• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Center Problems and Time-Reversibility with Respect to a Linear Involution

    2021-01-07 01:23:26YANGJing楊靜YANGMing楊鳴LUZhengyi陸征一
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:楊靜

    YANG Jing(楊靜),YANG Ming(楊鳴),LU Zhengyi(陸征一)

    (1.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Mathematical Sciences,Sichuan Normal University,Chengdu 610068,China)

    Abstract: In this paper,the relationship between time-reversibility and the center of a planar quadratic polynomial system in R2 is considered.The necessary and sufficient conditions for the system to be time-reversible w.r.t.a linear involution are obtained.These conditions guarantee that the system has a center at the origin which is symmetric w.r.t.a straight line.

    Key words: Polynomial differential system; Time-reversibility; Linear involution; Center

    1.Introduction

    In the qualitative theory of differential systems,of particular significance are the existence and the number of limit cycles from famous Hilbert 16th problems.In order to know how many limit cycles can bifurcate,it is necessary to have an in-depth understanding of the conditions under which the singular point is a center.If an analytic differential system has a non-degenerate center at the origin,then after making a linear transformation of the variables and rescaling the time variable,it can be transformed into the form as follows:

    where P(x,y) and Q(x,y) are analytic functions without constant term.For the purpose of obtaining the necessary and sufficient conditions for the system (1.1) to have a center,the first step is to obtain the necessary conditions by computing the first several focal values and then to prove the sufficiency of these conditions.The construction of integrating factors[14]and the verification of Poincar′e symmetric principle[10]which has been presented in 1892 are two major methods of checking the sufficiency.Actually,a system satisfying the Poincar′e principle is a time-reversible one w.r.t.a special linear map such that the system has an axisymmetric center.

    The time-reversible theory of differential systems emerged in 1915 with Birkhoff’s work on three bodies[1].In 1976,Devaney[6]developed the theory of reversibility such that the study of it is expanded to analytic differential systems.For planar analytic differential systems,a reversible center has always received attention[11].Gin′e and Maza[7]obtained some results about degenerate center and time-reversibility.In 2018,by using the time-reversibility w.r.t.a special linear map,Boros et al.[2]obtained some new sufficient conditions for Lotka reactions with generalized mass-action kinetics to have a center.Recently,HAN et al.[8]considered a general polynomial quadratic system without constant term in R2and obtained some algebraic conditions for the system to be time-reversible one w.r.t.a linear involution.In their computational procedure,the Closure Theorem[5]which just holds over an algebraically closed field has been misused.

    The purpose of the present paper is to give the necessary and sufficient conditions for the following quadratic system to be time-reversible w.r.t.a linear involution.

    where (x,y)∈R2,ai,bi∈R (i=1,2,3).This kind of problems can be converted into ones of obtaining the set of zero roots of some polynomials with parameters.The concept of triangular decomposition emerges in a lot of computer algebra methods for computing the roots of polynomial systems.For example,the characteristic set of Ritt-Wu’s method[15-16],Groebner bases[3],resultant[5]and so on.The regular chain which was introduced by Kalkbrener[9]and YANG and ZHANG[13]independently is also a kind of triangular decompositions and well-developed in complex field.In 2013,CHEN et al.[4]considered the real solutions for semi-algebraic systems and proposed the following Lemma.

    Lemma 1.1[4]Let S be a semi-algebraic system of Q[x].Then one can compute a triangular decomposition of S,that is finitely many regular semi-algebraic systems Bisuch thatwhere ZRdenotes the zero set in Rnof a semi-algebraic system.

    In this paper,by using the regular chain theory[4],the necessary and sufficient conditions for the system (1.2) to be time-reversible w.r.t.a linear involution are obtained in Section 2.In Section 3,we show that these conditions can ensure the system to have a center by using the result of Teixeire and YANG[12]which indicates that the system (1.1) is time-reversible if and only if it is a center.

    2.Time-Reversible with Respect to a Linear Map

    Firstly,we introduce the definition of a time-reversible system.

