• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impulsive Control for One Class of the Incommensurate Conformable Fractional Order System with Discontinuous Right Side

    2021-01-07 01:24:36GAOYang高揚(yáng)
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:高揚(yáng)

    GAO Yang(高揚(yáng))

    (Department of Teaching Education,Daqing Normal University,Daqing 163712,China)

    Abstract: In this paper,one class of the incommensurate conformable fractional order system with discontinuous right side (DICFS) is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.

    Key words: Fractionally exponentially stable; Filippov solution; Impulsive control;Conformable fractional-order derivative

    1.Introduction

    In recent years,the fractional order system has attracted many researches.Due to it can be applied in the fields of physics and engineering extensively,see the literatures [1-16].

    Both Riemann-Liouville (RL) and Caputo fractional order derivative are used generally .While,two kinds of fractional order definitions share some weaknesses.For example,the monotonicity of a function f cannot be determined from the RL or Caputo fractional derivative of f.Recently,Khalil[6]gave a new fractional derivative definition named as conformable fractional derivative.Abdeljawad[7]developed the conformable fractional derivative.The stability and asymptotic stability of conformable fractional-order nonlinear systems by using Lyapunov function were obtained in [9].In comparison with the RL and Caputo fractional derivative,the conformable fractional derivative maybe suitable choice,because the conformable fractional derivative can be seen as a natural extension of the usual derivative.

    The study about stability and stabilization for the incommensurate fractional-order system is an interesting topic.[10-15]Stability results about the commensurate fractional-order system maybe not valid for the incommensurate fractional-order system.Therefore,it is important to study the incommensurate fractional-order system.

    In [12],an impulsive incommensurate fractional order system was considered as follows:

    where x=(x1,·,xn)Twas the state variable,0 <α1≤α2≤···≤αn≤1 were the orders of Caputo fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)were λ-Lipschtiz nonlinear functions.Δxi(tk)=xi()-xi(tk).The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative was investigated in [12].Some novel stability criteria for impulsive incommensurate fractional order systems were proposed.

    As far as we know,most of researchers are interested in the commensurate fractional-order system.To the best of authors’ knowledge,there are less results about the incommensurate fractional-order discontinuous system.In this paper,the incommensurate conformable fractional order system with discontinuous right side is considered.Firstly,the existence of the Filippov solution for DICFS is obtained.Secondly,the comparison theorem is constructed for DICFS.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.Main results can be regarded as the generalization of [12].

    Our innovation points are listed as follows.Firstly,the incommensurate fractional-order discontinuous system with the Filippov solution and conformable fractional derivative is modeled.Secondly,New comparison theorem for the incommensurate conformable fractional discontinuous system is showed and used to study stability for the new system.Finally,the Lyapunov theory is applied to the incommensurate conformable fractional order discontinuous system’s impulsive stabilization.

    This paper is organized as follows.Preliminary results are introduced in Section 2.In Section 3,main results are obtained.In the sequel,an example is presented in Section 4.Finally,the conclusions and outlooks are drawn in Section 5.

    2.Preliminaries

    In this section,we will list some definitions and Lemmas which will be used in the later sections.

    Definition 2.1[1]The Caputo fractional derivative of order α ∈(n-1,n) for a continuous function f :R+→R is given by

    Definition 2.2[6]Given a function h defined on an [a,∞),the conformable fractional derivative starting from a of a function h of order α is defined by

    for all t >a,α ∈(0,1].

    Lemma 2.1[9]Let h : [a,∞) →R be a continuous function such that(t) exists on (a,∞).If(t) ≥0 (respectivelyt) ≤0),for all t ∈(a,∞) then the graph of h is increasing (respectively decreasing).

    Definition 2.3[9]The fractional conformable exponential function is defined for every s ≥0 by

    where α ∈(0,1) and λ ∈R.

    Lemma 2.2[9]The origin of system

    is said to be fractionally exponentially stable if

    where λ,K >0.

    Lemma 2.3If α ∈(0,1],x >0,b >0,then (x+b)α≤xα+bαholds.

