT software.The Raman spectra of the three samples were measured at room temperature by 532 nm laser excitation.The FWHM of the rocking curves were measured by triple-axis high resolution x-ray diffraction(HRXRD).HRXRD was performed employing a CuKα1line of wavelengthλ=0.15406 nm.The surface morphology was examined by a Normaski microscope and atomic force microscope(AFM).

    3.Results and discussion

    Thein-situcurvature curves measured during the GaN layer growth of samples A, B and C are plotted in Fig.1.The mean stress during the epitaxy process at growth temperature can be deduced from the slope of the curve according to Stoney’s formula[14]

    whereσmis the mean stress applied to the film,Esis the Young modulus of the substrate and equals 1.85×1011N/m2for Si,[27]νsis the Poisson ratio of the substrate and equals 0.26,[27]hsis the thickness of the Si substrate and equals 430 μm,hfis the thickness of the grown film, andκis the measured curvature.

    Fig.1. In-situ curvature value versus time for the growth of three GaN films on different AlN buffer layers.The solid curves are the ones recorded during the measurement where the additional undulations are a normal phenomenon caused by optical interference.The dotted curves are plotted after smoothing treatment of the original data.These curves show only their patterns but not the calibrated value of curvature.

    After a calibration treatment and differentiating, the initial stress of the interface between AlN and GaN is calculated as-0.432 GPa,-0.955 GPa, and-1.359 GPa, where the negative sign represents that the stress is compressive.The fact that the absolute value of the slope gradually decreases indicates the relaxation of compressive stress.It can be seen that the compressive stresses in the three samples do not completely transform to tensile stress during the growth of 0.8μm thick GaN film, indicating the high quality of the AlN buffer layers.[13,14]

    Figure 2 shows the HRXRDω-2θscan diffraction patterns of the samples.The typical results of triple-axisω-2θscans from Si(111), GaN(002),AlN(002),GaN(004), and AlN(004)reflection are marked in Fig.2(a).In order to confirm the lattice constant from theω-2θscans, scanning with high precision was done near the peak positions of GaN(004)and AlN(004).The lattice parameters can be calculated by Bragg’s law[28]

    whered⊥is thec-plane lattice parameter actually measured,nis the diffraction order,which equals 4 in this experiment,andλis the wavelength of the x-rays, which equals 0.15406 nm.The step length of the scanning is 0.0001°and the error can be obtained by differentiating Bragg’s law to give[28]

    where Δθis the step length of the scanning and the error in thec-plane lattice constant is calculated as±0.00006 nm.It can be seen in Fig.2(b) that the positions of the GaN peaks are nearly the same,which indicates that the lattice constants of the GaN film are very close.However,the positions of the AlN peaks are quite different in Fig.2(c),which indicates that thec-plane lattice parameters of the AlN buffer layer in these samples are modified.Using Eq.(2), thec-plane lattice parameters of AlN of sample A to sample C are calculated as 0.49655 nm,0.49690 nm,and 0.49727 nm,respectively.Due to the thin thickness and high TDD of the AlN buffer layer,the intensity of high-angle HRXRD asymmetric diffraction is too low.Hence, the in-plane lattice parameter of the AlN buffer layer cannot be accurately obtained by HRXRD for these samples.However, since there is an inverse correlation between thec-plane and in-plane lattice parameter, it can be inferred that the in-plane lattice parameter decreased sequentially from sample A to sample C.

    Fig.2.(a)Diffraction peaks of sample C are obtained from rapid ω-2θ scans of triple-axis XRD.Precise ω-2θ scans of(b)the peak of GaN(004)and(c)the peak of AlN(004).In order to better compare the three sample displacements in 2θ,the peak intensity is normalized in(b)and(c).

    Fig.3.Lattice parameter and FWHM value of XRD(002)rocking curve of the AlN buffer layer dependent on the initial compressive stress.

