• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impulsive Control for One Class of the Incommensurate Conformable Fractional Order System with Discontinuous Right Side

    2021-01-07 01:24:36GAOYang高揚(yáng)
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:高揚(yáng)

    GAO Yang(高揚(yáng))

    (Department of Teaching Education,Daqing Normal University,Daqing 163712,China)

    Abstract: In this paper,one class of the incommensurate conformable fractional order system with discontinuous right side (DICFS) is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.

    Key words: Fractionally exponentially stable; Filippov solution; Impulsive control;Conformable fractional-order derivative

    1.Introduction

    In recent years,the fractional order system has attracted many researches.Due to it can be applied in the fields of physics and engineering extensively,see the literatures [1-16].

    Both Riemann-Liouville (RL) and Caputo fractional order derivative are used generally .While,two kinds of fractional order definitions share some weaknesses.For example,the monotonicity of a function f cannot be determined from the RL or Caputo fractional derivative of f.Recently,Khalil[6]gave a new fractional derivative definition named as conformable fractional derivative.Abdeljawad[7]developed the conformable fractional derivative.The stability and asymptotic stability of conformable fractional-order nonlinear systems by using Lyapunov function were obtained in [9].In comparison with the RL and Caputo fractional derivative,the conformable fractional derivative maybe suitable choice,because the conformable fractional derivative can be seen as a natural extension of the usual derivative.

    The study about stability and stabilization for the incommensurate fractional-order system is an interesting topic.[10-15]Stability results about the commensurate fractional-order system maybe not valid for the incommensurate fractional-order system.Therefore,it is important to study the incommensurate fractional-order system.

    In [12],an impulsive incommensurate fractional order system was considered as follows:

    where x=(x1,·,xn)Twas the state variable,0 <α1≤α2≤···≤αn≤1 were the orders of Caputo fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)were λ-Lipschtiz nonlinear functions.Δxi(tk)=xi()-xi(tk).The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative was investigated in [12].Some novel stability criteria for impulsive incommensurate fractional order systems were proposed.

    As far as we know,most of researchers are interested in the commensurate fractional-order system.To the best of authors’ knowledge,there are less results about the incommensurate fractional-order discontinuous system.In this paper,the incommensurate conformable fractional order system with discontinuous right side is considered.Firstly,the existence of the Filippov solution for DICFS is obtained.Secondly,the comparison theorem is constructed for DICFS.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.Main results can be regarded as the generalization of [12].

    Our innovation points are listed as follows.Firstly,the incommensurate fractional-order discontinuous system with the Filippov solution and conformable fractional derivative is modeled.Secondly,New comparison theorem for the incommensurate conformable fractional discontinuous system is showed and used to study stability for the new system.Finally,the Lyapunov theory is applied to the incommensurate conformable fractional order discontinuous system’s impulsive stabilization.

    This paper is organized as follows.Preliminary results are introduced in Section 2.In Section 3,main results are obtained.In the sequel,an example is presented in Section 4.Finally,the conclusions and outlooks are drawn in Section 5.

    2.Preliminaries

    In this section,we will list some definitions and Lemmas which will be used in the later sections.

    Definition 2.1[1]The Caputo fractional derivative of order α ∈(n-1,n) for a continuous function f :R+→R is given by

    Definition 2.2[6]Given a function h defined on an [a,∞),the conformable fractional derivative starting from a of a function h of order α is defined by

    for all t >a,α ∈(0,1].

    Lemma 2.1[9]Let h : [a,∞) →R be a continuous function such that(t) exists on (a,∞).If(t) ≥0 (respectivelyt) ≤0),for all t ∈(a,∞) then the graph of h is increasing (respectively decreasing).

    Definition 2.3[9]The fractional conformable exponential function is defined for every s ≥0 by

    where α ∈(0,1) and λ ∈R.

    Lemma 2.2[9]The origin of system

    is said to be fractionally exponentially stable if

    where λ,K >0.

    Lemma 2.3If α ∈(0,1],x >0,b >0,then (x+b)α≤xα+bαholds.

