• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Center Problems and Time-Reversibility with Respect to a Linear Involution

    2021-01-07 01:23:26YANGJing楊靜YANGMing楊鳴LUZhengyi陸征一
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:楊靜

    YANG Jing(楊靜),YANG Ming(楊鳴),LU Zhengyi(陸征一)

    (1.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Mathematical Sciences,Sichuan Normal University,Chengdu 610068,China)

    Abstract: In this paper,the relationship between time-reversibility and the center of a planar quadratic polynomial system in R2 is considered.The necessary and sufficient conditions for the system to be time-reversible w.r.t.a linear involution are obtained.These conditions guarantee that the system has a center at the origin which is symmetric w.r.t.a straight line.

    Key words: Polynomial differential system; Time-reversibility; Linear involution; Center

    1.Introduction

    In the qualitative theory of differential systems,of particular significance are the existence and the number of limit cycles from famous Hilbert 16th problems.In order to know how many limit cycles can bifurcate,it is necessary to have an in-depth understanding of the conditions under which the singular point is a center.If an analytic differential system has a non-degenerate center at the origin,then after making a linear transformation of the variables and rescaling the time variable,it can be transformed into the form as follows:

    where P(x,y) and Q(x,y) are analytic functions without constant term.For the purpose of obtaining the necessary and sufficient conditions for the system (1.1) to have a center,the first step is to obtain the necessary conditions by computing the first several focal values and then to prove the sufficiency of these conditions.The construction of integrating factors[14]and the verification of Poincar′e symmetric principle[10]which has been presented in 1892 are two major methods of checking the sufficiency.Actually,a system satisfying the Poincar′e principle is a time-reversible one w.r.t.a special linear map such that the system has an axisymmetric center.

    The time-reversible theory of differential systems emerged in 1915 with Birkhoff’s work on three bodies[1].In 1976,Devaney[6]developed the theory of reversibility such that the study of it is expanded to analytic differential systems.For planar analytic differential systems,a reversible center has always received attention[11].Gin′e and Maza[7]obtained some results about degenerate center and time-reversibility.In 2018,by using the time-reversibility w.r.t.a special linear map,Boros et al.[2]obtained some new sufficient conditions for Lotka reactions with generalized mass-action kinetics to have a center.Recently,HAN et al.[8]considered a general polynomial quadratic system without constant term in R2and obtained some algebraic conditions for the system to be time-reversible one w.r.t.a linear involution.In their computational procedure,the Closure Theorem[5]which just holds over an algebraically closed field has been misused.

    The purpose of the present paper is to give the necessary and sufficient conditions for the following quadratic system to be time-reversible w.r.t.a linear involution.

    where (x,y)∈R2,ai,bi∈R (i=1,2,3).This kind of problems can be converted into ones of obtaining the set of zero roots of some polynomials with parameters.The concept of triangular decomposition emerges in a lot of computer algebra methods for computing the roots of polynomial systems.For example,the characteristic set of Ritt-Wu’s method[15-16],Groebner bases[3],resultant[5]and so on.The regular chain which was introduced by Kalkbrener[9]and YANG and ZHANG[13]independently is also a kind of triangular decompositions and well-developed in complex field.In 2013,CHEN et al.[4]considered the real solutions for semi-algebraic systems and proposed the following Lemma.

    Lemma 1.1[4]Let S be a semi-algebraic system of Q[x].Then one can compute a triangular decomposition of S,that is finitely many regular semi-algebraic systems Bisuch thatwhere ZRdenotes the zero set in Rnof a semi-algebraic system.

    In this paper,by using the regular chain theory[4],the necessary and sufficient conditions for the system (1.2) to be time-reversible w.r.t.a linear involution are obtained in Section 2.In Section 3,we show that these conditions can ensure the system to have a center by using the result of Teixeire and YANG[12]which indicates that the system (1.1) is time-reversible if and only if it is a center.