    As was suggested, improving the crystal quality of the AlN buffer layer could increase the compressive stress and reduce the stress relaxation in the subsequently grown GaN film.[9]However,sample B,which has a relatively lower crystal quality than sample A, has a stronger compressive stress than sample A.Therefore,it can be inferred that other factors may also influence the stress states.If we suppose that the GaN was coherently grown on the AlN buffer layer at the initial growth stage of GaN,the stress applied on GaN caused by lattice mismatch can be deduced by Hooke’s law

    whereσGaNis the stress applied to GaN film,andEGaNis the Young modulus of GaN and equals 466 GPa.[30]If we assume that in the three samples their stress difference is caused by the lattice mismatch,we can roughly estimate the in-plane lattice difference of the AlN buffer layer since the lattice constants of GaN are basically the same as we mentioned before.According toin-situmonitoring,the stress difference between sample A and sample C is 0.927 GPa and the in-plane lattice difference of the AlN buffer layer should be 0.00063 nm.For an ideal crystal of AlN film under biaxial stress,the difference in the in-plane lattice parameter mentioned above will change thec-plane lattice parameter by 0.00078 nm, which is comparable to the difference obtained by HRXRD (0.00072 nm).Hence,we speculate that the compressive stress applied to the GaN film was probably changed by the difference in the lattice parameter of AlN buffer layer.

    Raman spectra were also measured at room temperature by 532 nm laser beam excitation to show the final stress state of GaN films after the cooling process as shown in Fig.4.Since the E2(high) phonon peak is non-polar and sensitive to the biaxial stress,it is usually used to check the stress state in the sample[32]according to the formula shown below:[33]

    where Δωis the shift of the E2(high) peak compared to the valueωin the intrinsic condition,whereωis 567.6 cm-1[34]for GaN andKis 4.3 cm-1·GPa-1which represents the stress coefficient[35]for GaN.The residual stresses in the GaN films of samples A,B,and C at room temperature in the GaN film were calculated as 0.68 GPa,0.57 GPa,and 0.49 GPa respectively, and they were all tensile stress.The tensile stresses should be mainly generated during the cooling process and were not fully compensated by the compressive stress induced at the GaN/AlN heterostructure.The decreasing trend of residual tensile stress from sample A to sample C shows the increasing compressive stress applied to GaN during the growth.Herein from the result of Raman spectra the difference of stress between sample A and sample C is 0.19 GPa, which is far less than those estimated from thein-situcurvature monitor.This shows that there might be additional ways to relax the tensile stress from CTE mismatch during or after the cooling process.

    Fig.4.(a)Raman spectra of three GaN film samples which are grown with different AlN buffer layers on Si.(b)Details of the Raman shift of the GaN E2 (high)peak.

    In general, there are two ways in which the high strain energy in GaN film is released: one is crack formation and the another is surface roughening.[36-39]Figure 5 shows the GaN surface morphologies measured by the Normaski microscope.There are many cracks found in sample A.With the compressive stress increasing,the number of cracks in the central part of a 2-inch wafer decreases obviously and no crack was found in sample C in the central part of the wafer.It can also be found that the surface of sample C is more flattened with the help of the Normaski microscope.Figure 6 presents the AFM images of GaN films of samples A-C.The root mean square roughnesses(RMS)of the GaN surfaces are 2.78 nm, 0.514 nm, and 0.438 nm respectively and decrease from sample A to sample C.Many pits can be found in sample A and sample B and some protrusions can also be found in sample A.With the compressive stress increasing,no additional pathway such as pits,protrusions or crack formation for strain energy release was needed,as can be seen in Figs.5 and 6.Relief of strain energy by changing the surface morphology reduces the difference in residual stress between these samples and so the gap is apparently smaller (0.19 GPa).Theωscan FWHMs of the rocking curves of the GaN epitaxial layer of samples A-C are measured by HRXRD and the results are presented in Fig.7.Both the FWHM values of the(002)and(102)planes get narrower from sample A to sample C,which indicates that the TDD in sample C is the lowest.It can be proven in Figs.5-7 that a larger compressive stress is beneficial to form a more flattened surface morphology with fewer cracks and have a better crystal quality with a lower TDD in the GaN film.

    Fig.5.Normaski microscope images of GaN films deposited on an AlN buffer layer with different lattice parameters: (a)sample A,(b)sample B,(c)sample C.

    Fig.6.AFM images(5μm×5μm)of GaN films deposited on an AlN buffer layer with different lattice parameters.

    Table 2.Growth conditions of the AlN buffer layer in the orthogonal experiment and the result of lattice parameters measured by HRXRD,where K1, K2, and K3 represent the sum of the lattice parameters for the three levels of each factor and R is the range for each factor.The error in the c-plane lattice parameter is±0.00006 nm.