    ProofLet

    Therefore,we obtain

    In the sequel,f(x) is decreasing in the interval (0,+∞).Note f(x) is continuous about 0,we have f(x)≤f(0).Hence f(x)≤0 holds.

    Then the inequality’s proof is completed.

    Lemma 2.4If α ∈(0,1],λ >0,a >0,b >0,then

    holds.

    ProofBy Lemma 2.3,we have

    Furthermore,

    Therefore,the proof is completed.

    Lemma 2.5If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],b >0,then

    holds.

    ProofLet

    Thus,we obtain

    In the sequel,f(x) is decreasing in the interval (0,1].Noting α ≤β,we have

    So

    holds.

    Then we get

    By Lemma 2.4,we have

    Furthermore,we obtain

    So the inequality’s proof is completed.

    Lemma 2.6If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],then

    and Eβ(λ,a)≤Eα(λ,a) hold.

    ProofBy Lemma 2.5,we obtain

    holds.

    Therefore,the inequalities hold.The proof is completed.

    Lemma 2.7Suppose x(t)is absolutely continuous on any compact interval of[0,+∞),then for any i=1,2,··· ,n,

    holds for almost every t ∈[0,+∞) with 0 <α1≤α2≤···≤αn≤1.

    ProofBecause x(t) is absolutely continuous on any compact interval of [0,+∞),we obtain that |x(t)| is absolutely continuous on any compact interval of [0,+∞).Furthermore,|x(t)| is differentiable almost everywhere with respect to t ∈[0,+∞).Assume that |x(t)|′exists at time t.In the sequel,we have

    Then we obtain

    holds for almost every t ∈[0,+∞) .Similarly,

    holds for almost every t ∈[0,+∞).

    The proof is completed.

    3.Main Results

    An incommensurate conformable fractional order system with discontinuous right side is constructed as follows:

    where x = (x1,·,xn)Tis the state variable,0 <α1≤α2≤··· ≤αn≤1 are orders of Conformable fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)are λ-Lipschtiz nonlinear functions.

    Remark 3.1Ii(xi)(i = 1,2,··· ,n) can be seen as the threshold policy in the ecology system.Because it is natural and reasonable to adopt the threshold policy in order to control the population density of species.Moreover,Ii(xi)(i=1,2,··· ,n) can be seen as the discontinuous activation function of the ith neuron in Hopfield neural networks,such as hard comparator.Therefore,the new discontinuous system is reasonable.

    Let

    The incommensurate conformable fractional order discontinuous system (3.1) is equivalent to the system as follows:

    Based on the Filippov solution of integer order system,the concept of Filippov solution for the incommensurate conformable fractional order discontinuous system is given as follow.

    The set-valued maps can be denoted as

    Definition 3.1A function x(t) is called as a Filippov solution of system (3.1) on interval [0,T) with the initial condition x(0) = x0,if x(t) is absolutely continuous on any compact interval of [0,T) and

    for almost every t ∈[0,T).Or there exists a measurable function(measurable selection of the function I ) γ =(γ1,γ2,··· ,γn),such that γ(t)∈I(x(t)) and

    for almost every t ∈[0,T).

    Now we will discuss the existence of the solution for incommensurate conformable fractional order discontinuous system (3.1) by the fractional-order differential inclusion.

    Theorem 3.1In the sense of (3.3) ,there exists at least one solution of system (3.1)in the interval [0,+∞) for any initial value x(0).

    ProofBecause the set-valued map Tαx(t)F(x(t),t) is upper-semi-continuous with nonempty compact convex values,the local existence of a solution x(t) of (3.1) can be guaranteed.

    Indeed,we obtain |Fi(xi)|=supξ∈Fi(xi)|ξ|≤(λ+1)|xi|.

    Firstly,?t ∈[0,1],the integral equation is obtained as follows:

    Furthermore,we obtain

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[0,1],which ensures that the solution of system (3.1) exists in the interval [0,1].

    Secondly,?t ∈[1,+∞),we have

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[1,+∞),which ensures that the solution of system (3.1)exists in the interval [1,+∞).

    Finally,x(t) remains bounded for t ∈[0,+∞),which ensures that the solution of system(3.1) exists in the interval [0,+∞).

