• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence and Stability of Positive Solutions to Nonlinear Delay Integro-Differential Equation on Time Scales

    2021-01-07 01:24:34HUMeng胡猛LVHaiyan呂海燕
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:海燕

    HU Meng (胡猛),LV Haiyan (呂海燕)

    (School of Mathematics and Statistics,Anyang Normal University,Anyang 455000,China)

    Abstract: This paper studies the existence and stability of positive solutions for a class of nonlinear delay integro-differential equation on time scales.By using Schauder’s fixed point theorem and the theory of dynamic equations on time scales,sufficient conditions for the existence of positive periodic solutions in shifts δ± and positive solutions,and sufficient conditions for the exponential stability of positive solution of the equation are obtained,respectively.Finally,two examples are given to illustrate the usefulness of the main results.

    Key words: Time scale; Integro-differential equation; Schauder’s fixed point theorem;Periodic solution in shifts δ±; Positive solution; Exponential stability

    1.Introduction

    In this paper,we are concerned with the investigation of a nonlinear integro-differential equation on time scales of the form

    where T ?R is a time scale; p ∈Crd([t0,τ)T,R),g ∈C((0,+∞),(0,+∞)),and t0,τ ∈T are positive constants with τ >t0; the function δ-(·,t) is a delay function generated by the backward shift operator δ-on time scale T,the definitions and properties of shift operators δ±can be found in [1-3].

    For T=R with δ-(s,t)=t-s and t0=0,then (1.1) reduces to the integro-differential equation of convolution type

    For T = Z with δ-(s,t) = t-s and t0= 0,then (1.1) reduces to the integro-difference equation of convolution type

    The equation (1.2) was encountered by [4] in the theory of a circulating fuel nuclear reactor.In this model,x is the neutron density.It is also a good model in one dimensional viscoelasticity in which x is the strain and p is the relaxation function.The equation (1.3)has been proposed to model some biological problems.One may see [5-7] for the researches on the equations (1.2) and (1.3).Besides (1.2) and (1.3),equation (1.1) includes many other types equations in particular cases.

    The theory of time scales was introduced in [8].The time scale theory provides a wide perspective for the unification of discrete and continuous analyses.In recent years,the existence problem of positive solution is an important topic in qualitative analysis of functional dynamic equations on time scales.[9-10]Up to now,the existence and boundedness of the solutions of nonlinear system of Volterra type integro-differential equations on time scales has been investigated in [1-2,11].However,the existence positive solutions of integro-differential equations of the form (1.1) has not been treated elsewhere before,even for the equation (1.1)on some particular time scales.

    Motivated by the above statements,we bring the integro-differential equation(1.1)under investigation to obtain more general results.The main purpose of this paper is to establish sufficient conditions for the existence of positive periodic solutions in shifts δ±and positive solutions of the equation(1.1)via Schauder’s fixed point theorem.Moreover,sufficient conditions for the exponential stability of positive solution of the equation (1.1) are also explored.

    2.Preliminaries

    Let T be a nonempty closed subset (time scale) of R.The forward and backward jump operators σ,ρ:T →T and the graininess μ : T →R+are defined,respectively,by

    σ(t)=inf{s ∈T:s >t},ρ(t)=sup{s ∈T:s <t} and μ(t)=σ(t)-t.

    A point t ∈T is called left-dense if t >inf T and ρ(t) = t,left-scattered if ρ(t) <t,right-dense if t <sup T and σ(t)=t,and right-scattered if σ(t)>t.If T has a left-scattered maximum m,then Tk= T{m}; otherwise Tk= T.If T has a right-scattered minimum m,then Tk=T{m}; otherwise Tk=T.

    A function f : T →R is right-dense continuous provided it is continuous at right-dense point in T and its left-side limits exist at left-dense points in T.If f is continuous at each right-dense point and each left-dense point,then f is said to be a continuous function on T.The set of continuous functions f :T →R will be denoted by C(T)=C(T,R).