    ProofLet

    Therefore,we obtain

    In the sequel,f(x) is decreasing in the interval (0,+∞).Note f(x) is continuous about 0,we have f(x)≤f(0).Hence f(x)≤0 holds.

    Then the inequality’s proof is completed.

    Lemma 2.4If α ∈(0,1],λ >0,a >0,b >0,then

    holds.

    ProofBy Lemma 2.3,we have

    Furthermore,

    Therefore,the proof is completed.

    Lemma 2.5If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],b >0,then

    holds.

    ProofLet

    Thus,we obtain

    In the sequel,f(x) is decreasing in the interval (0,1].Noting α ≤β,we have

    So

    holds.

    Then we get

    By Lemma 2.4,we have

    Furthermore,we obtain

    So the inequality’s proof is completed.

    Lemma 2.6If α,β ∈(0,1],α ≤β,λ >0,a ∈(0,1],then

    and Eβ(λ,a)≤Eα(λ,a) hold.

    ProofBy Lemma 2.5,we obtain

    holds.

    Therefore,the inequalities hold.The proof is completed.

    Lemma 2.7Suppose x(t)is absolutely continuous on any compact interval of[0,+∞),then for any i=1,2,··· ,n,

    holds for almost every t ∈[0,+∞) with 0 <α1≤α2≤···≤αn≤1.

    ProofBecause x(t) is absolutely continuous on any compact interval of [0,+∞),we obtain that |x(t)| is absolutely continuous on any compact interval of [0,+∞).Furthermore,|x(t)| is differentiable almost everywhere with respect to t ∈[0,+∞).Assume that |x(t)|′exists at time t.In the sequel,we have

    Then we obtain

    holds for almost every t ∈[0,+∞) .Similarly,

    holds for almost every t ∈[0,+∞).

    The proof is completed.

    3.Main Results

    An incommensurate conformable fractional order system with discontinuous right side is constructed as follows:

    where x = (x1,·,xn)Tis the state variable,0 <α1≤α2≤··· ≤αn≤1 are orders of Conformable fractianal derivatives.fi(x(t),t)(i=1,2,··· ,n)are λ-Lipschtiz nonlinear functions.

    Remark 3.1Ii(xi)(i = 1,2,··· ,n) can be seen as the threshold policy in the ecology system.Because it is natural and reasonable to adopt the threshold policy in order to control the population density of species.Moreover,Ii(xi)(i=1,2,··· ,n) can be seen as the discontinuous activation function of the ith neuron in Hopfield neural networks,such as hard comparator.Therefore,the new discontinuous system is reasonable.

    Let

    The incommensurate conformable fractional order discontinuous system (3.1) is equivalent to the system as follows:

    Based on the Filippov solution of integer order system,the concept of Filippov solution for the incommensurate conformable fractional order discontinuous system is given as follow.

    The set-valued maps can be denoted as

    Definition 3.1A function x(t) is called as a Filippov solution of system (3.1) on interval [0,T) with the initial condition x(0) = x0,if x(t) is absolutely continuous on any compact interval of [0,T) and

    for almost every t ∈[0,T).Or there exists a measurable function(measurable selection of the function I ) γ =(γ1,γ2,··· ,γn),such that γ(t)∈I(x(t)) and

    for almost every t ∈[0,T).

    Now we will discuss the existence of the solution for incommensurate conformable fractional order discontinuous system (3.1) by the fractional-order differential inclusion.

    Theorem 3.1In the sense of (3.3) ,there exists at least one solution of system (3.1)in the interval [0,+∞) for any initial value x(0).

    ProofBecause the set-valued map Tαx(t)F(x(t),t) is upper-semi-continuous with nonempty compact convex values,the local existence of a solution x(t) of (3.1) can be guaranteed.

    Indeed,we obtain |Fi(xi)|=supξ∈Fi(xi)|ξ|≤(λ+1)|xi|.

    Firstly,?t ∈[0,1],the integral equation is obtained as follows:

    Furthermore,we obtain

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[0,1],which ensures that the solution of system (3.1) exists in the interval [0,1].

    Secondly,?t ∈[1,+∞),we have

    According to the Gronwall inequality,we obtain

    So x(t) remains bounded for t ∈[1,+∞),which ensures that the solution of system (3.1)exists in the interval [1,+∞).