    In order to research impulsive control for the incommensurate conformable fractional order discontinuous system (3.1),new comparison theorems are constructed as follows.We introduce another system which is defined as:

    New comparison theorems are constructed as follows.

    Theorem 3.2For the systems (3.2) and (3.4),if fi(x(t),t)+γi(t)xi(t)≤gi(y(t)) hold almost everywhere and xi0≤yi0,then xi(t)≤yi(t)(i=1,2,··· ,n).

    ProofAccording to the definition of the Filippov solution,we obtain that x(t),y(t)are absolutely continuous on any compact interval of [0,T).In the sequel,x(t),y(t) are locally absolutely continuous.Furthermore,x(t),y(t) are differentiable almost everywhere with respect to t.

    By the condition of this theorem,we obtain that

    hold for almost every t ≥0.

    Choose the time t such that both x(t) and y(t) exist.Therefore,

    The proof is completed.

    Based on Theorem 3.2,the following corollary is obtained naturally.

    Corollary 3.1For the systems (3.2) and (3.4),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))and |xi0|≤yi0,then |xi(t)|≤yi(t)(i=1,2,··· ,n).

    Consider the impulsive discontinuous system as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.2For the systems (3.5) and (3.6),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))(a.e.t) andthen |xi(t)|≤yi(t)(i=1,2,··· ,n).

    ProofRepeating using Theorem 3.2 in the interval [tk,tk+1] and the factwe can obtain Corollary 3.2.

    Note that fi(x(t),t) are λ-Lipschitz,|γ(t)|≤1 and

    New comparison system for the system (3.6) is obtained as follows.

    where

    Let an orthogonal matrix

    and y(t)=Mz(t).The equivalent system of (3.7) is obtained as follows:

    where

    For the system (3.8),the following theorem is given.

    Theorem 3.3If τk= tk-tk-1<1 and dik= Eαi(-2(nλ+1),τk) ,then the trivial solution zi=0 of system (3.8) is fractionally exponentially stable with=dikzi(tk) .

    ProofFor any t ∈[0,t1],we obtain

    and

    In the sequel,for any i=1,2,··· ,n ,we have

    Moreover,we get

    In general,for t ∈(tk-1,tk],we have

    This means the trivial solution zi=0 of system(3.8)is fractionally exponentially stable.The proof is completed.

    Then the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.4If τk=tk-tk-1<1,dik=Eαi(-2(nλ+1),τk),then impulsive control can stabilized the system (3.1) withThis means that the trivial solution xi=0 of system (3.5) is fractionally exponentially stable.

    ProofBy Theorem 3.3 and y(t)=Mz(t),we obtain

    This demonstrates that the systems (3.7) and (3.8) are fractionally exponentially stable.We can choose

    With the help of new comparison theorem(Theorem 3.2),we obtain the trivial solution xi=0 of system(3.5)is fractionally exponentially stable.Then impulsive control can stabilize system (3.1).

    In the next part,we will design a new comparison system for the incommensurate conformable fractional order discontinuous system (3.5) based on (3.6).Using Lemma 2.7,for any t ∈[0,1],we have tαi-α1≤1,and Tαiyi(t)=tα1-αiTα1yi(t)=gi(y(t)).

    Hence,Tα1yi(t)=tαi-α1Tαiyi(t)≤gi(y(t)).

    While,for any t ∈[1,+∞),tαi-αn≤1,and

    Hence,

    The new comparison system is constructed as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.3For the systems (3.6) and (3.9),if gi(y(t)) ≤gi(z(t)) (a.e.t) andthen yi(t)≤zi(t)(i=1,2,··· ,n).

    Hence the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.5If

    holds for almost everywhere with respect to t and τk= tk-tk-1<1,λ >0 ,dik= dk=Eα1(-λ,τk),then the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.This means that impulsive control can stabilize system (3.1) with xi(=dikxi(tk).