    A function p : T →R is called regressive provided 1+μ(t)p(t)0 for all t ∈Tk.The set of all regressive and rd-continuous functions p : T →R will be denoted by R = R(T,R).Define the set R+=R+(T,R)={p ∈R:1+μ(t)p(t)>0,?t ∈T}.

    If r is a regressive function,then the generalized exponential function eris defined by

    for all s,t ∈T,with the cylinder transformation

    Let p,q :T →R be two regressive functions,define

    Lemma 2.1[12]Assume that p,q :T →R be two regressive functions,then

    (i) e0(t,s)≡1 and ep(t,t)≡1;

    (ii) ep(σ(t),s)=(1+μ(t)p(t))ep(t,s);

    (iii) ep(t,s)==e?p(s,t);

    (iv) ep(t,s)ep(s,r)=ep(t,r);

    (v) (e?p(t,s))Δ=(?p)(t)e?p(t,s);

    A comprehensive review on the shift operators δ±and the new periodicity concepts on time scales can be found in [13-14].

    Let T*be a non-empty subset of the time scale T and t0∈T*be a fixed number.Define operators δ±:[t0,+∞)×T*→T*.The operators δ+and δ-associated with t0∈T*(called the initial point) are said to be forward and backward shift operators on the set T*,respectively.The variable s ∈[t0,+∞)Tin δ±(s,t)is called the shift size.The value δ+(s,t)and δ-(s,t)in T*indicate s units translation of the term t ∈T*to the right and left,respectively.The sets

    are the domains of the shift operator δ±,respectively.Hereafter,T*is the largest subset of the time scale T such that the shift operators δ±:[t0,+∞)×T*→T*exist.

    Definition 2.1[14](Periodicity in shifts δ±) Let T be a time scale with the shift operators δ±associated with the initial point t0∈T*.The time scale T is said to be periodic in shifts δ±if there exists p ∈(t0,+∞)T*such that (p,t)∈D±for all t ∈T*.Furthermore,if

    then P is called the period of the time scale T.

    Definition 2.2[14](Periodic function in shifts δ±) Let T be a time scale that is periodic in shifts δ±with the period P.We say that a real-valued function f defined on T*is periodic in shifts δ±if there exists ω ∈[P,+∞)T*such that (ω,t) ∈D±and f((t)) = f(t) for all t ∈T*,where=δ±(ω,t).The smallest number ω ∈[P,+∞)T*is called the period of f.

    The following fixed point theorem will be used to prove the main results in the next two sections.

    Theorem 2.1[15-16](Schauder’s fixed point theorem) Let Ω be a closed,convex and nonempty subset of a Banach space X.Let S : Ω →Ω be a continuous mapping such that SΩ is a relatively compact subset of X.Then S has at least one fixed point in Ω.That is there exists an x ∈Ω such that Sx=x.

    3.Positive Periodic Solutions in Shifts δ±

    In this section we shall study the existence of positive ω-periodic solutions in shifts δ±of the equation (1.1).

    Lemma 3.1Suppose that there exists a positive continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that

    Then the function

    is ω-periodic in shifts δ±.

    ProofFor t ∈[t0,+∞)T,we obtain

    Thus the function f is ω-periodic in shifts δ±.The proof is complete.

    Theorem 3.1Suppose that there exists a positive continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.1) holds and

    Then (1.1) has a positive ω-periodic solution in shifts δ±.

    ProofLet X =Crd([δ-(τ,t0),+∞)T,R) be a Banach space with the norm

    We set

    With regard to Lemma 3.1 we have m ≤f(t)≤M,where

    We now define a closed,bounded and convex subset Ω of X as follows

    Define the operator S :Ω →X as follows

    We shall show that for any x ∈Ω we have Sx ∈Ω.

    For every x ∈Ω and t ∈[t0,+∞)Twe get

    and (Sx)(t)≥m.