    Finally, we discuss how to better modify the lattice parameter of the AlN buffer layer during growth.A further orthogonal experiment based on samples A to C was done to find which is the key factor that affects the lattice parameter of the AlN buffer layer.The growth conditions and the results of measurement of experiments 1-9 are listed in Table 2,whereKrepresents the sum of the lattice parameter values for the same level of each factor, for example,K1for the TMA preflow time is the sum of lattice parameter values in Exp.1, Exp.2, and Exp.3 and the answer is 1.49055.Ris the range for each factor which is obtained by subtracting the minimum value from the maximum value ofKin the same column.The three variables, i.e., TMA preflow time (20 s,30 s, 60 s), growth rate of the AlN buffer layer (0.056 nm/s,0.067 nm/s, 0.083 nm/s) and growth temperature of the AlN buffer layer(1025°C,1050°C,1075°C)are set to three different levels in the experiments and the other conditions,such as the thickness of the AlN buffer layer, V/III mole ratio and so on,were kept constant.The calculated rangeRof different variables can be considered as the degree of correlation between the experimental result and the variables.It was shown that the influence of the growth rate of the AlN buffer layer on lattice parameter values is almost 3.5 times as large as that of TMA preflow time and 10 times as large as that of growth temperature.It is thought-provoking to further explore why the growth rate of the AlN buffer layer,in addition to the preflow condition and growth temperature which were often optimized during the AlN growth,[16,20-23,25]can have such a large influence in effectively affecting the lattice parameter and controlling the stress state.The relation between the lattice parameter and growth rate is presented in Fig.8.The lattice parameter was acquired by averaging the values in the orthogonal experiment.The largestc-plane lattice parameter(i.e.,the smallest in-plane lattice parameter)was obtained at the middle growth rate and the trend is the same as in samples A,B,and C.The exact mechanism of the relation between growth rate and the lattice parameter is still unknown.Here we speculate a possible mechanism as follows.When the growth rate decreases from 0.067 nm/s to 0.053 nm/s, AlN has more time to relax itself from the Si substrate;therefore,the in-plane lattice gets smaller gradually (the in-plane lattice parameter of (111) Si is larger than AlN) and results in a largerc-plane lattice parameter if we assume the process is realized by biaxial stress.As the growth rate increases from 0.067 nm/s to 0.083 nm/s,more TDs are generated in the AlN buffer layer and this process leads to a decrease in interplanar spacing.This is reflected in sample B which had the largest number of TDs as shown in Fig.3.

    Fig.7.FWHM of the GaN peak in XRD(002)and(102)rocking curves and the RMS of the GaN surface roughness dependent on initial compressive stress.

    Fig.8.Average c-plane lattice parameter of the AlN buffer layer in the orthogonal experiment at different growth rates.

    4.Conclusion

    In summary,in the growth of a GaN/AlN/Si heterostructure system,modulating the lattice parameter of the AlN buffer layer properly by changing the growth rate can help to achieve better stress control and increase the compressive stress at the GaN/AlN heterostructure interface.Meanwhile, a smoother surface morphology of GaN with no pits and lower density of threading dislocations can be obtained with a larger compressive stress.The growth rate of the AlN buffer layer should be an important factor that affects the lattice parameter of the AlN buffer layer as confirmed by an analysis based on a series of orthogonal experiments.

    Acknowledgments

    Project supported by Beijing Municipal Science&Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant Nos.Z211100007921022 and Z211100004821001), the National Natural Science Foundation of China (Grant Nos.62034008, 62074142, 62074140,61974162,61904172,61874175,62127807,and U21B2061),Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1), Beijing Nova Program (Grant No.202093),Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101),and Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).