    2.Time-Reversible with Respect to a Linear Map

    Firstly,we introduce the definition of a time-reversible system.

    Definition 2.1[12]A Crplanar differential system (r ∈N ∪{∞,ω}),

    having a singularity at the origin is time-reversible if there exists a diffeomorphism φ:R2→R2satisfying φ ?φ=Id such that

    where X is the vector field associated to the system (2.1),and φ*represents the tangent map of φ,i.e.,φ*X = D(x,y)φ(x,y)X in the local coordinates.The map φ is called an involution.Fix(φ)={(x,y)∈R2|φ(x,y)=(x,y)} is called fixed point set of φ.

    Let

    where λi,δi∈R (i = 1,2),According to Definition 2.1,when φ ?φ = Id,φ is an involution.Hence,we have

    Clearly,(2.3) is equivalent to

    or

    Note that condition (2.4) corresponds to two trivial situations: φ(x,y) = ±(x,y).From the definition,the following is a direct result.

    Lemma 2.1A linear map φ(x,y)=(λ1x+λ2y,δ1x+δ2y)is an involution if and only if one of the following conditions is satisfied:

    1) λ2=δ1=0,λ1=δ2=±1,

    2) λ1=-δ2,+λ2δ1=1,

    where λi,δi∈R (i=1,2).

    It is clear that the fixed point set of a linear map satisfying the condition 1) of Lemma 2.1 is either the origin or the whole space.If a linear map satisfies the condition 2)of Lemma 2.1,the fixed point set is

    This set is a straight line passing through the origin.

    Let

    From Definition 2.1 and Lemma 2.1,we have

    Lemma 2.2The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the map φ is an involution such that

    In the case where the linear map φ satisfies the condition 1) of Lemma 2.1,the map φ is an involution satisfying φ(x,y) = (x,y) or φ(x,y) = -(x,y).Furthermore,the equality(2.6) in Lemma 2.2 is equivalent to P(x,y) = Q(x,y) = 0.Hence,the system (1.2) is not time-reversible w.r.t.these involutions.

    Now we consider the case where the linear map φ satisfies the condition 2) of Lemma 2.1.Since the fixed point set of the linear map,in this case,is a straight line,then the phase diagram of the system (1.2) is symmetric w.r.t.a straight line if the system is time-reversible w.r.t.a linear map.The linear part of (2.6) of Lemma 2.2 is as follows,

    therefore,we have the following Lemma.

    Lemma 2.3The system (1.2) is time-reversible w.r.t.a linear map φ(x,y) = (λ1x+λ2y,δ1x+δ2y) if and only if the following conditions are satisfied:

    where (x,y)∈(0,R2),λiand δi∈R,i=1,2.

    According to Lemma 2.3,we just need to consider the involution in the form of φ(x,y)=(λ1x+λ2y,λ2x-λ1y).Let

    then H(x,y)=0 holds for all value of (x,y) in (0,R2).Let

    By Lemma 2.3,the necessary and sufficient conditions for the system (1.2) to be timereversible w.r.t.a linear map is equivalent to the necessary and sufficient conditions of the polynomial set Cof to have a real root in variables λ1and λ2.

    The following is the main result of the present paper which gives a complete description of a time-reversibility w.r.t.a linear involution.

    Theorem 2.1The system (1.2) is time-reversible w.r.t.a linear map if and only if one of the following conditions is satisfied:

    Here

    ω4=(a2a3+b3b2)/(a2b2+4a3b3),

    ω5=a23+3 a22b3-a2b22-b22b3-4 b33,

    ω3=(a3-b2)a23-3 a22b2b3+(4 a33+(-3 b22-12 b32)a3+b23)a2+16 b3(a33-3/4 a32b2-a3b32+1/16 b23+1/4 b2b32),

    ω2= (a2-2 b1-b3)a13+3 a3(a2-b1)a12+((3 a2+3 b3)a32-(b1+b3)2(a2-b3))a1+a3((a2+b1+2 b3)a32-(b1+b3)2(a2+b1)),

    ω1= (a2-2 b1+2 b3)a13+((3 a2-6 b1+6 b3)a3-3 b2(b1+b3))a12+((3 a2-6 b1+6 b3)a32-6 b2(b1+b3)a3+(b1+b3)2(a2+2 b1-2 b3))a1+(a2-2 b1+2 b3)a33-3 b2(b1+b3)a32+(b1+b3)2(a2+2 b1-2 b3)a3+b2(b1+b3)3.