    Finally,x(t) remains bounded for t ∈[0,+∞),which ensures that the solution of system(3.1) exists in the interval [0,+∞).

    In order to research impulsive control for the incommensurate conformable fractional order discontinuous system (3.1),new comparison theorems are constructed as follows.We introduce another system which is defined as:

    New comparison theorems are constructed as follows.

    Theorem 3.2For the systems (3.2) and (3.4),if fi(x(t),t)+γi(t)xi(t)≤gi(y(t)) hold almost everywhere and xi0≤yi0,then xi(t)≤yi(t)(i=1,2,··· ,n).

    ProofAccording to the definition of the Filippov solution,we obtain that x(t),y(t)are absolutely continuous on any compact interval of [0,T).In the sequel,x(t),y(t) are locally absolutely continuous.Furthermore,x(t),y(t) are differentiable almost everywhere with respect to t.

    By the condition of this theorem,we obtain that

    hold for almost every t ≥0.

    Choose the time t such that both x(t) and y(t) exist.Therefore,

    The proof is completed.

    Based on Theorem 3.2,the following corollary is obtained naturally.

    Corollary 3.1For the systems (3.2) and (3.4),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))and |xi0|≤yi0,then |xi(t)|≤yi(t)(i=1,2,··· ,n).

    Consider the impulsive discontinuous system as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.2For the systems (3.5) and (3.6),if |fi(x(t),t)+γi(t)xi(t)| ≤gi(y(t))(a.e.t) andthen |xi(t)|≤yi(t)(i=1,2,··· ,n).

    ProofRepeating using Theorem 3.2 in the interval [tk,tk+1] and the factwe can obtain Corollary 3.2.

    Note that fi(x(t),t) are λ-Lipschitz,|γ(t)|≤1 and

    New comparison system for the system (3.6) is obtained as follows.

    where

    Let an orthogonal matrix

    and y(t)=Mz(t).The equivalent system of (3.7) is obtained as follows:

    where

    For the system (3.8),the following theorem is given.

    Theorem 3.3If τk= tk-tk-1<1 and dik= Eαi(-2(nλ+1),τk) ,then the trivial solution zi=0 of system (3.8) is fractionally exponentially stable with=dikzi(tk) .

    ProofFor any t ∈[0,t1],we obtain

    and

    In the sequel,for any i=1,2,··· ,n ,we have

    Moreover,we get

    In general,for t ∈(tk-1,tk],we have

    This means the trivial solution zi=0 of system(3.8)is fractionally exponentially stable.The proof is completed.

    Then the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.4If τk=tk-tk-1<1,dik=Eαi(-2(nλ+1),τk),then impulsive control can stabilized the system (3.1) withThis means that the trivial solution xi=0 of system (3.5) is fractionally exponentially stable.

    ProofBy Theorem 3.3 and y(t)=Mz(t),we obtain

    This demonstrates that the systems (3.7) and (3.8) are fractionally exponentially stable.We can choose

    With the help of new comparison theorem(Theorem 3.2),we obtain the trivial solution xi=0 of system(3.5)is fractionally exponentially stable.Then impulsive control can stabilize system (3.1).

    In the next part,we will design a new comparison system for the incommensurate conformable fractional order discontinuous system (3.5) based on (3.6).Using Lemma 2.7,for any t ∈[0,1],we have tαi-α1≤1,and Tαiyi(t)=tα1-αiTα1yi(t)=gi(y(t)).

    Hence,Tα1yi(t)=tαi-α1Tαiyi(t)≤gi(y(t)).

    While,for any t ∈[1,+∞),tαi-αn≤1,and

    Hence,

    The new comparison system is constructed as follows:

    Therefore,the following corollary is obtained naturally.

    Corollary 3.3For the systems (3.6) and (3.9),if gi(y(t)) ≤gi(z(t)) (a.e.t) andthen yi(t)≤zi(t)(i=1,2,··· ,n).