    For t ∈[δ-(τ,t0),t0]Twe have (Sx)(t)=1,that is (Sx)(t)∈Ω.

    Further for every x ∈Ω and t ∈[t0,+∞)T,s ∈[δ-(τ,t0),t]T,according to(3.2)it follows

    Finally we shall show that for x ∈Ω,t ∈[t0,+∞)T,the function Sx is ω-periodic in shifts δ±.For x ∈Ω,t ∈[t0,+∞)Tand with regard to (3.1) we get

    that is,Sx is ω-periodic in shifts δ±on [t0,+∞)T.Thus we have proved that Sx ∈Ω for any x ∈Ω.

    We now show that S is completely continuous.First we shall show that S is continuous.Let xi∈Ω be such that xi→x ∈Ω as i →∞.For t ∈[t0,+∞)Twe have

    then we obtain that

    For t ∈[δ-(τ,t0),t0]T,the relation above is also valid.This means that S is continuous.

    We now show that SΩ is relatively compact.It is sufficient to show by the Arzela-Ascoli theorem that the family of functions {Sx:x ∈Ω} is uniformly bounded and equicontinuous on [δ-(τ,t0),+∞)T.The uniform boundedness follows from the definition of Ω.According to (3.3) for t ∈[t0,+∞)Tand x ∈Ω,we get

    For t ∈[δ-(τ,t0),t0]Tand x ∈Ω,we have

    This shows the equicontinuity of the family SΩ.Hence SΩ is relatively compact and therefore S is completely continuous.By Theorem 2.1 there is an∈Ω such that S=We see thatis a positive ω-periodic solution in shifts δ±of (1.1).The proof is complete.

    Corollary 3.1Suppose that there exists a positive continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.1) holds and

    Then the equation

    has a positive ω-periodic solution in shifts δ±

    4.Positive Solutions

    In this section we shall study the existence of positive solutions of the equation (1.1).

    Theorem 4.1Suppose that there exists a positive continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.2) holds and

    Then (1.1) has a positive solution

    ProofLet X1= x ∈Crd([δ-(τ,t0),+∞)T,R) be the set of all rd-continuous bounded functions.Then X1is a Banach space with the norm ‖x‖=supt∈[δ-(τ,t0),+∞)T|x(t)|.We set

    We define a closed,bounded and convex subset Ω1of X1as follows

    Define the operator S1:Ω1→X1as follows

    For every x ∈Ω1and t ∈[t0,+∞)T,we obtain

    and (S1x)(t) ≥w(t).For t ∈[δ-(τ,t0),t0]Twe get (S1x)(t) = 1,that is (S1x)(t) ∈Ω.Now we can proceed by the similar way as in the proof of Theorem 3.1.We omit the rest of the proof.

    Corollary 4.1Assume that there exists a positive and continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.4) and (4.1) hold.Then (3.5) has a positive solution

    Corollary 4.2Assume that there exists a positive and continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.2) and (4.1) hold and

    Then (1.1) has a positive solution which tends to zero.

    Corollary 4.3Assume that there exists a positive and continuous function k(t,s),s ∈[δ-(τ,t),t]T,such that (3.2) and (4.1) hold and

    Then (1.1) has a positive solution which tends to constant e?a.

    5.Exponential Stability

    In this section,we shall study the exponential stability of positive solution of (1.1).We denote x(t;t0,φ),t ∈[δ-(τ,t0),+∞)T,for a solution of (1.1) satisfying the initial condition x(s;t0,φ) = φ(s) >0 for s ∈[δ-(τ,t0),t0]T.Let x(t) = x(t;t0,φ),x1(t) = x(t;t0,φ1) and y(t)=x(t)-x1(t),t ∈[δ-(τ,t0),+∞)T.Then we get

    By the mean value theorem we obtain

    Definition 5.1Let x1be a positive solution of(1.1)and there exist constants Tφ,x1,Kφ,x1and λ >0 such that for every solution x(t;t0,φ) of (1.1)

    |x(t;t0,φ)-x1(t)|≤Kφ,x1e?λ(t,0),t ≥Tφ,x1.