    The Proof of Theorem 2.1The crucial step of proving Theorem 2.1 is to obtain the necessary and sufficient conditions for the existence of the real roots of polynomial set Cof.The set Cof corresponding to the system (1.2) consists of seven polynomials:

    By using the command in the computer algebra system Maple,i.e.,

    RegularChains:-RealTriangularize,

    we obtain a triangular decomposition of these polynomials.In the order of b2>a2>b3>b1>a3>a1>λ2>λ1,the triangular decomposition has six regular semi-algebraic systems such that the union of their real root sets is exactly the real root set of Cof.

    Conditions (A1),(A2),(A3),(A10) in Theorem 2.1 can be obtained directly from the regular semi-algebraic systems Ti,i=2,...,6 as follows

    The other conditions can be obtained by analysing the necessary and sufficient conditions of the regular semi-algebraic system T1to have real roots in variables λ1,λ2.The system T1is as follows:

    1) When a1-a3,by the equalities (2.10) and (2.11),we have

    By substituting λ1,λ2into (2.12) and (2.13),we have

    Inequalities in (2.14) lead to b1+b30,(a1+a3)2(b1+b3)2and 3(a1+a3)2(b1+b3)2.Hence,ω1=ω2=0.Condition (A9) in Theorem 2.1 is proved.

    2) When a1=-a3,equality (2.11) leads to

    Inequalities-1 <λ1<1 together with equality=1 lead to λ20.Hence,b1+b2=0.By substituting a1=-a3and b1=-b3into T1,we have

    (i) When a1=-a3,b1=-b3and a2λ1-b30,we can rewrite the equality (2.21) as

    Substituting λ2into equality (2.22),we obtain

    Since the inequalities in(2.14)lead to(λ1+1)(2 λ1-1)0,the equality(2.25)is equivalent to

    (a) When a2b2+4 a3b30,by the equality (2.26),we have

    The inequalities in (2.14) lead to 0 <|ω4|<1,a2a3+b3b20,(2a3-b2)(a2-2b3)0.By the equality (2.27),we have

    Therefore,a2λ1-b30 is equivalent to a30 and a2±2b3.Furthermore,(2a3-b2)(a2-2b3)0 is equivalent to 2a3-b20.Substituting λ1and λ2into the equality (2.20) leads to ω3=0.Therefore,the condition (A11) in Theorem 2.1 is proved.

    (b) When a2b2+4 a3b3=0,the equality (2.26) is simplified to

    Using the command

    RegularChains:-RealTriangularize,

    we can solve the polynomial equations

    and obtain

    When a1=-a3,b1=-b3,a2λ1-b30,a2=-2b3and b2=2a3,T1is simplified to the following form.

    Since a2= -2b3,a2λ1-b30 is equivalent to b30 as well as 2λ1+10,the equality(2.30) leads to

    By substituting λ2into the equality (2.29),we have

    where Δ(λ1) =Since λ1-1,the equality (2.33)is equivalent to Δ(λ1) = 0.According to the inequalities in (2.14),λ1dose not belong toThus,Δ(-1) = -0,Δ(1) =0,Δ(0) = (a3+b3)(a3-b3)0 and0 lead to a30,b30 and a3±b3.Furthermore,since Δ(-1)=-<0 and Δ(1)=>0,then Δ(λ1)=0 has real roots in the interval (-1,1).If λ1=then=2a30 contradicts Δ(λ1)=0.Hence a30 implies 2λ1+10.Condition (A6)of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a2=2b3and b2=-2a3,T1takes the form

    Because a2=2b3anda2λ1-b30 is equivalent to b30.And since λ1/by the equalities (2.34) and (2.35),we have

    Inequalities in (2.14) lead to a30,andHence,the condition (A8) of Theorem 2.1 is proved.