    Hence the impulsive control of the incommensurate conformable fractional order discontinuous system can be realized as follows:

    Theorem 3.5If

    holds for almost everywhere with respect to t and τk= tk-tk-1<1,λ >0 ,dik= dk=Eα1(-λ,τk),then the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.This means that impulsive control can stabilize system (3.1) with xi(=dikxi(tk).

    ProofNotice the condition (3.10),for z(t)(t ∈[0,1]),we obtain that

    Therefore,for any t ∈[tk-1,tk]?[0,1] ,we get

    Moreover,

    and

    Using Lemma 2.4,2.5,2.6,for t ∈(tk-1,tk]?[0,1],we have

    and

    Similarly,for t ∈(tk-1,tk]?(1,+∞),we have

    Therefore,we have

    This means that the trivial solution zi=0 of system(3.9)is fractionally exponentially stable.With the help of Theorem 3.2,Corollary 3.2 and Corollary 3.3,impulsive control can stabilize the system (3.1) with xi)=dikxi(tk).

    4.An Example

    In this section,an example is presented to illustrate Theorem 3.4 and Theorem 3.5.

    Consider the following system of incommensurate conformable fractional discontinuous equation:

    where α1=0.2,α2=0.5,β12=-β21=9,ε1=ε2=2 .

    Model (4.1) comes from [2].In [2],LI investigated a coupled system of fractional-order differential equations on network with feedback controls.Model (4.1) can be seen as coupled system of incommensurate fractional-order differential equations on network with Threshold Policy.

    A comparison system is constructed as follows.

    Therefore,we have

    Here,λ=22.Choose τk=tk-tk-1<1 ,dik=Eαi(-90,τk) and

    Then the impulsive control can be designed to stabilize system (4.1) by Theorem 3.4 with

    After calculating,we obtain

    τk= tk-tk-1<1,dik= dk= Eα1(-13,τk).Then the impulsive control can be designed to stabilize the system (4.1) by Theorem 3.5 with xi=dikxi(tk).

    Remark 4.1From the example,we can see that Theorem 3.5 is more convenient than Theorem 3.4 in application.While,Theorem 3.4 and Theorem 3.5 are equally effective when softwares for calculation are used by us.

    5.Conclusions and Outlooks

    In this paper,the incommensurate conformable fractional order system with discontinuous right side is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the new incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,an example is given to illustrate applications of main results.

    Further studies on this subject are being carried out by the presenting authors in the two aspects: one is to study the model with time delay; the other is to apply the method to suitable discontinuous system.