    ProofNotice the condition (3.10),for z(t)(t ∈[0,1]),we obtain that

    Therefore,for any t ∈[tk-1,tk]?[0,1] ,we get

    Moreover,

    and

    Using Lemma 2.4,2.5,2.6,for t ∈(tk-1,tk]?[0,1],we have

    and

    Similarly,for t ∈(tk-1,tk]?(1,+∞),we have

    Therefore,we have

    This means that the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.With the help of Theorem 3.2,Corollary 3.2 and Corollary 3.3,impulsive control can stabilize the system (3.1) with xi)=dikxi(tk).

    4.An Example

    In this section,an example is presented to illustrate Theorem 3.4 and Theorem 3.5.

    Consider the following system of incommensurate conformable fractional discontinuous equation:

    where α1=0.2,α2=0.5,β12=-β21=9,ε1=ε2=2 .

    Model (4.1) comes from [2].In [2],LI investigated a coupled system of fractional-order differential equations on network with feedback controls.Model (4.1) can be seen as coupled system of incommensurate fractional-order differential equations on network with Threshold Policy.

    A comparison system is constructed as follows.

    Therefore,we have

    Here,λ=22.Choose τk=tk-tk-1<1 ,dik=Eαi(-90,τk) and

    Then the impulsive control can be designed to stabilize system (4.1) by Theorem 3.4 with

    After calculating,we obtain

    τk= tk-tk-1<1,dik= dk= Eα1(-13,τk).Then the impulsive control can be designed to stabilize the system (4.1) by Theorem 3.5 with xi=dikxi(tk).

    Remark 4.1From the example,we can see that Theorem 3.5 is more convenient than Theorem 3.4 in application.While,Theorem 3.4 and Theorem 3.5 are equally effective when softwares for calculation are used by us.

    5.Conclusions and Outlooks

    In this paper,the incommensurate conformable fractional order system with discontinuous right side is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the new incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,an example is given to illustrate applications of main results.

    Further studies on this subject are being carried out by the presenting authors in the two aspects: one is to study the model with time delay; the other is to apply the method to suitable discontinuous system.