    Definition 2.1[12]A Crplanar differential system (r ∈N ∪{∞,ω}),

    having a singularity at the origin is time-reversible if there exists a diffeomorphism φ:R2→R2satisfying φ ?φ=Id such that

    where X is the vector field associated to the system (2.1),and φ*represents the tangent map of φ,i.e.,φ*X = D(x,y)φ(x,y)X in the local coordinates.The map φ is called an involution.Fix(φ)={(x,y)∈R2|φ(x,y)=(x,y)} is called fixed point set of φ.

    Let

    where λi,δi∈R (i = 1,2),According to Definition 2.1,when φ ?φ = Id,φ is an involution.Hence,we have

    Clearly,(2.3) is equivalent to

    or

    Note that condition (2.4) corresponds to two trivial situations: φ(x,y) = ±(x,y).From the definition,the following is a direct result.

    Lemma 2.1A linear map φ(x,y)=(λ1x+λ2y,δ1x+δ2y)is an involution if and only if one of the following conditions is satisfied:

    1) λ2=δ1=0,λ1=δ2=±1,

    2) λ1=-δ2,+λ2δ1=1,

    where λi,δi∈R (i=1,2).

    It is clear that the fixed point set of a linear map satisfying the condition 1) of Lemma 2.1 is either the origin or the whole space.If a linear map satisfies the condition 2)of Lemma 2.1,the fixed point set is

    This set is a straight line passing through the origin.

    Let

    From Definition 2.1 and Lemma 2.1,we have

    Lemma 2.2The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the map φ is an involution such that

    In the case where the linear map φ satisfies the condition 1) of Lemma 2.1,the map φ is an involution satisfying φ(x,y) = (x,y) or φ(x,y) = -(x,y).Furthermore,the equality(2.6) in Lemma 2.2 is equivalent to P(x,y) = Q(x,y) = 0.Hence,the system (1.2) is not time-reversible w.r.t.these involutions.

    Now we consider the case where the linear map φ satisfies the condition 2) of Lemma 2.1.Since the fixed point set of the linear map,in this case,is a straight line,then the phase diagram of the system (1.2) is symmetric w.r.t.a straight line if the system is time-reversible w.r.t.a linear map.The linear part of (2.6) of Lemma 2.2 is as follows,

    therefore,we have the following Lemma.

    Lemma 2.3The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the following conditions are satisfied:

    where (x,y)∈(0,R2),λiand δi∈R,i=1,2.

    According to Lemma 2.3,we just need to consider the involution in the form of φ(x,y)=(λ1x+λ2y,λ2x-λ1y).Let

    then H(x,y)=0 holds for all value of (x,y) in (0,R2).Let

    By Lemma 2.3,the necessary and sufficient conditions for the system (1.2) to be timereversible w.r.t.a linear map is equivalent to the necessary and sufficient conditions of the polynomial set Cof to have a real root in variables λ1and λ2.

    The following is the main result of the present paper which gives a complete description of a time-reversibility w.r.t.a linear involution.

    Theorem 2.1The system (1.2) is time-reversible w.r.t.a linear map if and only if one of the following conditions is satisfied:

    Here

    ω4=(a2a3+b3b2)/(a2b2+4a3b3),

    ω5=a23+3 a22b3-a2b22-b22b3-4 b33,

    ω3=(a3-b2)a23-3 a22b2b3+(4 a33+(-3 b22-12 b32)a3+b23)a2+16 b3(a33-3/4 a32b2-a3b32+1/16 b23+1/4 b2b32),

    ω2= (a2-2 b1-b3)a13+3 a3(a2-b1)a12+((3 a2+3 b3)a32-(b1+b3)2(a2-b3))a1+a3((a2+b1+2 b3)a32-(b1+b3)2(a2+b1)),

    ω1= (a2-2 b1+2 b3)a13+((3 a2-6 b1+6 b3)a3-3 b2(b1+b3))a12+((3 a2-6 b1+6 b3)a32-6 b2(b1+b3)a3+(b1+b3)2(a2+2 b1-2 b3))a1+(a2-2 b1+2 b3)a33-3 b2(b1+b3)a32+(b1+b3)2(a2+2 b1-2 b3)a3+b2(b1+b3)3.