    When a1=-a3,b1=-b3,a2λ1-b30,a3=0 and b2=0,T1becomes

    λ20 and a2λ1-b30 lead to (a2λ1-b3)λ20,which contradicts the equality (2.40).

    That a1=-a3,b1=-b3,a2λ1-b30,a2=0 and b3=0 leads to a contradiction.

    (ii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a20,we have

    In this case,T1is simplified to

    (a) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b30,we have

    In this case,the equality (2.44) becomes

    Since a2+b30,we have ω5= 0.Inequalities in (2.14) lead to -1 <<1,b30 and a22b3.Condition (A7) of Theorem 2.1 is proved.

    (b) When a1=-a3=0,b1=-b3,a2λ1-b3=0,a20 and a2+2 b3=0,the equality(2.49) is equivalent to b2= 0 because of a2+b30.Hence,by the equalities (2.43) and(2.44),we have

    Condition (A5) of Theorem 2.1 is proved.

    (iii) When a1=-a3,b1=-b3,a2λ1-b3=0 and a2=0,T1is

    Hence b2=a3=0.Condition (A4) of Theorem 2.1 is proved.

    The proof of Theorem 2.1 is complete.

    3.Center and Phase Diagram

    Lemma 3.1[12]Consider the Crdifferential system (r ∈N ∪{ω}),

    where f(x,y) = o(|x2+y2|),g(x,y) = o(|x2+y2|),(R2,0) is a neighborhood of the origin.The system (3.1) is time-reversible if and only if the origin is a center.

    By Lemma 3.1 and according to the relationship between a linear involution and its fixed point sets in Section 2,we have

    Fig.3.1 Phase diagram

    Theorem 3.1If the system (1.2) satisfies one of the conditions of Theorem 2.1,the origin is a center.Furthermore,the phase diagram near the origin is symmetric w.r.t.a straight line.

    Figure 3.1 is the phase diagram of the system (1.2),if its parameters satisfy a1= b1=b2= -a3= -b3= 1/2,a2= 7/4 for the condition (A11) in Theorem 2.1.In this case,the system takes the form

    which is time-reversible w.r.t.the involution

    The fixed point set is {(x,y) | 2x+y = 0} represented by dotted line.The solid curves represent orbits nearing the origin.