    猜你喜歡
    高揚(yáng)
    忽如一夜春風(fēng)來
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    欺騙干擾對GNSS/INS系統(tǒng)定位性能的影響
    守護(hù)“舌尖上的安全”
    如日方升
    安邸AD(2022年5期)2022-05-24 12:38:14
    高揚(yáng)開放共享之帆 開啟合作共贏之航
    深度學(xué)習(xí)在冠心病診療中的發(fā)展與應(yīng)用
    期末測試題一
    高揚(yáng)“科技興糧”和“人才興糧”的風(fēng)帆
    打造核心“重器” 磨煉“關(guān)鍵一招”——金華日報(bào)高揚(yáng)主旋律打開新局面
    傳媒評論(2018年9期)2018-12-07 00:37:28
    波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 久久午夜福利片| 在线观看美女被高潮喷水网站| 国产黄片美女视频| 久久精品夜色国产| 免费观看性生交大片5| 国产成人免费观看mmmm| 国产探花极品一区二区| 一个人观看的视频www高清免费观看| 亚洲精品乱久久久久久| 欧美日韩精品成人综合77777| 中国美白少妇内射xxxbb| 别揉我奶头 嗯啊视频| 欧美xxxx性猛交bbbb| 99九九线精品视频在线观看视频| 亚洲av不卡在线观看| 国产国拍精品亚洲av在线观看| 亚洲av中文av极速乱| 中国美白少妇内射xxxbb| 欧美高清性xxxxhd video| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 成人午夜精彩视频在线观看| 色视频www国产| 99视频精品全部免费 在线| 能在线免费观看的黄片| 天天躁日日操中文字幕| 日韩欧美 国产精品| 日韩成人伦理影院| 国产久久久一区二区三区| 日本午夜av视频| 欧美最新免费一区二区三区| 国产精品不卡视频一区二区| 最近最新中文字幕大全电影3| 精品无人区乱码1区二区| 麻豆国产97在线/欧美| 亚洲美女视频黄频| 夫妻性生交免费视频一级片| 精品久久久噜噜| 人妻系列 视频| 97在线视频观看| av在线观看视频网站免费| 老司机影院毛片| 亚洲丝袜综合中文字幕| 亚洲人成网站在线播| 在线免费十八禁| 毛片一级片免费看久久久久| 久久久精品94久久精品| 男女下面进入的视频免费午夜| 日本黄大片高清| 久久久久久久久久成人| 一级爰片在线观看| 国产精品伦人一区二区| 午夜激情福利司机影院| 国产男人的电影天堂91| 国内精品美女久久久久久| 国产成人午夜福利电影在线观看| 久久午夜福利片| 国产午夜精品久久久久久一区二区三区| 人体艺术视频欧美日本| 免费无遮挡裸体视频| 中文字幕av在线有码专区| 韩国高清视频一区二区三区| 老司机影院成人| 舔av片在线| 九九在线视频观看精品| 国产精品麻豆人妻色哟哟久久 | 日韩,欧美,国产一区二区三区 | 国产一区二区三区av在线| 国产成人午夜福利电影在线观看| 嘟嘟电影网在线观看| 热99re8久久精品国产| 一级二级三级毛片免费看| 色哟哟·www| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利成人在线免费观看| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 欧美高清成人免费视频www| 精品久久久久久久久久久久久| 熟女人妻精品中文字幕| 国产国拍精品亚洲av在线观看| 亚洲精品久久久久久婷婷小说 | 色网站视频免费| 欧美人与善性xxx| 中文字幕人妻熟人妻熟丝袜美| 麻豆精品久久久久久蜜桃| 日韩高清综合在线| 偷拍熟女少妇极品色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本午夜av视频| 国产亚洲5aaaaa淫片| 我的老师免费观看完整版| 十八禁国产超污无遮挡网站| 成年av动漫网址| 久久久久性生活片| 国产免费视频播放在线视频 | 国产精品.久久久| 国产又色又爽无遮挡免| 亚洲精华国产精华液的使用体验| 国产淫语在线视频| 国产91av在线免费观看| 精品久久久久久成人av| 日本黄色片子视频| 午夜福利在线观看吧| 国产精品av视频在线免费观看| 日本黄色视频三级网站网址| 麻豆久久精品国产亚洲av| 欧美最新免费一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美,日韩| 尤物成人国产欧美一区二区三区| 亚洲国产成人一精品久久久| 国产一级毛片在线| 国产69精品久久久久777片| 好男人视频免费观看在线| 欧美一区二区国产精品久久精品| 久久久久久伊人网av| 床上黄色一级片| 3wmmmm亚洲av在线观看| 亚洲自拍偷在线| 亚洲av中文av极速乱| 22中文网久久字幕| 边亲边吃奶的免费视频| 午夜福利在线观看免费完整高清在| 国产精品一区二区在线观看99 | 