    The Proof of Theorem 2.1The crucial step of proving Theorem 2.1 is to obtain the necessary and sufficient conditions for the existence of the real roots of polynomial set Cof.The set Cof corresponding to the system (1.2) consists of seven polynomials:

    By using the command in the computer algebra system Maple,i.e.,

    RegularChains:-RealTriangularize,

    we obtain a triangular decomposition of these polynomials.In the order of b2>a2>b3>b1>a3>a1>λ2>λ1,the triangular decomposition has six regular semi-algebraic systems such that the union of their real root sets is exactly the real root set of Cof.

    Conditions (A1),(A2),(A3),(A10) in Theorem 2.1 can be obtained directly from the regular semi-algebraic systems Ti,i=2,...,6 as follows

    The other conditions can be obtained by analysing the necessary and sufficient conditions of the regular semi-algebraic system T1to have real roots in variables λ1,λ2.The system T1is as follows:

    1) When a1-a3,by the equalities (2.10) and (2.11),we have

    By substituting λ1,λ2into (2.12) and (2.13),we have

    Inequalities in (2.14) lead to b1+b30,(a1+a3)2(b1+b3)2and 3(a1+a3)2(b1+b3)2.Hence,ω1=ω2=0.Condition (A9) in Theorem 2.1 is proved.

    2) When a1=-a3,equality (2.11) leads to

    Inequalities-1 <λ1<1 together with equality=1 lead to λ20.Hence,b1+b2=0.By substituting a1=-a3and b1=-b3into T1,we have

    (i) When a1=-a3,b1=-b3and a2λ1-b30,we can rewrite the equality (2.21) as

    Substituting λ2into equality (2.22),we obtain

    Since the inequalities in(2.14)lead to(λ1+1)(2 λ1-1)0,the equality(2.25)is equivalent to

    (a) When a2b2+4 a3b30,by the equality (2.26),we have

    The inequalities in (2.14) lead to 0 <|ω4|<1,a2a3+b3b20,(2a3-b2)(a2-2b3)0.By the equality (2.27),we have

    Therefore,a2λ1-b30 is equivalent to a30 and a2±2b3.Furthermore,(2a3-b2)(a2-2b3)0 is equivalent to 2a3-b20.Substituting λ1and λ2into the equality (2.20) leads to ω3=0.Therefore,the condition (A11) in Theorem 2.1 is proved.

    (b) When a2b2+4 a3b3=0,the equality (2.26) is simplified to

    Using the command

    RegularChains:-RealTriangularize,

    we can solve the polynomial equations

    and obtain

    When a1=-a3,b1=-b3,a2λ1-b30,a2=-2b3and b2=2a3,T1is simplified to the following form.

    Since a2= -2b3,a2λ1-b30 is equivalent to b30 as well as 2λ1+10,the equality(2.30) leads to

    By substituting λ2into the equality (2.29),we have

    where Δ(λ1) =Since λ1-1,the equality (2.33)is equivalent to Δ(λ1) = 0.According to the inequalities in (2.14),λ1dose not belong toThus,Δ(-1) = -0,Δ(1) =0,Δ(0) = (a3+b3)(a3-b3)0 and0 lead to a30,b30 and a3±b3.Furthermore,since Δ(-1)=-<0 and Δ(1)=>0,then Δ(λ1)=0 has real roots in the interval (-1,1).If λ1=then=2a30 contradicts Δ(λ1)=0.Hence a30 implies 2λ1+10.Condition (A6)of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a2=2b3and b2=-2a3,T1takes the form

    Because a2=2b3anda2λ1-b30 is equivalent to b30.And since λ1/by the equalities (2.34) and (2.35),we have

    Inequalities in (2.14) lead to a30,andHence,the condition (A8) of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a3=0 and b2=0,T1becomes

    λ20 and a2λ1-b30 lead to (a2λ1-b3)λ20,which contradicts the equality (2.40).