    Then x1is said to be exponentially stable.

    Theorem 5.1Suppose that (3.2) and (4.1) hold and

    p ∈Crd([0,τ]T,(0,+∞]),g ∈C1((0,+∞),(0,+∞)),g′(x)≥c >0.

    Then (1.1) has a positive solution which is exponentially stable.

    ProofWe shall show that there exists a positive λ such that

    |x(t;t0,φ)-x1(t)|≤Kφ,x1e?λ(t,0),t ∈[T1,+∞)T,T1≥δ+(τ,t0),

    where Kφ,x1=maxt∈[δ-(τ,t0),T1]T|y(t)|eλ(T1,0)+1.

    Consider the following Lyapunov function

    V(t)=|y(t)|eλ(t,0),t ∈[T1,+∞)T.

    We claim that V(t) ≤Kφ,x1for t ∈[T1,+∞)T.On the other hand,there exists t*∈[T1,+∞)T,and t*is the first constant such that V(t*)=Kφ,x1or V(t*)>Kφ,x1.Calculating the upper left derivative of V(t) along the solution y of (5.1),we obtain

    For t=t*,we get

    If y(t) >0,t ∈[t0,+∞)T,then from (5.1) it follows that for t ∈[T1,+∞)Tthe function y is decreasing and if y(t)<0,t ∈[t0,+∞)T,then y is increasing for t ∈[T1,+∞)T.We conclude that |y(t)|,t ∈[T1,+∞)Thas decreasing character.Then we obtain

    6.Examples

    In this section,we give two examples to illustrate our main results.Consider the nonlinear integro-differential equation

    Example 1If T=R.Let p(t)=π sin(πt),then ω =2,we choose

    and τ =2.

    Then for the condition (3.1),we have

    For the condition (3.4),we have

    All conditions of Corollary 3.1 are satisfied and the equation(6.1)has a positive 2-periodic solution in shifts δ±

    Example 2If T=Z.Letwe choose

    Then for the condition (3.2),we have

    For the condition (4.2),we have

    All conditions of Corollary 4.2 are satisfied and the equation(6.1)has a positive solution

    that is,(6.1) has a positive solution which tends to zero.