一本久久精品| 最近手机中文字幕大全| 大香蕉97超碰在线| 99久国产av精品国产电影| 性色avwww在线观看| 精品免费久久久久久久清纯| 久久久久久国产a免费观看| 精品久久久久久久久av| 亚洲美女视频黄频| 国产一区二区三区av在线| 午夜福利在线在线| 亚洲精品自拍成人| 国产爱豆传媒在线观看| 高清午夜精品一区二区三区| 看十八女毛片水多多多| 国产免费男女视频| 尾随美女入室| 欧美日本视频| 国产成人午夜福利电影在线观看| 亚洲人成网站在线观看播放| 99久久精品一区二区三区| 联通29元200g的流量卡| 久久精品熟女亚洲av麻豆精品 | 少妇猛男粗大的猛烈进出视频 | 欧美最新免费一区二区三区| 亚洲色图av天堂| 伦精品一区二区三区| 国产免费男女视频| 亚洲最大成人中文| 国内精品一区二区在线观看| 熟妇人妻久久中文字幕3abv| 联通29元200g的流量卡| 国产精品不卡视频一区二区| 天堂网av新在线| 亚洲人成网站高清观看| 午夜福利成人在线免费观看| 久久精品国产99精品国产亚洲性色| 久热久热在线精品观看| 99久久人妻综合| 久久久久久久久久久丰满| 又爽又黄a免费视频| 免费一级毛片在线播放高清视频| 伊人久久精品亚洲午夜| 尾随美女入室| 国产大屁股一区二区在线视频| 国产单亲对白刺激| 又爽又黄无遮挡网站| 99久久人妻综合| 观看免费一级毛片| 国产在视频线在精品| 丝袜喷水一区| 日韩一区二区视频免费看| 久久久久久久国产电影| 老师上课跳d突然被开到最大视频| 欧美97在线视频| 久久久久久久亚洲中文字幕| 性色avwww在线观看| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜爱| 精品久久国产蜜桃| 亚洲国产欧洲综合997久久,| 91久久精品国产一区二区三区| 综合色丁香网| 成人无遮挡网站| 简卡轻食公司| 国产精品蜜桃在线观看| 国产av一区在线观看免费| 高清毛片免费看| 久久久久性生活片| 老司机福利观看| 又爽又黄a免费视频| 亚洲三级黄色毛片| 美女被艹到高潮喷水动态| 亚洲国产日韩欧美精品在线观看| 国产精品乱码一区二三区的特点| www.av在线官网国产| 夜夜看夜夜爽夜夜摸| 亚洲精品亚洲一区二区| 国产极品天堂在线| 精品酒店卫生间| 日本黄色视频三级网站网址| 国内少妇人妻偷人精品xxx网站| 日本午夜av视频| 成年女人永久免费观看视频| 天天躁日日操中文字幕| av女优亚洲男人天堂| 精品无人区乱码1区二区| 99久久人妻综合| 赤兔流量卡办理| 亚洲成av人片在线播放无| 国产亚洲av片在线观看秒播厂 | 国产精品福利在线免费观看| 久久久久久久久大av| 美女xxoo啪啪120秒动态图| 九九热线精品视视频播放| 观看美女的网站| 春色校园在线视频观看| 能在线免费观看的黄片| 91精品国产九色| 男女那种视频在线观看| 久久久久国产网址| 免费av不卡在线播放| 小蜜桃在线观看免费完整版高清| 国产高清三级在线| 亚洲国产日韩欧美精品在线观看| 欧美人与善性xxx| 伊人久久精品亚洲午夜| 高清午夜精品一区二区三区| 久久欧美精品欧美久久欧美| 男女下面进入的视频免费午夜| 99热网站在线观看| 91久久精品国产一区二区三区| 午夜福利在线观看吧| 韩国av在线不卡| 蜜桃久久精品国产亚洲av| 精品久久久久久成人av| 中文字幕久久专区| 中文字幕av在线有码专区| www.av在线官网国产| 国产女主播在线喷水免费视频网站 | 韩国高清视频一区二区三区| 国产精品永久免费网站| 成人午夜精彩视频在线观看| 在线天堂最新版资源| av在线蜜桃| 国产三级中文精品| 日韩中字成人| 欧美一区二区国产精品久久精品| 69av精品久久久久久| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 成人一区二区视频在线观看| 日韩国内少妇激情av| av在线蜜桃| 99热网站在线观看| 国产私拍福利视频在线观看| 69人妻影院| 国产精品美女特级片免费视频播放器| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| kizo精华| 夫妻性生交免费视频一级片| 永久网站在线| 国产成人免费观看mmmm| 久久精品久久精品一区二区三区| 欧美xxxx性猛交bbbb| 成人美女网站在线观看视频| 伦理电影大哥的女人| 神马国产精品三级电影在线观看| 久久精品影院6| 午夜老司机福利剧场| 免费搜索国产男女视频| 久久久色成人| 亚洲国产成人一精品久久久| 联通29元200g的流量卡| 精品国产一区二区三区久久久樱花 | 亚州av有码| 九九热线精品视视频播放| 美女cb高潮喷水在线观看| av线在线观看网站| 九草在线视频观看| 国产乱人视频| 亚洲激情五月婷婷啪啪| 国产欧美另类精品又又久久亚洲欧美| 成人漫画全彩无遮挡| 男人的好看免费观看在线视频| 桃色一区二区三区在线观看| 欧美97在线视频| 色综合色国产| 亚洲乱码一区二区免费版| 国产国拍精品亚洲av在线观看| 嫩草影院入口| 韩国av在线不卡| 