    猜你喜歡
    楊靜陳平
    與敵人“坦誠相見”\t
    張負(fù)的慧眼
    張負(fù)的慧眼
    傳統(tǒng)與現(xiàn)代的“吟唱者”
    參花(上)(2022年4期)2022-05-23 22:16:48
    Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating*
    The Center Problems and Time-Reversibility with Respect to a Linear Involution
    農(nóng) 忙
    美聯(lián)儲(chǔ)加息的產(chǎn)物研究
    陳平過河
    Ground-Based Observations of Unusual Atmospheric Light Emissions
    宅男免费午夜| 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 亚洲av美国av| 超碰成人久久| 黄色片一级片一级黄色片| 黑丝袜美女国产一区| 88av欧美| 一区二区日韩欧美中文字幕| 国产亚洲精品第一综合不卡| 国产高清视频在线播放一区| 天堂俺去俺来也www色官网| 一级毛片高清免费大全| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| 国产高清视频在线播放一区| 亚洲男人的天堂狠狠| 精品国产乱码久久久久久男人| av欧美777| 国产99白浆流出| 丝袜美足系列| 美女扒开内裤让男人捅视频| 国产精品成人在线| 国产一区二区三区在线臀色熟女 | 视频在线观看一区二区三区| 黄色视频不卡| 亚洲国产精品999在线| 麻豆成人av在线观看| 搡老乐熟女国产| 久久久久久久久久久久大奶| 国产精品国产av在线观看| 国产蜜桃级精品一区二区三区| 日韩精品免费视频一区二区三区| 国产精品久久久av美女十八| 老汉色∧v一级毛片| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷久久久亚洲欧美| 一本综合久久免费| 9色porny在线观看| 精品日产1卡2卡| 日韩欧美免费精品| 91精品三级在线观看| 日本 av在线| 亚洲 国产 在线| 一级a爱视频在线免费观看| 一二三四在线观看免费中文在| 午夜日韩欧美国产| 日日爽夜夜爽网站| 午夜免费鲁丝| 成人18禁高潮啪啪吃奶动态图| 国内久久婷婷六月综合欲色啪| 国产区一区二久久| 欧美精品一区二区免费开放| 天堂动漫精品| 日韩中文字幕欧美一区二区| 久久伊人香网站| 男女下面插进去视频免费观看| 一区二区日韩欧美中文字幕| 一级黄色大片毛片| 老熟妇乱子伦视频在线观看| 脱女人内裤的视频| 国内久久婷婷六月综合欲色啪| 国产单亲对白刺激| 国产精品亚洲av一区麻豆| 午夜精品久久久久久毛片777| 18美女黄网站色大片免费观看| av超薄肉色丝袜交足视频| 亚洲av日韩精品久久久久久密| 在线观看免费视频网站a站| 神马国产精品三级电影在线观看 | 18禁黄网站禁片午夜丰满| 国产精品久久久久久人妻精品电影| 免费高清视频大片| 日本 av在线| 国产男靠女视频免费网站| 在线观看www视频免费| 欧美精品啪啪一区二区三区| 久久国产亚洲av麻豆专区| 欧美另类亚洲清纯唯美| 很黄的视频免费| 黄色片一级片一级黄色片| 啪啪无遮挡十八禁网站| 嫩草影院精品99| 午夜福利一区二区在线看| 女人高潮潮喷娇喘18禁视频| 天堂俺去俺来也www色官网| 亚洲熟女毛片儿| 国产高清视频在线播放一区| 18禁观看日本| 波多野结衣av一区二区av| 村上凉子中文字幕在线| 亚洲熟女毛片儿| 亚洲自偷自拍图片 自拍| 精品一区二区三区av网在线观看| 久久久久精品国产欧美久久久| 亚洲国产中文字幕在线视频| 日本wwww免费看| 久99久视频精品免费| 人人妻人人澡人人看| 99久久国产精品久久久| 老司机午夜十八禁免费视频| 美女 人体艺术 gogo| 97超级碰碰碰精品色视频在线观看| 精品无人区乱码1区二区| 免费不卡黄色视频| 国产亚洲欧美精品永久| а√天堂www在线а√下载| av视频免费观看在线观看| 老汉色∧v一级毛片| 国产免费男女视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久九九精品影院| 国产午夜精品久久久久久| 久久精品人人爽人人爽视色| 80岁老熟妇乱子伦牲交| 亚洲视频免费观看视频| 亚洲成人国产一区在线观看| 一二三四社区在线视频社区8| 黄色视频不卡| 午夜福利在线免费观看网站| 叶爱在线成人免费视频播放| 久久久久久久午夜电影 | 亚洲人成伊人成综合网2020| 精品福利永久在线观看| 国产蜜桃级精品一区二区三区| 亚洲 国产 在线| 无限看片的www在线观看| 看免费av毛片| 成人18禁高潮啪啪吃奶动态图| 欧美中文综合在线视频| 亚洲一区高清亚洲精品| 午夜老司机福利片| 女警被强在线播放| 