    猜你喜歡
    楊靜
    Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on(111)Si
    傳統(tǒng)與現(xiàn)代的“吟唱者”
    參花(上)(2022年4期)2022-05-23 22:16:48
    前饋控制策略指導(dǎo)下的母乳口腔護理在用于早產(chǎn)兒喂養(yǎng)不耐受預(yù)防的效果
    逐瘀祛痰法中西醫(yī)結(jié)合治療對腦梗塞患者神經(jīng)功能的影響
    農(nóng) 忙
    楊靜平面設(shè)計作品
    美聯(lián)儲加息的產(chǎn)物研究
    今日財富(2017年32期)2017-10-19 20:30:20
    糾結(jié)的恩怨: “愛心模范” 蛻變成冷血殺手須濡
    分憂(2016年7期)2016-07-14 01:33:20
    Ground-Based Observations of Unusual Atmospheric Light Emissions
    一本書的教訓(xùn)
    色5月婷婷丁香| 国产大屁股一区二区在线视频| 18禁动态无遮挡网站| 国产精品国产av在线观看| 大陆偷拍与自拍| 精品久久久久久久久亚洲| 多毛熟女@视频| 日韩欧美精品免费久久| 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 亚洲精品乱码久久久久久按摩| 日韩中字成人| 亚洲精品亚洲一区二区| 国产淫语在线视频| 少妇 在线观看| 久久久久久久久久久丰满| 成人综合一区亚洲| 国产伦在线观看视频一区| 插逼视频在线观看| 亚洲一区二区三区欧美精品| 国产 一区精品| 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 国产视频首页在线观看| 久久青草综合色| 丝袜脚勾引网站| 97在线人人人人妻| 亚洲无线观看免费| 高清视频免费观看一区二区| 日韩一区二区视频免费看| 精品一区二区三卡| 国产成人一区二区在线| av免费观看日本| a级毛片免费高清观看在线播放| 亚洲国产色片| 纯流量卡能插随身wifi吗| 久久99热6这里只有精品| 婷婷色麻豆天堂久久| 国产高潮美女av| 寂寞人妻少妇视频99o| 日韩人妻高清精品专区| 亚洲精品aⅴ在线观看| 99久久人妻综合| 久久久久久人妻| 亚洲av在线观看美女高潮| 中文字幕人妻熟人妻熟丝袜美| 亚洲成色77777| 视频区图区小说| 日日摸夜夜添夜夜爱| 欧美日韩亚洲高清精品| 亚洲精品一二三| 亚洲丝袜综合中文字幕| 99久国产av精品国产电影| 免费观看无遮挡的男女| 大片免费播放器 马上看| 啦啦啦视频在线资源免费观看| 综合色丁香网| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 精品酒店卫生间| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久噜噜老黄| 国产成人91sexporn| 国产av国产精品国产| 国产中年淑女户外野战色| 国产一区有黄有色的免费视频| 精品视频人人做人人爽| 精品少妇黑人巨大在线播放| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图 | 亚洲一区二区三区欧美精品| 久久久久久久精品精品| 新久久久久国产一级毛片| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 成人特级av手机在线观看| 2021少妇久久久久久久久久久| 国产片特级美女逼逼视频| 日韩欧美精品免费久久| 少妇 在线观看| 亚洲人成网站在线播| 如何舔出高潮| 伦理电影大哥的女人| 在线观看一区二区三区| 亚洲综合精品二区| 国产乱人偷精品视频| 乱码一卡2卡4卡精品| 久久精品国产a三级三级三级| 啦啦啦啦在线视频资源| av在线app专区| 人妻 亚洲 视频| 久久精品国产亚洲av涩爱| 亚洲av中文字字幕乱码综合| 日本一二三区视频观看| 91在线精品国自产拍蜜月| 一本久久精品| 久久精品熟女亚洲av麻豆精品| 久久热精品热| 激情五月婷婷亚洲| 欧美高清性xxxxhd video| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 精品视频人人做人人爽| av免费观看日本| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 亚洲性久久影院| av国产免费在线观看| 亚洲,一卡二卡三卡| 老熟女久久久| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 一级毛片黄色毛片免费观看视频| 成人毛片60女人毛片免费| 亚洲高清免费不卡视频| 2021少妇久久久久久久久久久| 欧美日韩亚洲高清精品| 国产在线一区二区三区精| 欧美高清成人免费视频www| 国产精品一区二区性色av| 久久久久久久久大av| 偷拍熟女少妇极品色| 国产美女午夜福利| 精品一区二区三卡| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 