欧美97在线视频| 黄色日韩在线| av播播在线观看一区| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜爱| 女人被狂操c到高潮| 国产伦精品一区二区三区四那| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 美女内射精品一级片tv| 国产免费视频播放在线视频 | 少妇猛男粗大的猛烈进出视频 | 成人亚洲欧美一区二区av| av播播在线观看一区| 精品久久国产蜜桃| 国产在视频线精品| 色视频www国产| 免费一级毛片在线播放高清视频| 99视频精品全部免费 在线| 欧美bdsm另类| 我要搜黄色片| 成人av在线播放网站| 又黄又爽又刺激的免费视频.| 三级经典国产精品| 久久国产乱子免费精品| 嫩草影院精品99| 国产人妻一区二区三区在| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产亚洲av涩爱| 精品不卡国产一区二区三区| 国产精品无大码| 又粗又硬又长又爽又黄的视频| 97热精品久久久久久| 别揉我奶头 嗯啊视频| 看十八女毛片水多多多| 亚洲国产精品sss在线观看| 国产成人精品婷婷| 国产在视频线精品| 亚洲人成网站高清观看| 寂寞人妻少妇视频99o| 亚洲国产欧美在线一区| 欧美成人a在线观看| 中文字幕免费在线视频6| 国产探花极品一区二区| 黄片无遮挡物在线观看| 免费大片18禁| 如何舔出高潮| 岛国毛片在线播放| 亚洲欧美精品专区久久| 淫秽高清视频在线观看| 最近2019中文字幕mv第一页| 国产激情偷乱视频一区二区| 国产精品综合久久久久久久免费| 一边亲一边摸免费视频| 三级毛片av免费| 欧美+日韩+精品| 村上凉子中文字幕在线| 91在线精品国自产拍蜜月| 一区二区三区乱码不卡18| 午夜激情福利司机影院| 看片在线看免费视频| 哪个播放器可以免费观看大片| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂 | 狂野欧美激情性xxxx在线观看| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 男的添女的下面高潮视频| 亚洲内射少妇av| 亚洲人与动物交配视频| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 日韩成人伦理影院| 久久99精品国语久久久| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 欧美色视频一区免费| 小蜜桃在线观看免费完整版高清| 蜜臀久久99精品久久宅男| 欧美精品国产亚洲| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 中文字幕av成人在线电影| 99在线人妻在线中文字幕| 日韩 亚洲 欧美在线| 免费av观看视频| av播播在线观看一区| 精品免费久久久久久久清纯| 亚洲国产成人一精品久久久| 免费无遮挡裸体视频| 美女国产视频在线观看| 大香蕉97超碰在线| 成人欧美大片| 蜜臀久久99精品久久宅男| 搡老妇女老女人老熟妇| 内地一区二区视频在线| 九九在线视频观看精品| 国产精品一区二区三区四区久久| 国产精品久久久久久精品电影小说 | 91久久精品国产一区二区成人| 欧美极品一区二区三区四区| 三级经典国产精品| 99久久中文字幕三级久久日本| 男人和女人高潮做爰伦理| 看片在线看免费视频| 亚洲乱码一区二区免费版| 亚洲av熟女| 国产大屁股一区二区在线视频| 寂寞人妻少妇视频99o| 成人特级av手机在线观看| 在线免费十八禁| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 在现免费观看毛片| 国产午夜精品论理片| 色吧在线观看| 99在线视频只有这里精品首页| 国产在线男女| 久久精品国产自在天天线| 男女视频在线观看网站免费| 成人欧美大片| 国产真实伦视频高清在线观看| 午夜免费激情av| 日韩欧美在线乱码| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 一级黄色大片毛片| 亚洲国产欧美在线一区| 免费看av在线观看网站| 国产精品美女特级片免费视频播放器| 能在线免费观看的黄片| 亚洲在线观看片| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 一级毛片aaaaaa免费看小| 欧美日本亚洲视频在线播放| 亚洲国产最新在线播放| 色5月婷婷丁香| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 国产成人午夜福利电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品成人久久小说| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 色噜噜av男人的天堂激情| 