国产精品美女特级片免费视频播放器 | 中文字幕人妻丝袜制服| 免费女性裸体啪啪无遮挡网站| 黑丝袜美女国产一区| 90打野战视频偷拍视频| 在线免费观看的www视频| 日韩欧美一区二区三区在线观看| 亚洲精品一区av在线观看| 国产免费男女视频| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影| 老汉色∧v一级毛片| 欧美黑人精品巨大| a级片在线免费高清观看视频| 国产精品爽爽va在线观看网站 | www.999成人在线观看| 少妇被粗大的猛进出69影院| 久久精品影院6| 天天添夜夜摸| 淫秽高清视频在线观看| 大陆偷拍与自拍| 国产精品久久视频播放| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 成人18禁在线播放| 美女福利国产在线| 欧美 亚洲 国产 日韩一| 欧美日韩瑟瑟在线播放| 中文亚洲av片在线观看爽| 我的亚洲天堂| 丰满迷人的少妇在线观看| 97超级碰碰碰精品色视频在线观看| 黄片大片在线免费观看| av网站免费在线观看视频| 久久香蕉国产精品| 在线观看免费视频网站a站| av中文乱码字幕在线| 国产蜜桃级精品一区二区三区| 久热这里只有精品99| 日韩欧美一区视频在线观看| 琪琪午夜伦伦电影理论片6080| 欧美成人性av电影在线观看| 久久九九热精品免费| 99久久国产精品久久久| 成人18禁在线播放| 午夜91福利影院| 国产精品一区二区精品视频观看| 午夜两性在线视频| 精品一区二区三区视频在线观看免费 | www国产在线视频色| 精品熟女少妇八av免费久了| 成人手机av| 欧美成狂野欧美在线观看| a在线观看视频网站| 国产色视频综合| 国产欧美日韩综合在线一区二区| 免费在线观看黄色视频的| 精品国产一区二区久久| 国产区一区二久久| 黄片播放在线免费| 黄色毛片三级朝国网站| 高清欧美精品videossex| 国产乱人伦免费视频| 在线观看免费视频日本深夜| 涩涩av久久男人的天堂| 精品一区二区三卡| 亚洲精品一区av在线观看| 亚洲激情在线av| 国产一区二区激情短视频| 免费搜索国产男女视频| bbb黄色大片| 男女高潮啪啪啪动态图| 精品卡一卡二卡四卡免费| 欧美不卡视频在线免费观看 | 黄色a级毛片大全视频| xxx96com| 一本综合久久免费| 国产精品永久免费网站| 老司机午夜十八禁免费视频| 久久青草综合色| 久久婷婷成人综合色麻豆| 亚洲精品久久成人aⅴ小说| 啦啦啦 在线观看视频| 一级片免费观看大全| 精品国产一区二区久久| 国产精品永久免费网站| 91在线观看av| 三上悠亚av全集在线观看| 久久婷婷成人综合色麻豆| 好男人电影高清在线观看| 久热爱精品视频在线9| 美女国产高潮福利片在线看| 欧美日韩av久久| 高清欧美精品videossex| 怎么达到女性高潮| 美女福利国产在线| 看黄色毛片网站| 999久久久精品免费观看国产| 天天躁夜夜躁狠狠躁躁| 黄片小视频在线播放| а√天堂www在线а√下载| 别揉我奶头~嗯~啊~动态视频| 亚洲男人的天堂狠狠| 国产成人精品久久二区二区免费| 国产视频一区二区在线看| 久久久国产欧美日韩av| 亚洲久久久国产精品| 国产成人精品久久二区二区91| 波多野结衣一区麻豆| 嫩草影院精品99| 人成视频在线观看免费观看| 一级作爱视频免费观看| 亚洲第一欧美日韩一区二区三区| av网站在线播放免费| 淫妇啪啪啪对白视频| 国产亚洲精品一区二区www| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲| 国产黄a三级三级三级人| 18美女黄网站色大片免费观看| 少妇的丰满在线观看| 久久精品亚洲精品国产色婷小说| 亚洲精品在线美女| 一区福利在线观看| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 国产1区2区3区精品| 亚洲 欧美 日韩 在线 免费| 亚洲成人免费av在线播放| 老汉色av国产亚洲站长工具| 日本a在线网址| 亚洲人成伊人成综合网2020| 日日夜夜操网爽| 国产精品亚洲一级av第二区| 亚洲中文字幕日韩| 精品久久久久久,| 亚洲精品美女久久av网站| 一级片免费观看大全| 精品久久蜜臀av无| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 嫩草影视91久久| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕一二三四区| 两性夫妻黄色片| 国产97色在线日韩免费| 怎么达到女性高潮| 99国产精品99久久久久| 亚洲自偷自拍图片 自拍| 纯流量卡能插随身wifi吗| 欧美黄色片欧美黄色片| 99国产精品一区二区蜜桃av| 久久久国产成人精品二区 | 亚洲欧美日韩无卡精品| 男人舔女人下体高潮全视频| 亚洲第一青青草原| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 亚洲 