好男人视频免费观看在线| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看 | 亚洲性久久影院| 又大又黄又爽视频免费| 成人漫画全彩无遮挡| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 国产免费视频播放在线视频| 一个人免费看片子| 欧美日韩在线观看h| 在线观看免费高清a一片| 尤物成人国产欧美一区二区三区| 午夜福利网站1000一区二区三区| 国产精品三级大全| 国产精品久久久久久精品电影小说 | 久久鲁丝午夜福利片| 日本wwww免费看| 2021少妇久久久久久久久久久| 久久久欧美国产精品| 免费观看a级毛片全部| 97热精品久久久久久| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图 | 91在线精品国自产拍蜜月| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 国产亚洲最大av| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 精品一区二区三区视频在线| 色5月婷婷丁香| 日本wwww免费看| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 高清av免费在线| 干丝袜人妻中文字幕| 老司机影院毛片| 亚洲内射少妇av| 免费看日本二区| 中文资源天堂在线| 少妇人妻 视频| 亚洲综合精品二区| 99热这里只有是精品50| 成人黄色视频免费在线看| 最后的刺客免费高清国语| h视频一区二区三区| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 成年av动漫网址| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 国产色婷婷99| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 视频区图区小说| 乱系列少妇在线播放| 国产成人精品福利久久| 久久影院123| 直男gayav资源| 亚洲第一区二区三区不卡| 亚洲欧洲国产日韩| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 国国产精品蜜臀av免费| 特大巨黑吊av在线直播| 精品人妻偷拍中文字幕| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 国产精品无大码| 国产免费视频播放在线视频| 国产精品不卡视频一区二区| 亚洲自偷自拍三级| 国产久久久一区二区三区| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| 日韩成人伦理影院| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 免费观看av网站的网址| 亚洲精品亚洲一区二区| a级一级毛片免费在线观看| 国产一区二区三区综合在线观看 | 高清毛片免费看| 午夜免费观看性视频| 久久久久久久久久人人人人人人| 看非洲黑人一级黄片| 亚洲国产精品一区三区| 秋霞在线观看毛片| 联通29元200g的流量卡| 身体一侧抽搐| 激情五月婷婷亚洲| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频 | 两个人的视频大全免费| 伦理电影免费视频| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| 亚洲性久久影院| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 精品一区二区三卡| 国产精品无大码| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久| 成年美女黄网站色视频大全免费 | 夜夜看夜夜爽夜夜摸| 色哟哟·www| 嘟嘟电影网在线观看| 三级经典国产精品| 国产亚洲91精品色在线| 少妇熟女欧美另类| 性高湖久久久久久久久免费观看| 最近最新中文字幕免费大全7| 国产成人a∨麻豆精品| 99热这里只有精品一区| av天堂中文字幕网| 在线观看三级黄色| 国产成人aa在线观看| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 欧美一级a爱片免费观看看| 国产熟女欧美一区二区| 国产精品一及| 在线 av 中文字幕| 午夜免费男女啪啪视频观看| 汤姆久久久久久久影院中文字幕| 国产一区亚洲一区在线观看| 国内精品宾馆在线| 黄色欧美视频在线观看| 日韩人妻高清精品专区| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 欧美xxⅹ黑人| av一本久久久久| 99热6这里只有精品| av视频免费观看在线观看| av在线观看视频网站免费| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 久久综合国产亚洲精品| 国产av精品麻豆| 欧美3d第一页| 