    That a1=-a3,b1=-b3,a2λ1-b30,a2=0 and b3=0 leads to a contradiction.

    (ii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a20,we have

    In this case,T1is simplified to

    (a) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b30,we have

    In this case,the equality (2.44) becomes

    Since a2+b30,we have ω5= 0.Inequalities in (2.14) lead to -1 <<1,b30 and a22b3.Condition (A7) of Theorem 2.1 is proved.

    (b) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b3=0,the equality(2.49) is equivalent to b2= 0 because of a2+b30.Hence,by the equalities (2.43) and(2.44),we have

    Condition (A5) of Theorem 2.1 is proved.

    (iii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a2=0,T1is

    Hence b2=a3=0.Condition (A4) of Theorem 2.1 is proved.

    The proof of Theorem 2.1 is complete.

    3.Center and Phase Diagram

    Lemma 3.1[12]Consider the Crdifferential system (r ∈N ∪{ω}),

    where f(x,y) = o(|x2+y2|),g(x,y) = o(|x2+y2|),(R2,0) is a neighborhood of the origin.The system (3.1) is time-reversible if and only if the origin is a center.

    By Lemma 3.1 and according to the relationship between a linear involution and its fixed point sets in Section 2,we have

    Fig.3.1 Phase diagram

    Theorem 3.1If the system (1.2) satisfies one of the conditions of Theorem 2.1,the origin is a center.Furthermore,the phase diagram near the origin is symmetric w.r.t.a straight line.

    Figure 3.1 is the phase diagram of the system (1.2),if its parameters satisfy a1= b1=b2= -a3= -b3= 1/2,a2= 7/4 for the condition (A11) in Theorem 2.1.In this case,the system takes the form

    which is time-reversible w.r.t.the involution

    The fixed point set is {(x,y) | 2x+y = 0} represented by dotted line.The solid curves represent orbits nearing the origin.