    猜你喜歡
    海燕
    鄭人買履
    春回大地
    Cultural Differences And Translation
    三角恒等變換的失分點(diǎn)
    Friendship
    賞春
    特別文摘(2016年8期)2016-05-04 05:47:51
    賞春
    特別文摘(2016年8期)2016-05-04 05:47:50
    An analysis of mind style in the short fiction Chrysanthemums
    The Perpetuation of and the Challenge to the Stereotypes of Irish Women
    銀杏
    国产高清激情床上av| 91麻豆av在线| 俄罗斯特黄特色一大片| 校园人妻丝袜中文字幕| 欧美日韩精品成人综合77777| 国产亚洲91精品色在线| 亚洲一级一片aⅴ在线观看| 中文字幕熟女人妻在线| 国产精品三级大全| 男插女下体视频免费在线播放| 国产精品一区www在线观看 | 在线观看av片永久免费下载| 久久久成人免费电影| 极品教师在线免费播放| 国产精品嫩草影院av在线观看 | 1000部很黄的大片| 男女做爰动态图高潮gif福利片| 欧美性猛交╳xxx乱大交人| 国产成人影院久久av| bbb黄色大片| 乱码一卡2卡4卡精品| 国产成人一区二区在线| 国产av在哪里看| 亚洲熟妇熟女久久| 国产精品女同一区二区软件 | 日本免费一区二区三区高清不卡| 美女高潮喷水抽搐中文字幕| 国内精品宾馆在线| 国产成人a区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| avwww免费| 欧美性感艳星| 久久久色成人| 国内精品久久久久精免费| 国产老妇女一区| avwww免费| 一个人免费在线观看电影| 欧美xxxx性猛交bbbb| 久久久精品大字幕| 不卡一级毛片| 国产成人福利小说| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 他把我摸到了高潮在线观看| 亚洲精华国产精华精| 亚洲一区高清亚洲精品| 国产精品亚洲美女久久久| 国产一区二区激情短视频| 性插视频无遮挡在线免费观看| 国产亚洲欧美98| av专区在线播放| 色哟哟哟哟哟哟| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 成年版毛片免费区| 久久久成人免费电影| 欧美黑人巨大hd| 免费看日本二区| 免费av观看视频| 欧美一区二区精品小视频在线| 88av欧美| 日韩 亚洲 欧美在线| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 亚洲熟妇熟女久久| 麻豆国产av国片精品| 国产成人a区在线观看| 一区二区三区激情视频| 香蕉av资源在线| 久久午夜福利片| 欧美极品一区二区三区四区| 日本熟妇午夜| 午夜a级毛片| 久久久久久久精品吃奶| 99久久成人亚洲精品观看| 三级男女做爰猛烈吃奶摸视频| www日本黄色视频网| 国产一区二区在线观看日韩| 国产爱豆传媒在线观看| 亚洲国产精品合色在线| 中出人妻视频一区二区| 男女之事视频高清在线观看| 黄色女人牲交| 亚洲精品久久国产高清桃花| 毛片一级片免费看久久久久 | 国产视频内射| 麻豆精品久久久久久蜜桃| 99精品久久久久人妻精品| 国产亚洲精品久久久com| 久久久国产成人免费| 国产美女午夜福利| 日韩欧美在线二视频| 欧美最黄视频在线播放免费| 特级一级黄色大片| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看| 午夜福利18| 99久久精品热视频| 久久人人爽人人爽人人片va| 国产一区二区激情短视频| 天堂√8在线中文| 综合色av麻豆| 99久久无色码亚洲精品果冻| 久久午夜福利片| 免费大片18禁| 午夜福利欧美成人| 亚洲欧美日韩东京热| 免费人成在线观看视频色| 欧美另类亚洲清纯唯美| 女的被弄到高潮叫床怎么办 | 日本五十路高清| 免费看a级黄色片| 国产一级毛片七仙女欲春2| 国产免费男女视频| 看黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 一进一出抽搐动态| 久久久久久久久久成人| 亚洲美女视频黄频| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 日韩欧美精品v在线| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 哪里可以看免费的av片| 色视频www国产| 中国美白少妇内射xxxbb| 国产真实伦视频高清在线观看 | 在线天堂最新版资源| 国产欧美日韩精品亚洲av| 日韩 亚洲 欧美在线| 韩国av一区二区三区四区| 成人三级黄色视频| 国产精华一区二区三区| 国产伦在线观看视频一区| www日本黄色视频网| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 