国产亚洲精品久久久com| 熟女人妻精品中文字幕| 99热这里只有精品一区| 亚洲三级黄色毛片| 久久国产精品大桥未久av | 亚洲成人中文字幕在线播放| av卡一久久| 在线观看一区二区三区激情| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 亚洲人成网站在线播| 欧美亚洲 丝袜 人妻 在线| 久久久色成人| 熟女电影av网| 人人妻人人添人人爽欧美一区卜 | 久久鲁丝午夜福利片| 啦啦啦在线观看免费高清www| 亚洲欧美日韩另类电影网站 | 看非洲黑人一级黄片| 久久97久久精品| 如何舔出高潮| 看免费成人av毛片| 黄片wwwwww| av在线播放精品| 久久精品国产亚洲av天美| 青春草视频在线免费观看| 熟女电影av网| 99热网站在线观看| 精品一区二区三区视频在线| 欧美97在线视频| 国产亚洲5aaaaa淫片| 亚洲国产精品成人久久小说| 亚洲第一区二区三区不卡| 有码 亚洲区| 久久久a久久爽久久v久久| 26uuu在线亚洲综合色| 色视频www国产| 男女边摸边吃奶| 日韩亚洲欧美综合| 欧美xxⅹ黑人| 一本一本综合久久| 永久网站在线| 99久国产av精品国产电影| 一个人看的www免费观看视频| 久久人人爽av亚洲精品天堂 | 久久99热这里只频精品6学生| 熟女av电影| 精品久久久久久久久av| 精品一品国产午夜福利视频| 高清av免费在线| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 我要看黄色一级片免费的| 99热这里只有是精品50| 伊人久久国产一区二区| 精品人妻偷拍中文字幕| 国产视频首页在线观看| 国产久久久一区二区三区| 人体艺术视频欧美日本| 国产精品免费大片| 免费黄色在线免费观看| 亚洲精品一二三| 久久久久久伊人网av| 欧美3d第一页| 日本黄大片高清| 视频中文字幕在线观看| 又爽又黄a免费视频| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图 | 国产在线免费精品| 一区二区av电影网| 精品人妻熟女av久视频| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 国产无遮挡羞羞视频在线观看| 青春草国产在线视频| 欧美丝袜亚洲另类| 网址你懂的国产日韩在线| 伦理电影免费视频| 中文字幕免费在线视频6| 国产免费福利视频在线观看| 久久青草综合色| 久热这里只有精品99| 色婷婷av一区二区三区视频| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 高清视频免费观看一区二区| 日韩中文字幕视频在线看片 | 日日摸夜夜添夜夜添av毛片| www.色视频.com| 我要看黄色一级片免费的| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 亚洲电影在线观看av| 久久影院123| 伊人久久国产一区二区| 婷婷色麻豆天堂久久| 午夜福利视频精品| 精品一区二区三卡| 久久国产乱子免费精品| 夜夜骑夜夜射夜夜干| 欧美高清成人免费视频www| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频 | 日本wwww免费看| 日日啪夜夜爽| 黑人高潮一二区| 成人美女网站在线观看视频| 一级a做视频免费观看| 日韩欧美一区视频在线观看 | 最近的中文字幕免费完整| 男女啪啪激烈高潮av片| 国产乱来视频区| 免费高清在线观看视频在线观看| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 国产大屁股一区二区在线视频| 我的女老师完整版在线观看| 亚洲第一av免费看| 丰满乱子伦码专区| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 国产精品久久久久久久电影| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 纯流量卡能插随身wifi吗| 久久精品久久久久久噜噜老黄| 国产久久久一区二区三区| 国产精品一及| 成年女人在线观看亚洲视频| 99九九线精品视频在线观看视频| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片 | 最近2019中文字幕mv第一页| av播播在线观看一区| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| xxx大片免费视频| h视频一区二区三区| 日韩强制内射视频| 久久鲁丝午夜福利片| 一区二区三区免费毛片| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 亚洲成人中文字幕在线播放| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 亚洲久久久国产精品| 一二三四中文在线观看免费高清| 肉色欧美久久久久久久蜜桃| 51国产日韩欧美| 街头女战士在线观看网站| 99热这里只有精品一区| 大码成人一级视频| 日韩在线高清观看一区二区三区| 