    猜你喜歡
    楊靜
    Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on(111)Si
    傳統(tǒng)與現(xiàn)代的“吟唱者”
    參花(上)(2022年4期)2022-05-23 22:16:48
    前饋控制策略指導(dǎo)下的母乳口腔護理在用于早產(chǎn)兒喂養(yǎng)不耐受預(yù)防的效果
    逐瘀祛痰法中西醫(yī)結(jié)合治療對腦梗塞患者神經(jīng)功能的影響
    農(nóng) 忙
    楊靜平面設(shè)計作品
    美聯(lián)儲加息的產(chǎn)物研究
    今日財富(2017年32期)2017-10-19 20:30:20
    糾結(jié)的恩怨: “愛心模范” 蛻變成冷血殺手須濡
    分憂(2016年7期)2016-07-14 01:33:20
    Ground-Based Observations of Unusual Atmospheric Light Emissions
    一本書的教訓(xùn)
    国产一区二区激情短视频| 国产av一区二区精品久久| 国产熟女午夜一区二区三区| 自线自在国产av| 亚洲熟妇中文字幕五十中出 | 水蜜桃什么品种好| 久久久久国产精品人妻aⅴ院 | 日韩人妻精品一区2区三区| 欧美国产精品一级二级三级| 亚洲精品在线观看二区| 国产精品久久视频播放| 在线观看66精品国产| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 亚洲视频免费观看视频| 夜夜躁狠狠躁天天躁| 免费黄频网站在线观看国产| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 丰满迷人的少妇在线观看| 亚洲熟妇熟女久久| 黄片播放在线免费| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产a三级三级三级| 精品无人区乱码1区二区| www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频| 水蜜桃什么品种好| 男人操女人黄网站| 曰老女人黄片| 欧美精品人与动牲交sv欧美| 超碰成人久久| 母亲3免费完整高清在线观看| 天堂俺去俺来也www色官网| 国产片内射在线| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费日韩欧美大片| 搡老岳熟女国产| 91老司机精品| 波多野结衣一区麻豆| 亚洲国产精品sss在线观看 | 窝窝影院91人妻| 日韩欧美三级三区| 国精品久久久久久国模美| 国产一卡二卡三卡精品| 日日爽夜夜爽网站| 69av精品久久久久久| 真人做人爱边吃奶动态| 国产成人精品无人区| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| 成年人午夜在线观看视频| 久久久久国内视频| 涩涩av久久男人的天堂| 国产黄色免费在线视频| 中文字幕制服av| 99香蕉大伊视频| 老汉色∧v一级毛片| 中文字幕人妻丝袜制服| 欧美乱色亚洲激情| 久久久久国内视频| 大陆偷拍与自拍| 人妻 亚洲 视频| 女人被躁到高潮嗷嗷叫费观| 韩国av一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美精品济南到| 亚洲av熟女| 国产精品一区二区在线观看99| 亚洲自偷自拍图片 自拍| 日本vs欧美在线观看视频| 亚洲七黄色美女视频| 99国产精品免费福利视频| 久久婷婷成人综合色麻豆| xxx96com| 久久草成人影院| 久9热在线精品视频| 人妻 亚洲 视频| 999久久久国产精品视频| 曰老女人黄片| 看片在线看免费视频| 可以免费在线观看a视频的电影网站| 欧美日韩福利视频一区二区| 一夜夜www| 人人妻人人爽人人添夜夜欢视频| 久久久久久久国产电影| 欧美乱码精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 久久人妻福利社区极品人妻图片| 精品久久久久久,| 老司机福利观看| 后天国语完整版免费观看| 狠狠婷婷综合久久久久久88av| 日韩欧美三级三区| 国产一区有黄有色的免费视频| 亚洲精品在线美女| 亚洲自偷自拍图片 自拍| 久久精品aⅴ一区二区三区四区| a级毛片黄视频| 国产色视频综合| 又黄又粗又硬又大视频| 国产在线观看jvid| 麻豆乱淫一区二区| 一区二区三区国产精品乱码| 女人被躁到高潮嗷嗷叫费观| 亚洲国产中文字幕在线视频| 性少妇av在线| tocl精华| a在线观看视频网站| 天天操日日干夜夜撸| 99国产精品免费福利视频| 日韩欧美国产一区二区入口| 午夜福利影视在线免费观看| 精品少妇久久久久久888优播| 美女扒开内裤让男人捅视频| 99久久精品国产亚洲精品| 欧美成狂野欧美在线观看| 最近最新免费中文字幕在线| 少妇裸体淫交视频免费看高清 | 欧美黑人欧美精品刺激| 国产成人系列免费观看| 国产亚洲精品一区二区www | 精品少妇一区二区三区视频日本电影| 一级毛片女人18水好多| 国产精品久久电影中文字幕 | 国产三级黄色录像| 