国产 一区精品| 狠狠狠狠99中文字幕| 别揉我奶头 嗯啊视频| 久久香蕉精品热| 国产精品一区二区三区四区久久| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 色综合站精品国产| 欧美高清性xxxxhd video| 亚洲成人免费电影在线观看| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 悠悠久久av| 国产精品精品国产色婷婷| 夜夜夜夜夜久久久久| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 欧美丝袜亚洲另类 | 国模一区二区三区四区视频| 麻豆一二三区av精品| 色在线成人网| 久久久久国内视频| 免费观看人在逋| 精品久久久久久成人av| 老熟妇仑乱视频hdxx| 亚洲最大成人av| 成熟少妇高潮喷水视频| 日本-黄色视频高清免费观看| a级毛片免费高清观看在线播放| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| АⅤ资源中文在线天堂| 欧美3d第一页| 亚洲第一区二区三区不卡| 国产一区二区三区在线臀色熟女| 级片在线观看| 久久人人精品亚洲av| 欧美黑人巨大hd| 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| 一本一本综合久久| 亚洲av五月六月丁香网| 欧美一区二区国产精品久久精品| 国内久久婷婷六月综合欲色啪| 1000部很黄的大片| 欧美黑人巨大hd| 国产av麻豆久久久久久久| 精品人妻视频免费看| 国模一区二区三区四区视频| 欧美+日韩+精品| 日日撸夜夜添| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 欧美一区二区亚洲| 国产成人a区在线观看| 欧美日韩黄片免| 男人舔奶头视频| 亚洲图色成人| 高清在线国产一区| 婷婷丁香在线五月| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区高清亚洲精品| 老师上课跳d突然被开到最大视频| 成人高潮视频无遮挡免费网站| av中文乱码字幕在线| 床上黄色一级片| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 免费不卡的大黄色大毛片视频在线观看 | 简卡轻食公司| 久久久久久久亚洲中文字幕| 日本成人三级电影网站| 国产精品一区二区三区四区久久| 别揉我奶头~嗯~啊~动态视频| 99久久精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产免费av片在线观看野外av| 久久久久国内视频| 久久久久久久亚洲中文字幕| 97碰自拍视频| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 不卡视频在线观看欧美| 美女免费视频网站| 99久久无色码亚洲精品果冻| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 婷婷六月久久综合丁香| 性插视频无遮挡在线免费观看| 老师上课跳d突然被开到最大视频| 国内精品美女久久久久久| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| .国产精品久久| 十八禁网站免费在线| 在线免费观看不下载黄p国产 | 成年女人永久免费观看视频| videossex国产| 别揉我奶头 嗯啊视频| 亚洲成人免费电影在线观看| 久久精品影院6| 国产中年淑女户外野战色| 中文资源天堂在线| 国产 一区精品| 亚洲五月天丁香| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区人妻视频| 国产欧美日韩精品亚洲av| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 欧美日本视频| 国产av在哪里看| 欧美日韩乱码在线| 女的被弄到高潮叫床怎么办 | 我要看日韩黄色一级片| 日本撒尿小便嘘嘘汇集6| 麻豆一二三区av精品| 全区人妻精品视频| 久久99热这里只有精品18| 91久久精品国产一区二区三区| 麻豆av噜噜一区二区三区| 欧美激情国产日韩精品一区| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 一个人看视频在线观看www免费| 欧美一区二区精品小视频在线| 18禁在线播放成人免费| 国产日本99.