久久 成人 亚洲| 国产av精品麻豆| av女优亚洲男人天堂| 亚洲av中文av极速乱| 免费看日本二区| 久久久成人免费电影| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 伊人久久精品亚洲午夜| 97热精品久久久久久| 亚洲欧美精品自产自拍| 韩国高清视频一区二区三区| 亚洲av成人精品一二三区| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 在线精品无人区一区二区三 | 男女边摸边吃奶| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 亚洲高清免费不卡视频| 中文天堂在线官网| 免费看av在线观看网站| av免费在线看不卡| 久热这里只有精品99| 日本av手机在线免费观看| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区| 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 我的女老师完整版在线观看| 国产成人午夜福利电影在线观看| 午夜福利视频精品| 91久久精品电影网| 婷婷色av中文字幕| 亚洲av.av天堂| 日韩欧美一区视频在线观看 | 国产精品蜜桃在线观看| 十分钟在线观看高清视频www | 久久精品国产亚洲av涩爱| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 香蕉精品网在线| 色吧在线观看| 国产午夜精品一二区理论片| 国产成人a∨麻豆精品| 国产成人精品久久久久久| 一级黄片播放器| 看非洲黑人一级黄片| 免费少妇av软件| 久久人人爽av亚洲精品天堂 | 最近的中文字幕免费完整| 精品久久久久久久久亚洲| 国产一区有黄有色的免费视频| 舔av片在线| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 观看av在线不卡| 在线观看人妻少妇| 欧美性感艳星| 黑丝袜美女国产一区| 丝袜脚勾引网站| 亚洲精品日韩av片在线观看| 亚洲国产毛片av蜜桃av| 亚洲av电影在线观看一区二区三区| 黄色日韩在线| 狂野欧美激情性bbbbbb| 少妇丰满av| 欧美97在线视频| 久久99热这里只频精品6学生| 免费观看在线日韩| 99热这里只有是精品在线观看| www.色视频.com| 国产午夜精品一二区理论片| 久久午夜福利片| 男女啪啪激烈高潮av片| 99久久人妻综合| a级毛片免费高清观看在线播放| 黄色配什么色好看| 麻豆成人午夜福利视频| 日韩伦理黄色片| 国产成人a区在线观看| 久久综合国产亚洲精品| 天堂中文最新版在线下载| 成年免费大片在线观看| 爱豆传媒免费全集在线观看| 99国产精品免费福利视频| 中文字幕精品免费在线观看视频 | 97在线人人人人妻| 中国国产av一级| 久久国产精品大桥未久av | 熟女av电影| 亚洲综合精品二区| 国产精品福利在线免费观看| 久久久久久久亚洲中文字幕| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃| 亚洲精品中文字幕在线视频 | 观看美女的网站| 日本-黄色视频高清免费观看| 国产无遮挡羞羞视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产伦在线观看视频一区| 我要看黄色一级片免费的| 欧美日韩在线观看h| 国产色爽女视频免费观看| 18禁在线播放成人免费| 熟女电影av网| 婷婷色av中文字幕| 高清av免费在线| 成人免费观看视频高清| 51国产日韩欧美| 亚洲综合色惰| 色5月婷婷丁香| 99久久精品国产国产毛片| 91aial.com中文字幕在线观看| 亚洲第一av免费看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av欧美aⅴ国产| 国产91av在线免费观看| 免费av中文字幕在线| 国产高清不卡午夜福利| 99热这里只有是精品在线观看| 日韩三级伦理在线观看| 亚洲欧美日韩东京热| 国产精品99久久99久久久不卡 | 观看av在线不卡| 99久久精品一区二区三区| 99久久综合免费| 亚洲真实伦在线观看| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 男女边摸边吃奶| 免费黄频网站在线观看国产| 亚洲精品久久午夜乱码| 国产永久视频网站| 亚洲av在线观看美女高潮| 偷拍熟女少妇极品色| 久久人妻熟女aⅴ| 在线亚洲精品国产二区图片欧美 | 亚洲av福利一区| 成人免费观看视频高清| 国产乱来视频区| 在线观看三级黄色| 少妇高潮的动态图| 51国产日韩欧美| 各种免费的搞黄视频| 九草在线视频观看| 久久久久国产精品人妻一区二区| 中国三级夫妇交换| 看免费成人av毛片| 国产中年淑女户外野战色| 七月丁香在线播放| 看免费成人av毛片| 99热全是精品| 中文精品一卡2卡3卡4更新| 国产在线免费精品| 国产乱来视频区| 一级片'在线观看视频| av天堂中文字幕网| 欧美3d第一页| 97在线视频观看| 你懂的网址亚洲精品在线观看| 中文字幕亚洲精品专区| 男女国产视频网站|