国产蜜桃级精品一区二区三区 | 天堂动漫精品| 黄色视频不卡| 黄色视频,在线免费观看| 国产亚洲精品久久久久5区| 天堂中文最新版在线下载| 亚洲男人天堂网一区| 婷婷精品国产亚洲av在线 | 精品亚洲成国产av| 黄色成人免费大全| 亚洲欧洲精品一区二区精品久久久| 亚洲七黄色美女视频| av中文乱码字幕在线| 黄色成人免费大全| 精品一区二区三区av网在线观看| 美女扒开内裤让男人捅视频| av片东京热男人的天堂| 国产精品亚洲av一区麻豆| 18禁裸乳无遮挡免费网站照片 | 岛国毛片在线播放| 一a级毛片在线观看| 另类亚洲欧美激情| 十八禁网站免费在线| 免费观看人在逋| 一夜夜www| 亚洲国产欧美一区二区综合| 桃红色精品国产亚洲av| 成人黄色视频免费在线看| 久久这里只有精品19| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久| 丁香六月欧美| 精品久久久精品久久久| 午夜日韩欧美国产| 50天的宝宝边吃奶边哭怎么回事| 国产精品亚洲av一区麻豆| 中文字幕色久视频| e午夜精品久久久久久久| 少妇的丰满在线观看| 亚洲成国产人片在线观看| 99久久综合精品五月天人人| 精品久久蜜臀av无| 大片电影免费在线观看免费| 欧美国产精品一级二级三级| 最新美女视频免费是黄的| 亚洲色图综合在线观看| 免费在线观看日本一区| 欧美久久黑人一区二区| 久久ye,这里只有精品| 一级毛片女人18水好多| 免费在线观看日本一区| 一级毛片女人18水好多| 国产人伦9x9x在线观看| 精品第一国产精品| 国产1区2区3区精品| 丰满迷人的少妇在线观看| 一级毛片女人18水好多| 国内久久婷婷六月综合欲色啪| 热re99久久国产66热| 精品久久久久久久久久免费视频 | 亚洲精品在线美女| 亚洲专区字幕在线| 757午夜福利合集在线观看| 精品国产国语对白av| 国产成人免费无遮挡视频| 国产成人免费无遮挡视频| 亚洲成人手机| 高清欧美精品videossex| 岛国在线观看网站| 欧美激情久久久久久爽电影 | 中文字幕高清在线视频| 久久国产精品人妻蜜桃| 久久精品国产99精品国产亚洲性色 | 精品欧美一区二区三区在线| 国产国语露脸激情在线看| 国产成人一区二区三区免费视频网站| 青草久久国产| 99香蕉大伊视频| 国产精品偷伦视频观看了| 亚洲熟女精品中文字幕| 国产精品久久久久久人妻精品电影| 高清毛片免费观看视频网站 | 久久久久国产一级毛片高清牌| 18在线观看网站| 日韩有码中文字幕| 精品国产一区二区久久| 亚洲一区高清亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 男女高潮啪啪啪动态图| av一本久久久久| 搡老乐熟女国产| 黄色a级毛片大全视频| 久久青草综合色| 美国免费a级毛片| 9热在线视频观看99| 又紧又爽又黄一区二区| 国产精品亚洲一级av第二区| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 国产欧美亚洲国产| 国产精品av久久久久免费| а√天堂www在线а√下载 | 精品欧美一区二区三区在线| 夜夜躁狠狠躁天天躁| 老熟妇乱子伦视频在线观看| 久久久久精品国产欧美久久久| 91精品国产国语对白视频| 成年版毛片免费区| 悠悠久久av| 久久婷婷成人综合色麻豆| 男女午夜视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 91成人精品电影| 日韩欧美一区视频在线观看| 19禁男女啪啪无遮挡网站| 男女之事视频高清在线观看| 中文欧美无线码| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产在线精品亚洲第一网站| 亚洲 欧美一区二区三区| 欧美日韩av久久| 亚洲精品中文字幕在线视频| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 亚洲黑人精品在线| 久久久久国产一级毛片高清牌| 在线观看日韩欧美| 免费不卡黄色视频| 夜夜夜夜夜久久久久| 免费久久久久久久精品成人欧美视频| 精品国内亚洲2022精品成人 | 久久国产精品人妻蜜桃| 午夜日韩欧美国产| 又紧又爽又黄一区二区| 黑人巨大精品欧美一区二区mp4| 飞空精品影院首页| 午夜福利乱码中文字幕| 亚洲av日韩精品久久久久久密| 18禁美女被吸乳视频| 国内毛片毛片毛片毛片毛片| 黄频高清免费视频| 欧美日韩一级在线毛片| 中出人妻视频一区二区| 看免费av毛片| 老熟妇乱子伦视频在线观看| 日本五十路高清| 一本一本久久a久久精品综合妖精| 亚洲黑人精品在线| 日本撒尿小便嘘嘘汇集6| √禁漫天堂资源中文www| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三| 99国产极品粉嫩在线观看| 亚洲av成人av| 精品国产美女av久久久久小说| 精品久久久久久久毛片微露脸| 国产亚洲欧美在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| 成人手机av| 久久久久视频综合| 男男h啪啪无遮挡| 岛国在线观看网站| 日韩制服丝袜自拍偷拍| 久久国产乱子伦精品免费另类| 