免费观看| 久久久久久久久中文| 色在线成人网| 国产麻豆成人av免费视频| 小说图片视频综合网站| 制服丝袜大香蕉在线| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 1024手机看黄色片| 小说图片视频综合网站| 国产精品久久久久久av不卡| 日韩欧美在线乱码| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 午夜a级毛片| 午夜激情欧美在线| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 欧美日本视频| 俄罗斯特黄特色一大片| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 精品日产1卡2卡| 国产精品一区二区性色av| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片久久久久久久久女| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 99热这里只有是精品50| 99热网站在线观看| 日韩欧美在线二视频| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 俄罗斯特黄特色一大片| 欧美日韩国产亚洲二区| 偷拍熟女少妇极品色| 亚洲中文日韩欧美视频| 亚洲最大成人av| a级一级毛片免费在线观看| 亚洲国产欧洲综合997久久,| 国内精品久久久久精免费| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 一级av片app| 国产男靠女视频免费网站| 亚洲人与动物交配视频| 成人国产一区最新在线观看| 乱系列少妇在线播放| 欧美三级亚洲精品| 免费观看的影片在线观看| 日本成人三级电影网站| 一本久久中文字幕| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 午夜精品在线福利| 一进一出抽搐gif免费好疼| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 国产精华一区二区三区| 身体一侧抽搐| 午夜爱爱视频在线播放| 在线观看av片永久免费下载| 亚洲人成伊人成综合网2020| 亚洲乱码一区二区免费版| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 极品教师在线视频| 久久精品久久久久久噜噜老黄 | 亚洲美女视频黄频| 中文字幕免费在线视频6| 18禁黄网站禁片免费观看直播| 一级av片app| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲三级黄色毛片| 国国产精品蜜臀av免费| av专区在线播放| 成年女人永久免费观看视频| 91在线观看av| 我要看日韩黄色一级片| 亚洲无线观看免费| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 最近中文字幕高清免费大全6 | 亚洲狠狠婷婷综合久久图片| 久久久久久久久久成人| 亚洲aⅴ乱码一区二区在线播放| 欧美不卡视频在线免费观看| 性插视频无遮挡在线免费观看| 亚洲av二区三区四区| 性插视频无遮挡在线免费观看| 国产精品1区2区在线观看.| 免费搜索国产男女视频| 熟女电影av网| 午夜福利视频1000在线观看| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 99久久久亚洲精品蜜臀av| 国产精品嫩草影院av在线观看 | a在线观看视频网站| 一区二区三区激情视频| 国产真实乱freesex| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 精品久久久久久久久久久久久| 高清日韩中文字幕在线| 亚洲欧美日韩高清在线视频| 久久久久久大精品| 内射极品少妇av片p| 成人午夜高清在线视频| 精品不卡国产一区二区三区| 久久久久九九精品影院| ponron亚洲| bbb黄色大片| 亚洲真实伦在线观看| 干丝袜人妻中文字幕| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 丰满人妻一区二区三区视频av| 又黄又爽又刺激的免费视频.| 色吧在线观看| 亚洲美女搞黄在线观看 | 国模一区二区三区四区视频| 亚洲精品乱码久久久v下载方式| 亚洲第一区二区三区不卡| 嫩草影院精品99| 久久久久精品国产欧美久久久| 精品人妻1区二区| 俺也久久电影网| 色综合婷婷激情| 88av欧美| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 极品教师在线免费播放| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 制服丝袜大香蕉在线| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看| 有码 亚洲区| 亚洲美女搞黄在线观看 | 久久人人精品亚洲av| 女的被弄到高潮叫床怎么办 | 又黄又爽又刺激的免费视频.