欧美一区二区三区| 国产精品电影一区二区三区| 午夜激情av网站| 欧美在线黄色| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 窝窝影院91人妻| 亚洲三区欧美一区| 欧美黑人精品巨大| 国产精品 国内视频| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 国产成人系列免费观看| 亚洲片人在线观看| 久久久精品欧美日韩精品| 满18在线观看网站| 欧美成狂野欧美在线观看| 日本vs欧美在线观看视频| 亚洲avbb在线观看| 欧美性长视频在线观看| 一边摸一边做爽爽视频免费| 亚洲国产精品sss在线观看 | 亚洲精华国产精华精| 国产精品亚洲av一区麻豆| 日韩免费高清中文字幕av| 欧美日本亚洲视频在线播放| 国产一区二区三区在线臀色熟女 | 亚洲人成网站在线播放欧美日韩| 午夜a级毛片| 麻豆av在线久日| 级片在线观看| 国产免费男女视频| 日本五十路高清| 深夜精品福利| 欧美日韩福利视频一区二区| 精品日产1卡2卡| 无限看片的www在线观看| 99久久人妻综合| 久久久国产精品麻豆| 最近最新中文字幕大全免费视频| 国产国语露脸激情在线看| 国产精品一区二区免费欧美| 国产精品一区二区精品视频观看| 波多野结衣av一区二区av| 久久久国产精品麻豆| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美丝袜亚洲另类 | 国产伦一二天堂av在线观看| 乱人伦中国视频| 亚洲av日韩精品久久久久久密| 久久午夜亚洲精品久久| 夫妻午夜视频| 日日夜夜操网爽| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 精品福利观看| 少妇被粗大的猛进出69影院| 制服诱惑二区| 免费在线观看日本一区| 18禁观看日本| videosex国产| 国产极品粉嫩免费观看在线| 一级毛片高清免费大全| 日韩精品青青久久久久久| 日韩视频一区二区在线观看| 少妇的丰满在线观看| 亚洲av片天天在线观看| 日韩精品青青久久久久久| 成在线人永久免费视频| 中文字幕色久视频| 欧美日韩av久久| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 久久久精品欧美日韩精品| 少妇的丰满在线观看| 搡老熟女国产l中国老女人| 亚洲成人免费av在线播放| 亚洲av美国av| 国产精华一区二区三区| 一级片'在线观看视频| 亚洲专区字幕在线| 一进一出抽搐gif免费好疼 | 嫁个100分男人电影在线观看| www.精华液| 黑人操中国人逼视频| 久久久久久人人人人人| 啦啦啦 在线观看视频| bbb黄色大片| 91在线观看av| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 中文字幕最新亚洲高清| 老司机靠b影院| 国产精品av久久久久免费| www.精华液| 老汉色∧v一级毛片| 久久中文字幕人妻熟女| 伦理电影免费视频| 热re99久久精品国产66热6| 成人亚洲精品一区在线观看| 99久久国产精品久久久| 国产亚洲精品综合一区在线观看 | 丰满饥渴人妻一区二区三| 99热只有精品国产| 国产色视频综合| 国产精品电影一区二区三区| 亚洲全国av大片| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 久久中文看片网| 在线观看日韩欧美| 久久久久久久久中文| 亚洲成人精品中文字幕电影 | www国产在线视频色| av免费在线观看网站| 亚洲久久久国产精品| 国产成人一区二区三区免费视频网站| www日本在线高清视频| 午夜a级毛片| www.www免费av| 看免费av毛片| 国产男靠女视频免费网站| 亚洲国产精品一区二区三区在线| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 精品福利永久在线观看| 午夜免费鲁丝| 亚洲自拍偷在线| 日韩高清综合在线| 色播在线永久视频| 欧美黑人精品巨大| 久久这里只有精品19| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区 | 亚洲欧美日韩另类电影网站| 亚洲av成人av| 少妇的丰满在线观看| 亚洲三区欧美一区| 俄罗斯特黄特色一大片| 欧美久久黑人一区二区| 免费看a级黄色片| 母亲3免费完整高清在线观看| 脱女人内裤的视频| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 免费av毛片视频| 日本vs欧美在线观看视频| 亚洲中文字幕日韩| 在线看a的网站| 久久 成人 亚洲| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 久久国产精品影院| 亚洲国产毛片av蜜桃av| 欧美性长视频在线观看| 91精品三级在线观看| 成人国语在线视频| 激情视频va一区二区三区| 