    猜你喜歡
    高揚(yáng)
    忽如一夜春風(fēng)來
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    欺騙干擾對GNSS/INS系統(tǒng)定位性能的影響
    守護(hù)“舌尖上的安全”
    如日方升
    安邸AD(2022年5期)2022-05-24 12:38:14
    高揚(yáng)開放共享之帆 開啟合作共贏之航
    深度學(xué)習(xí)在冠心病診療中的發(fā)展與應(yīng)用
    期末測試題一
    高揚(yáng)“科技興糧”和“人才興糧”的風(fēng)帆
    打造核心“重器” 磨煉“關(guān)鍵一招”——金華日報(bào)高揚(yáng)主旋律打開新局面
    傳媒評論(2018年9期)2018-12-07 00:37:28
    国产欧美亚洲国产| 中文资源天堂在线| 欧美97在线视频| 久久精品国产鲁丝片午夜精品| 国产成人a∨麻豆精品| 少妇的逼好多水| 国产精品秋霞免费鲁丝片| 在线看a的网站| 亚洲久久久国产精品| 亚洲av成人精品一区久久| 91精品国产九色| 天堂8中文在线网| 日韩三级伦理在线观看| 蜜臀久久99精品久久宅男| 天堂中文最新版在线下载| 久久这里有精品视频免费| 自线自在国产av| 国产精品免费大片| 国产午夜精品一二区理论片| 久久精品国产亚洲网站| 夜夜骑夜夜射夜夜干| 91精品伊人久久大香线蕉| 有码 亚洲区| 亚洲av男天堂| 人人妻人人澡人人看| 日本wwww免费看| 午夜av观看不卡| 制服丝袜香蕉在线| av天堂中文字幕网| 亚洲国产日韩一区二区| 看免费成人av毛片| 国产成人一区二区在线| 精品人妻一区二区三区麻豆| 内地一区二区视频在线| 亚洲国产成人一精品久久久| 蜜桃久久精品国产亚洲av| 大香蕉97超碰在线| 国产精品熟女久久久久浪| 老司机影院成人| 人妻少妇偷人精品九色| 人人妻人人添人人爽欧美一区卜| 在线观看三级黄色| 日韩中文字幕视频在线看片| 我的女老师完整版在线观看| 自拍偷自拍亚洲精品老妇| 国内少妇人妻偷人精品xxx网站| 寂寞人妻少妇视频99o| 亚洲国产日韩一区二区| 九草在线视频观看| 国产精品一区二区三区四区免费观看| 不卡视频在线观看欧美| 交换朋友夫妻互换小说| 亚洲av国产av综合av卡| 欧美日韩一区二区视频在线观看视频在线| 久久人妻熟女aⅴ| 成人毛片60女人毛片免费| 亚洲成人av在线免费| 亚洲一区二区三区欧美精品| 欧美三级亚洲精品| 国产男女超爽视频在线观看| a级片在线免费高清观看视频| 午夜视频国产福利| 亚洲国产精品999| 尾随美女入室| 久久这里有精品视频免费| 久久狼人影院| 亚洲精华国产精华液的使用体验| 久久久久久久亚洲中文字幕| 天堂俺去俺来也www色官网| 中文乱码字字幕精品一区二区三区| 国产男人的电影天堂91| 午夜激情久久久久久久| 97超视频在线观看视频| 丰满乱子伦码专区| 观看美女的网站| 日韩中文字幕视频在线看片| 一区二区三区精品91| 亚洲熟女精品中文字幕| 国产极品粉嫩免费观看在线 | videossex国产| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 99久久综合免费| 大香蕉97超碰在线| 国产成人免费无遮挡视频| 亚洲综合精品二区| 久久久久国产精品人妻一区二区| 性色av一级| 99热6这里只有精品| 色视频www国产| 成年av动漫网址| 久久久a久久爽久久v久久| a级一级毛片免费在线观看| 伊人久久国产一区二区| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 欧美老熟妇乱子伦牲交| 久久精品熟女亚洲av麻豆精品| 中文字幕久久专区| 日日摸夜夜添夜夜添av毛片| 少妇的逼水好多| 久久久久久久久久成人| 18+在线观看网站| 成人亚洲精品一区在线观看| 伦精品一区二区三区| 日本欧美视频一区| 亚洲av不卡在线观看| 丝瓜视频免费看黄片| 日韩视频在线欧美| 极品教师在线视频| 三上悠亚av全集在线观看 | 在线观看av片永久免费下载| 国产 一区精品| 最近最新中文字幕免费大全7| 一本—道久久a久久精品蜜桃钙片| 国产黄色免费在线视频| 69精品国产乱码久久久| 亚洲av成人精品一二三区| 国产亚洲午夜精品一区二区久久| 中文精品一卡2卡3卡4更新| 亚洲欧美成人综合另类久久久| 99久久精品热视频| 九色成人免费人妻av| 搡老乐熟女国产| 久久久亚洲精品成人影院| 久久99蜜桃精品久久| 国产成人91sexporn| 亚洲内射少妇av| 亚洲国产欧美在线一区| 免费av中文字幕在线| 亚洲,一卡二卡三卡| 老司机影院成人| 久久久久久久大尺度免费视频| 亚洲精品中文字幕在线视频 | 丝袜喷水一区| 中国美白少妇内射xxxbb| 亚洲三级黄色毛片| 亚洲第一av免费看| 精品久久久噜噜| 人妻一区二区av| 99re6热这里在线精品视频| 