成人av在线播放网站| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| www.av在线官网国产| 日日撸夜夜添| 99热全是精品| 欧美不卡视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年免费大片在线观看| 国产黄片美女视频| 久久人人爽人人爽人人片va| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 国产精品一及| 久久久久性生活片| 人体艺术视频欧美日本| 乱人视频在线观看| 成人亚洲精品av一区二区| 亚洲欧美精品自产自拍| 99九九线精品视频在线观看视频| 国产免费又黄又爽又色| 国产私拍福利视频在线观看| 老司机福利观看| 国产亚洲5aaaaa淫片| 亚洲综合精品二区| 国产亚洲精品av在线| 色综合亚洲欧美另类图片| 最近2019中文字幕mv第一页| 三级经典国产精品| 国产亚洲91精品色在线| 国产91av在线免费观看| 精品人妻偷拍中文字幕| 性色avwww在线观看| 国产精品乱码一区二三区的特点| 久久久精品94久久精品| 精品99又大又爽又粗少妇毛片| 国产女主播在线喷水免费视频网站 | 国产探花极品一区二区| 亚洲国产欧美人成| 丝袜喷水一区| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 国产精品1区2区在线观看.| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 日日啪夜夜撸| 国产精品熟女久久久久浪| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 丝袜喷水一区| 最新中文字幕久久久久| 18禁在线无遮挡免费观看视频| 国产午夜精品一二区理论片| 成人国产麻豆网| 国产成人aa在线观看| 全区人妻精品视频| 视频中文字幕在线观看| 看黄色毛片网站| 国产av不卡久久| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 日韩 亚洲 欧美在线| 精品一区二区三区人妻视频| av在线播放精品| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 成人二区视频| 免费看a级黄色片| 亚洲成人久久爱视频| 天堂中文最新版在线下载 | 国产黄色视频一区二区在线观看 | 丝袜美腿在线中文| 欧美高清成人免费视频www| 亚洲欧洲日产国产| av线在线观看网站| 久久99精品国语久久久| 少妇人妻精品综合一区二区| av在线蜜桃| 禁无遮挡网站| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 欧美变态另类bdsm刘玥| 日日撸夜夜添| 久久久久久久久久久丰满| www日本黄色视频网| 秋霞在线观看毛片| 欧美精品一区二区大全| 最后的刺客免费高清国语| 少妇高潮的动态图| av在线播放精品| 尾随美女入室| 国产一区二区亚洲精品在线观看| 十八禁国产超污无遮挡网站| 国产精品av视频在线免费观看| 嘟嘟电影网在线观看| 日产精品乱码卡一卡2卡三| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品影视一区二区三区av| 看免费成人av毛片| 观看美女的网站| 18+在线观看网站| 又粗又硬又长又爽又黄的视频| 观看免费一级毛片| 久久久久久伊人网av| 九九爱精品视频在线观看| www日本黄色视频网| 男女下面进入的视频免费午夜| 超碰97精品在线观看| 国产亚洲5aaaaa淫片| 一级黄片播放器| 日韩精品青青久久久久久| 水蜜桃什么品种好| 我的老师免费观看完整版| 毛片女人毛片| 欧美三级亚洲精品| 国产精华一区二区三区| 全区人妻精品视频| 美女内射精品一级片tv| h日本视频在线播放| 丝袜美腿在线中文| 国产毛片a区久久久久| 亚洲av熟女| 少妇高潮的动态图| 丝袜美腿在线中文| 99久久九九国产精品国产免费| av视频在线观看入口| 日韩,欧美,国产一区二区三区 | 观看免费一级毛片| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂 | 免费av不卡在线播放| 一区二区三区免费毛片| 一级黄色大片毛片| 亚洲国产最新在线播放| 免费观看在线日韩| 99在线视频只有这里精品首页| 1000部很黄的大片| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的 | 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 成人午夜高清在线视频| 国产白丝娇喘喷水9色精品| 嫩草影院入口| 人体艺术视频欧美日本| 在现免费观看毛片| 午夜福利高清视频| 国产麻豆成人av免费视频| 免费电影在线观看免费观看| 亚洲精品一区蜜桃| 久久久久久久久久黄片| 国产探花在线观看一区二区| 亚洲欧洲日产国产| 亚洲成av人片在线播放无|