亚洲精品国产精品久久久不卡| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 亚洲一码二码三码区别大吗| 在线免费观看的www视频| 国产三级黄色录像| 国产极品粉嫩免费观看在线| 亚洲 欧美一区二区三区| 美女视频免费永久观看网站| 一本一本久久a久久精品综合妖精| 人成视频在线观看免费观看| 国产男女内射视频| 成年人午夜在线观看视频| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看| 免费观看a级毛片全部| 成人精品一区二区免费| 妹子高潮喷水视频| 捣出白浆h1v1| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲第一av免费看| a级毛片在线看网站| 人人澡人人妻人| 午夜免费成人在线视频| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| 黑人操中国人逼视频| 免费黄频网站在线观看国产| 丝袜美腿诱惑在线| 首页视频小说图片口味搜索| 精品久久久精品久久久| 搡老岳熟女国产| 国产精品av久久久久免费| 久久草成人影院| 亚洲国产精品合色在线| 精品久久久久久,| 久久久久久久精品吃奶| 免费av中文字幕在线| 麻豆乱淫一区二区| 欧美午夜高清在线| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 悠悠久久av| 成人免费观看视频高清| 精品无人区乱码1区二区| 不卡av一区二区三区| avwww免费| 久久久久国内视频| 一级毛片女人18水好多| 国产一区二区三区视频了| 久久久国产精品麻豆| 极品人妻少妇av视频| 一本综合久久免费| 国产主播在线观看一区二区| 一级作爱视频免费观看| www日本在线高清视频| 久热这里只有精品99| 久久午夜亚洲精品久久| 我的亚洲天堂| 亚洲精品在线美女| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 757午夜福利合集在线观看| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 精品国内亚洲2022精品成人 | 国产不卡av网站在线观看| 国产精品久久视频播放| 国产片内射在线| 久久久久久人人人人人| 久久中文字幕人妻熟女| 国产精品 欧美亚洲| 黄色 视频免费看| 国产成人精品在线电影| 成熟少妇高潮喷水视频| 国产精品免费视频内射| a级片在线免费高清观看视频| 99香蕉大伊视频| 好看av亚洲va欧美ⅴa在| 国产又爽黄色视频| 中国美女看黄片| 国产精品电影一区二区三区 | 中文字幕人妻熟女乱码| 夜夜躁狠狠躁天天躁| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 久久久久国产一级毛片高清牌| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 一进一出抽搐动态| av电影中文网址| 欧美黑人精品巨大| 69精品国产乱码久久久| av电影中文网址| 亚洲视频免费观看视频| 日韩有码中文字幕| 国产免费男女视频| 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 在线观看免费高清a一片| 搡老岳熟女国产| 新久久久久国产一级毛片| 精品国产乱码久久久久久男人| 国产高清国产精品国产三级| 亚洲欧美激情在线| 在线观看一区二区三区激情| 日韩有码中文字幕| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 欧美日韩视频精品一区| 看黄色毛片网站| 国产在线观看jvid| 国产精品偷伦视频观看了| 国产99久久九九免费精品| 精品一区二区三区视频在线观看免费 | 女警被强在线播放| 久久精品亚洲熟妇少妇任你| 一a级毛片在线观看| 午夜老司机福利片| 欧美不卡视频在线免费观看 | 成人精品一区二区免费| 1024香蕉在线观看| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 欧美在线一区亚洲| 日日夜夜操网爽| 国产精品国产av在线观看| 精品久久久久久电影网| 国产精品一区二区精品视频观看| 国产精品.久久久| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 极品人妻少妇av视频| 国产视频一区二区在线看| 国产精品.