一级毛片aaaaaa免费看小| 中国美白少妇内射xxxbb| 99精国产麻豆久久婷婷| 人体艺术视频欧美日本| 美女大奶头黄色视频| av播播在线观看一区| 国产精品成人在线| 亚洲精品乱久久久久久| 亚洲,一卡二卡三卡| 国产 精品1| 午夜91福利影院| 春色校园在线视频观看| a级毛片免费高清观看在线播放| 嫩草影院新地址| 亚洲综合精品二区| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 亚洲国产欧美在线一区| 欧美日韩视频高清一区二区三区二| 国产在视频线精品| 色婷婷久久久亚洲欧美| 亚洲精品456在线播放app| 男女无遮挡免费网站观看| 黄色一级大片看看| a级毛片在线看网站| 亚洲第一区二区三区不卡| 99国产精品免费福利视频| 黄色欧美视频在线观看| 午夜视频国产福利| 在线天堂最新版资源| 国产极品天堂在线| 亚洲欧美精品专区久久| 亚洲国产欧美在线一区| 最近中文字幕高清免费大全6| 国产 精品1| 亚洲精品中文字幕在线视频 | 国产色婷婷99| 五月开心婷婷网| 免费人妻精品一区二区三区视频| 日日撸夜夜添| 国产一区亚洲一区在线观看| 色视频在线一区二区三区| 一本一本综合久久| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 国产成人午夜福利电影在线观看| 欧美激情国产日韩精品一区| 色网站视频免费| 中文欧美无线码| 国产亚洲欧美精品永久| 国产成人精品婷婷| 毛片一级片免费看久久久久| 秋霞在线观看毛片| 狂野欧美白嫩少妇大欣赏| 天堂俺去俺来也www色官网| 亚洲美女搞黄在线观看| 久久这里有精品视频免费| 国产高清不卡午夜福利| 男人舔奶头视频| 中文欧美无线码| 爱豆传媒免费全集在线观看| 91精品国产国语对白视频| 人妻系列 视频| 成人综合一区亚洲| 国产又色又爽无遮挡免| av天堂中文字幕网| 啦啦啦在线观看免费高清www| 美女福利国产在线| 免费黄色在线免费观看| 国产精品久久久久久精品古装| 国产高清三级在线| av有码第一页| 亚洲av中文av极速乱| 国产精品人妻久久久影院| av一本久久久久| 丰满少妇做爰视频| 极品教师在线视频| 亚洲国产精品999| 在线观看av片永久免费下载| 视频区图区小说| 有码 亚洲区| 春色校园在线视频观看| 国产深夜福利视频在线观看| 国产精品99久久久久久久久| 天天躁夜夜躁狠狠久久av| freevideosex欧美| 亚州av有码| 精品国产国语对白av| 国产精品伦人一区二区| 麻豆成人av视频| h日本视频在线播放| 男女啪啪激烈高潮av片| 成人国产av品久久久| 观看美女的网站| 插阴视频在线观看视频| 久久久久国产精品人妻一区二区| 中文字幕制服av| 精品一区二区三卡| 国产伦在线观看视频一区| 国产免费福利视频在线观看| 国产成人免费观看mmmm| 国产精品久久久久久av不卡| 亚洲成人一二三区av| 日韩在线高清观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 日韩人妻高清精品专区| 亚洲精品色激情综合| 国产在视频线精品| 亚洲美女搞黄在线观看| 日韩熟女老妇一区二区性免费视频| 国产黄频视频在线观看| 亚洲精品色激情综合| av卡一久久| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 搡女人真爽免费视频火全软件| 国产av国产精品国产| 国产精品蜜桃在线观看| 不卡视频在线观看欧美| .国产精品久久| 久久免费观看电影| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 涩涩av久久男人的天堂| 中文在线观看免费www的网站| 久久精品熟女亚洲av麻豆精品| 久久久久久人妻| 久久精品熟女亚洲av麻豆精品| 国产探花极品一区二区| 亚洲精品自拍成人| 亚洲欧洲日产国产| 欧美日韩av久久| 日韩精品免费视频一区二区三区 | 五月玫瑰六月丁香| 免费黄色在线免费观看| 欧美+日韩+精品| 久久久久久久久久久久大奶| 久久精品久久久久久久性| 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 久久久午夜欧美精品| 好男人视频免费观看在线| 99久久精品一区二区三区| 国产一区二区三区av在线| 久久国内精品自在自线图片| kizo精华| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| av专区在线播放| 国内揄拍国产精品人妻在线| 狂野欧美激情性bbbbbb| 亚洲av二区三区四区| 777米奇影视久久| 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 观看美女的网站| 欧美3d第一页| 久久久久久久久久久免费av| 亚州av有码| 精品人妻熟女av久视频| 在线精品无人区一区二区三| 