| 天堂√8在线中文| 看黄色毛片网站| 嫩草影院新地址| 日韩精品中文字幕看吧| 国产亚洲av嫩草精品影院| 99久久久亚洲精品蜜臀av| 国产一区二区三区视频了| 一本久久中文字幕| 22中文网久久字幕| 啦啦啦啦在线视频资源| 久久亚洲精品不卡| 国产色婷婷99| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 99久久精品国产国产毛片| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app | 免费观看精品视频网站| 超碰av人人做人人爽久久| 一个人看的www免费观看视频| 给我免费播放毛片高清在线观看| 亚洲精品在线观看二区| 亚洲不卡免费看| 亚洲熟妇中文字幕五十中出| 91狼人影院| 99久久无色码亚洲精品果冻| 亚洲成人久久性| 麻豆av噜噜一区二区三区| 久久这里只有精品中国| 窝窝影院91人妻| 制服丝袜大香蕉在线| 三级男女做爰猛烈吃奶摸视频| 国产淫片久久久久久久久| 人人妻人人澡欧美一区二区| 日本在线视频免费播放| 少妇的逼好多水| 成年女人毛片免费观看观看9| 草草在线视频免费看| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 国产毛片a区久久久久| 日本一二三区视频观看| 99国产极品粉嫩在线观看| 欧美高清性xxxxhd video| 波多野结衣高清作品| 搡老熟女国产l中国老女人| 少妇猛男粗大的猛烈进出视频 | 熟女电影av网| 亚洲欧美激情综合另类| 精品一区二区免费观看| 免费一级毛片在线播放高清视频| 亚洲欧美日韩卡通动漫| 三级国产精品欧美在线观看| 久久久国产成人精品二区| 日日撸夜夜添| 亚洲精华国产精华液的使用体验 | 一夜夜www| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 丰满的人妻完整版| 午夜日韩欧美国产| 久久午夜福利片| 男女啪啪激烈高潮av片| 亚洲男人的天堂狠狠| 亚洲18禁久久av| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 人人妻,人人澡人人爽秒播| 欧美高清性xxxxhd video| 亚洲内射少妇av| 内射极品少妇av片p| 免费观看的影片在线观看| 2021天堂中文幕一二区在线观| 国产精品永久免费网站| 欧美性猛交黑人性爽| 网址你懂的国产日韩在线| 国产人妻一区二区三区在| 黄片wwwwww| 国内精品久久久久精免费| 校园人妻丝袜中文字幕| 身体一侧抽搐| 特大巨黑吊av在线直播| 床上黄色一级片| 婷婷亚洲欧美| 国产精品美女特级片免费视频播放器| avwww免费| 国产欧美日韩精品一区二区| 欧美zozozo另类| 悠悠久久av| 一卡2卡三卡四卡精品乱码亚洲| 99在线人妻在线中文字幕| 欧美日韩瑟瑟在线播放| 乱系列少妇在线播放| avwww免费| 免费一级毛片在线播放高清视频| 欧美成人a在线观看| 欧美+亚洲+日韩+国产| 国内久久婷婷六月综合欲色啪| 综合色av麻豆| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 91麻豆精品激情在线观看国产| 国产亚洲精品av在线| 中国美女看黄片| 神马国产精品三级电影在线观看| 天堂影院成人在线观看| 黄色视频,在线免费观看| 全区人妻精品视频| 男人狂女人下面高潮的视频| 久久人人爽人人爽人人片va| 色综合色国产| 少妇人妻精品综合一区二区 | 亚洲电影在线观看av| 免费看av在线观看网站| 天堂动漫精品| 国内精品一区二区在线观看| 久久久国产成人免费| 最新中文字幕久久久久| 麻豆一二三区av精品| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 精品一区二区三区av网在线观看| а√天堂www在线а√下载| 老熟妇仑乱视频hdxx| 日本三级黄在线观看| 女生性感内裤真人,穿戴方法视频| 精品福利观看| 久久精品国产亚洲网站| 色吧在线观看| 亚洲欧美日韩东京热| 乱系列少妇在线播放| 国产蜜桃级精品一区二区三区| 韩国av一区二区三区四区| 毛片女人毛片| 久久精品久久久久久噜噜老黄 | 久久午夜福利片| 2021天堂中文幕一二区在线观| 成人美女网站在线观看视频| 99国产精品一区二区蜜桃av| 欧美+亚洲+日韩+国产| 老女人水多毛片| а√天堂www在线а√下载| 久久热精品热| 国产综合懂色| 欧美成人性av电影在线观看| 成人国产一区最新在线观看| 最近最新中文字幕大全电影3| 亚洲七黄色美女视频| 中文字幕av成人在线电影| 乱码一卡2卡4卡精品| 一夜夜www| 亚洲 国产 在线| 级片在线观看| 日本爱情动作片www.在线观看 | 黄色视频,在线免费观看| 不卡一级毛片| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 露出奶头的视频| 不卡一级毛片| 国产精品永久免费网站| 日本免费a在线| 国产极品精品免费视频能看的| 精品99又大又爽又粗少妇毛片 | 三级男女做爰猛烈吃奶摸视频| 性欧美人与动物交配| 色哟哟·www| 亚洲中文字幕日韩| 中文字幕免费在线视频6| 欧美性猛交╳xxx乱大交人| 国产女主播在线喷水免费视频网站 | 久久国产精品人妻蜜桃|