久久久| 成人影院久久| ponron亚洲| 视频在线观看一区二区三区| 亚洲午夜理论影院| 欧美激情 高清一区二区三区| 成人国语在线视频| 激情视频va一区二区三区| 美女国产高潮福利片在线看| 丰满饥渴人妻一区二区三| 亚洲九九香蕉| 夜夜躁狠狠躁天天躁| 国产精品香港三级国产av潘金莲| 热99re8久久精品国产| 一级黄色大片毛片| 成在线人永久免费视频| 午夜成年电影在线免费观看| 精品久久久久久,| 99精品久久久久人妻精品| 国产精品1区2区在线观看. | 欧美色视频一区免费| 欧美不卡视频在线免费观看 | 一级a爱片免费观看的视频| 在线观看免费视频网站a站| 久久精品91无色码中文字幕| 丰满迷人的少妇在线观看| 久热这里只有精品99| x7x7x7水蜜桃| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 久久国产精品大桥未久av| 中文字幕色久视频| 高清欧美精品videossex| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看 | 精品免费久久久久久久清纯 | 午夜日韩欧美国产| 一区福利在线观看| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区 | 午夜福利欧美成人| 男人的好看免费观看在线视频 | 久久婷婷成人综合色麻豆| 亚洲欧美一区二区三区黑人| 看免费av毛片| 亚洲美女黄片视频| 大香蕉久久成人网| 久久久久国产精品人妻aⅴ院 | tocl精华| 色老头精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲情色 制服丝袜| 搡老岳熟女国产| 三级毛片av免费| 麻豆乱淫一区二区| 啦啦啦 在线观看视频| 久久性视频一级片| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 丝瓜视频免费看黄片| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| 91成人精品电影| 又大又爽又粗| 国产精品久久久久成人av| 在线免费观看的www视频| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 久久精品亚洲熟妇少妇任你| av有码第一页| 欧美精品av麻豆av| 天天影视国产精品| 在线观看午夜福利视频| 高清欧美精品videossex| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 久久香蕉激情| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| 亚洲 欧美一区二区三区| 国产xxxxx性猛交| 国产欧美日韩一区二区精品| 麻豆乱淫一区二区| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 精品无人区乱码1区二区| 老司机靠b影院| cao死你这个sao货| 国产精品久久久久成人av| 国产精品九九99| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 黄片大片在线免费观看| 久久香蕉精品热| 国产成人精品无人区| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 女警被强在线播放| av线在线观看网站| 国产国语露脸激情在线看| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 好男人电影高清在线观看| 精品熟女少妇八av免费久了| 国产精品久久久久久精品古装| 久久久久久久精品吃奶| 精品卡一卡二卡四卡免费| 久久久久久久午夜电影 | 久久香蕉国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 国产午夜精品久久久久久| 99精品在免费线老司机午夜| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 纯流量卡能插随身wifi吗| 中文字幕人妻熟女乱码| 午夜两性在线视频| 母亲3免费完整高清在线观看| 国产在线精品亚洲第一网站| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 亚洲成人免费av在线播放| 欧美日韩福利视频一区二区| 久久久久久人人人人人| 久9热在线精品视频| 日韩免费av在线播放| 波多野结衣一区麻豆| 国产无遮挡羞羞视频在线观看| 电影成人av| 免费日韩欧美在线观看| 丝袜美腿诱惑在线| 成人永久免费在线观看视频| 天天添夜夜摸| 久久精品亚洲精品国产色婷小说| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 久久久久久久午夜电影 | 国产精品久久视频播放| 国产精品免费视频内射| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕一二三四区| 欧美不卡视频在线免费观看 | 午夜精品国产一区二区电影| 亚洲欧美激情综合另类| 丝袜在线中文字幕| 三级毛片av免费| 亚洲伊人色综图| 18禁黄网站禁片午夜丰满| 男人舔女人的私密视频| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 欧美成人免费av一区二区三区 | 亚洲五月天丁香| 欧美日韩亚洲高清精品| 日韩一卡2卡3卡4卡2021年| 久久精品熟女亚洲av麻豆精品| 久久ye,这里只有精品| 久热这里只有精品99| 国产精品一区二区免费欧美| 午夜福利在线免费观看网站| 成年版毛片免费区| 麻豆国产av国片精品| 波多野结衣av一区二区av| 首页视频小说图片口味搜索| 人妻 亚洲 视频| 久久午夜综合久久蜜桃| av有码第一页| 国产高清国产精品国产三级|