十分钟在线观看高清视频www | 免费在线观看成人毛片| 国产精品一区二区三区四区免费观看| 亚洲av成人精品一二三区| 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 伊人久久国产一区二区| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 成人18禁高潮啪啪吃奶动态图 | 欧美+日韩+精品| 亚洲一区二区三区欧美精品| 国产亚洲午夜精品一区二区久久| 日韩欧美精品免费久久| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 久久毛片免费看一区二区三区| 国产av码专区亚洲av| 亚洲av男天堂| 亚洲精品日本国产第一区| 久久久精品免费免费高清| 一级,二级,三级黄色视频| 久久久久人妻精品一区果冻| 曰老女人黄片| 国产色爽女视频免费观看| 大话2 男鬼变身卡| 少妇的逼好多水| 免费黄色在线免费观看| 久久久久久久亚洲中文字幕| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 99久久综合免费| 亚洲第一av免费看| 欧美精品一区二区免费开放| 久久午夜福利片| 国产午夜精品一二区理论片| 两个人的视频大全免费| 日本猛色少妇xxxxx猛交久久| a级毛色黄片| 久久久久久久久久久免费av| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| 黄色配什么色好看| 亚洲熟女精品中文字幕| 精品国产国语对白av| 九九爱精品视频在线观看| 成人亚洲精品一区在线观看| 欧美bdsm另类| 热99国产精品久久久久久7| av视频免费观看在线观看| 日本午夜av视频| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 两个人免费观看高清视频 | 久久6这里有精品| 伊人久久国产一区二区| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 一本一本综合久久| 国产av一区二区精品久久| 亚洲精品乱码久久久久久按摩| 青青草视频在线视频观看| 高清毛片免费看| 精品熟女少妇av免费看| 女人精品久久久久毛片| 最近手机中文字幕大全| 蜜桃在线观看..| 亚洲怡红院男人天堂| 成年人午夜在线观看视频| 成人综合一区亚洲| 亚洲精品,欧美精品| 高清欧美精品videossex| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 我要看日韩黄色一级片| 一级爰片在线观看| 最新中文字幕久久久久| 免费黄色在线免费观看| 久久av网站| 国产黄片美女视频| 美女国产视频在线观看| 免费看日本二区| 精品熟女少妇av免费看| 91久久精品国产一区二区成人| 欧美+日韩+精品| a级毛片免费高清观看在线播放| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 免费观看性生交大片5| 少妇 在线观看| 国产淫语在线视频| 最黄视频免费看| 一本一本综合久久| 亚洲国产精品999| 国产精品三级大全| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 色视频www国产| 亚洲精品乱码久久久久久按摩| 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 精品少妇黑人巨大在线播放| 男女国产视频网站| 男人添女人高潮全过程视频| 中国三级夫妇交换| 高清毛片免费看| 亚洲真实伦在线观看| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看 | 在线看a的网站| 99九九线精品视频在线观看视频| 久久久国产欧美日韩av| 观看av在线不卡| 亚洲av免费高清在线观看| 国产精品国产av在线观看| 亚洲av国产av综合av卡| 插阴视频在线观看视频| 一个人看视频在线观看www免费| 黑人猛操日本美女一级片| 在线观看人妻少妇| av福利片在线| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 又爽又黄a免费视频| 久久久久久久久久成人| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 久久99一区二区三区| 高清不卡的av网站| 国产成人午夜福利电影在线观看| www.