免费观看人在逋| 国产av一区在线观看免费| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 日韩高清综合在线| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 国产精品野战在线观看 | а√天堂www在线а√下载| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 亚洲色图综合在线观看| 国产又色又爽无遮挡免费看| 欧美人与性动交α欧美精品济南到| 老司机深夜福利视频在线观看| a级片在线免费高清观看视频| 美女 人体艺术 gogo| 黄色成人免费大全| 国产成人精品在线电影| 国产片内射在线| 新久久久久国产一级毛片| 香蕉国产在线看| 女性被躁到高潮视频| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 日韩欧美国产一区二区入口| 国产精品成人在线| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| 国产xxxxx性猛交| 女警被强在线播放| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 两个人看的免费小视频| 国产精品久久久av美女十八| 麻豆国产av国片精品| 一级黄色大片毛片| 满18在线观看网站| 91在线观看av| 长腿黑丝高跟| 在线播放国产精品三级| 久久久国产欧美日韩av| 一进一出抽搐动态| 老司机靠b影院| 亚洲五月天丁香| 99国产精品一区二区三区| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 大香蕉久久成人网| 国产精品1区2区在线观看.| 免费观看人在逋| 免费一级毛片在线播放高清视频 | 91字幕亚洲| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| 看黄色毛片网站| 99在线人妻在线中文字幕| 正在播放国产对白刺激| av欧美777| 91麻豆av在线| 国产av在哪里看| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 在线十欧美十亚洲十日本专区| 亚洲中文av在线| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 多毛熟女@视频| 亚洲专区中文字幕在线| 麻豆av在线久日| 免费日韩欧美在线观看| 在线天堂中文资源库| 欧洲精品卡2卡3卡4卡5卡区| 成人国产一区最新在线观看| 久久久久国内视频| 美女国产高潮福利片在线看| 亚洲中文av在线| 一级片'在线观看视频| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 日本vs欧美在线观看视频| 韩国av一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 成年女人毛片免费观看观看9| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站 | 亚洲国产精品999在线| av片东京热男人的天堂| av中文乱码字幕在线| 一进一出抽搐动态| 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 亚洲成人久久性| 男人操女人黄网站| 999精品在线视频| 国产精华一区二区三区| 999精品在线视频| 午夜精品在线福利| 久久香蕉精品热| av网站免费在线观看视频| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费 | 亚洲av熟女| 亚洲国产精品合色在线| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 香蕉丝袜av| 一本大道久久a久久精品| 欧美激情高清一区二区三区| 91九色精品人成在线观看| 嫩草影院精品99| 国产亚洲精品一区二区www| 国产精品av久久久久免费| 热99国产精品久久久久久7| 最近最新免费中文字幕在线| 久久国产精品影院| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 精品国产一区二区久久| 男人舔女人下体高潮全视频| 久久人人爽av亚洲精品天堂| 90打野战视频偷拍视频| 曰老女人黄片| 电影成人av| 欧美日韩av久久| 中国美女看黄片| 不卡一级毛片| 很黄的视频免费| 国产男靠女视频免费网站| 中文字幕色久视频| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 久久伊人香网站| 免费在线观看完整版高清| 精品国内亚洲2022精品成人| 欧美激情极品国产一区二区三区| 久久国产亚洲av麻豆专区| 国产有黄有色有爽视频| 97人妻天天添夜夜摸| 一边摸一边抽搐一进一小说|