色视频.com| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 一级a做视频免费观看| 欧美精品一区二区免费开放| 免费大片18禁| 国产免费又黄又爽又色| 精品国产一区二区久久| 在线观看www视频免费| 天天操日日干夜夜撸| 亚洲国产最新在线播放| 亚洲国产精品999| 国产一区亚洲一区在线观看| freevideosex欧美| 国产在视频线精品| 欧美成人午夜免费资源| 久久99精品国语久久久| 国产中年淑女户外野战色| 久久久久久久久久人人人人人人| 女人精品久久久久毛片| 久久精品久久久久久久性| 久久久久国产网址| 国产日韩欧美亚洲二区| 国产亚洲5aaaaa淫片| 国产片特级美女逼逼视频| 高清黄色对白视频在线免费看 | 国产亚洲最大av| 国产精品久久久久久av不卡| 国产 精品1| av.在线天堂| 嫩草影院新地址| 日韩成人伦理影院| 伦理电影免费视频| 十八禁高潮呻吟视频 | 亚洲欧美中文字幕日韩二区| 在线看a的网站| 精品人妻熟女av久视频| 亚洲一区二区三区欧美精品| 国产美女午夜福利| 在线观看av片永久免费下载| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 五月天丁香电影| 22中文网久久字幕| 最近2019中文字幕mv第一页| 日韩欧美 国产精品| 亚洲欧美一区二区三区国产| 久久99一区二区三区| 国产精品嫩草影院av在线观看| 大香蕉久久网| 久久综合国产亚洲精品| 欧美高清成人免费视频www| 女人精品久久久久毛片| 高清欧美精品videossex| 最近手机中文字幕大全| 五月开心婷婷网| 精品少妇内射三级| 夫妻性生交免费视频一级片| 日日爽夜夜爽网站| www.av在线官网国产| 天美传媒精品一区二区| 少妇的逼水好多| 亚洲欧洲精品一区二区精品久久久 | 免费观看的影片在线观看| 黄色欧美视频在线观看| 极品人妻少妇av视频| 亚洲精品国产成人久久av| 亚洲欧洲日产国产| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线 | 亚洲成色77777| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 欧美变态另类bdsm刘玥| 夜夜看夜夜爽夜夜摸| 卡戴珊不雅视频在线播放| 日韩一区二区视频免费看| 精品久久国产蜜桃| 人人妻人人看人人澡| 青春草亚洲视频在线观看| 久久av网站| 91久久精品国产一区二区三区| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 久久鲁丝午夜福利片| 精品卡一卡二卡四卡免费| 欧美日本中文国产一区发布| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 三级经典国产精品| 春色校园在线视频观看| 国产永久视频网站| 在线观看www视频免费| 国产一区二区在线观看日韩| 成年av动漫网址| 一本色道久久久久久精品综合| 国产色婷婷99| 中国国产av一级| 亚洲,欧美,日韩| 亚洲,一卡二卡三卡| 亚洲经典国产精华液单| av不卡在线播放| 欧美三级亚洲精品| 日韩欧美精品免费久久| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 亚洲欧洲精品一区二区精品久久久 | 亚洲性久久影院| 久久人人爽av亚洲精品天堂| 国产午夜精品一二区理论片| 噜噜噜噜噜久久久久久91| 国产精品国产av在线观看| 国产精品一区二区在线不卡| 少妇的逼水好多| 夫妻午夜视频| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 亚洲av成人精品一二三区| 99久久人妻综合| 精品国产乱码久久久久久小说| 亚洲国产欧美日韩在线播放 | 国产精品久久久久久精品电影小说| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 久久久午夜欧美精品| 久久99热6这里只有精品| 如日韩欧美国产精品一区二区三区 | 免费观看av网站的网址| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 99视频精品全部免费 在线| 一本大道久久a久久精品| 大话2 男鬼变身卡| 亚洲四区av| 成年美女黄网站色视频大全免费 | 午夜91福利影院| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 22中文网久久字幕| 日韩一区二区三区影片| 欧美日韩视频精品一区| 中文字幕免费在线视频6| 美女主播在线视频| 中文字幕亚洲精品专区| 欧美bdsm另类| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 欧美精品高潮呻吟av久久| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 国产综合精华液| 女性生殖器流出的白浆| 亚洲高清免费不卡视频| 老司机影院毛片| 99久久综合免费| 日韩,欧美,国产一区二区三区| 国产成人免费无遮挡视频| 国产精品久久久久久久电影| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 亚洲精品国产av蜜桃|