• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection

    2023-03-13 09:19:08YaZhengTao陶雅正HongBoJin金洪波andYueLiangWu吳岳良
    Chinese Physics B 2023年2期
    關(guān)鍵詞:雅正

    Ya-Zheng Tao(陶雅正) Hong-Bo Jin(金洪波) and Yue-Liang Wu(吳岳良)

    1The School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    2National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    3The International Centre for Theoretical Physics Asia-Pacific,University of Chinese Academy of Sciences,Beijing 100190,China

    4CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    5Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China

    Keywords: laser optical systems,space mission,gravitational wave

    1.Introduction

    There are 90 events of gravitational wave above 10 Hz detected by the ground-based observatories from LIGO,VIRGO and KAGRA collaborations.[1]The gravitational wave observatory below 1 Hz is a space-based mission matching the longer baseline with the order of 106km·s apart between the spacecrafts of gravitational wave detection.[2]The less than 10 pm phase of the laser beams is shifted by the gravitational wave linked the spacecrafts, which is sensitive to the gravitational wave sources,such as super massive black hole binaries,the galactic white dwarf binaries,etc.[3,4]For this level of precision,many measurement noises need to be suppressed to enhance the signal to noise ratio of gravitational wave sources.The basic one of the noise sources of the heterodyne interferometry in the spacecrafts, called tilt-to-length (TTL) coupling,is the coupling between an angular jitter of the interfering beams and the path length readout,which brings the extra optical path length into the interferometric measurements.[5]TTL coupling not only affects the phase directly in geometric and non-geometric form, but also couples with wavefront errors.[6]Although the transmitted beam obtains initial wavefront errors before propagation in space, the truncated wavefront has the less errors in the receiver aperture after the propagation over long distances.[7]Thus,the tight requirement on the phase stability of the received wavefront is the precondition of the noise reduction.[8]A detailed estimation of the received wavefront errors should be performed first.Moreover,one of the major noises in ground-based observatories is also relevant to TTL coupling.[9]It is obvious that the lower limit of the received wavefront errors constrains the sensitivity to the detection of the weaker strain gravitational wave sources.

    The TTL couplings between the wavefront misalignment and some low-order aberrations of the interfering beams are investigated analytically,[7]which is also extended to higher order modes.[10]Utilizing a Zernike polynomial decomposition of wavefront error,the fast and transparent modeling techniques, that is derived from neglecting a significant number of unimportant terms in the expansions of Zernike polynomials, for the purpose of estimating TTL noise associated with various wavefront errors are introduced in Ref.[11], which indicates that the certain combinations of these Zernikes are capable of producing noise far below the Laser Interferometer Space Antenna(LISA)[4]requirements.[11]The numerical simulation is used to describe the effect of an aberrated transmitting telescope on the light collected by the receiving telescope with Zernike modes.[12]Via calculations of the wavefront aberrations in the far field,an end-to-end investigation of the measurement noise due to the interaction between the telescope jitters and wavefront aberrations is reported in Ref.[13].

    In many papers, the wavefront error is estimated at the given parameters: 2.5 Mkm arm length and 300 mm aperture diameter, etc, which are from LISA configuration.In this paper, we estimate the changes of far-field propagation wavefront error with the arm length, the aperture diameter and the pointing jitter, which are used generally for the gravitational wave detection.We use Nijboer-Zernike Theory[14]to describe the diffraction propagation of the transmitted distorted beam.For the first time, the numerical calculation of the diffraction propagation between two telescope apertures is performed with the Gaussian beam decomposition(GBD)[15]based on the numerical calculations.The numerical calculations are performed using the software package IfoCAD.[16]

    The results of this paper show that the consistent wavefront error appears in the different methods between the Hermite-Gaussian modal decomposition[17]and GBD at the same parameters.That justifies the GBD using for the diffraction propagation of laser beam.More informative results indicate that the wavefront error has no significant difference above 104km, but significant increases below 104km and is affected remarkably by the aperture diameter and the pointing jitter.With the aperture diameter varying,the wavefront error of the different aperture diameters is not monotonic and has the oscillation.

    In Section 2,we introduce the TTL-wavefront distortion coupling and the expression of distortion wavefront.In Section 3, there is detailed description about GBD used for the propagation of the laser beam as the sum of a series of fundamental Gaussian beams.In Section 4,the numerical results are shown.In Section 5,the estimation of the far-field wavefront error is summarized as the conclusion.

    2.TTL-wavefront distortion coupling and the expression of distortion wavefront

    In space-based gravitational wave detection, the ideal transmitted beam propagating into the telescope aperture of another spacecraft(S/C)is described as a truncated Gaussian beam.[17]After the extremely far field propagation,the wavefront of the truncated Gaussian beam is approximated as a spherical wave.Thus, the received top-hat beam has no additional phase shift caused by the jitter of the initial beam,which is shown in the left part of Fig.1.However, through the local telescope system, the wavefront of the transmitted beam is usually distorted by the various mechanisms.Before being transmitted to another S/C,the wavefront carries errors and is not an ideal beam.After far distance propagation, the shape of the wavefront,which deviates from a spherical wave,is derived from the initial wavefront errors.That is shown in the right part of Fig.1.Generally,this mechanism is called as TTL-wavefront distortion coupling,i.e.,the jitter of transmitter brings the inconstant wavefront with the received one at the receiver.The measurement of a laser beam has the additional phase offset.

    Fig.1.Schematic diagram of how TTL-wavefront distortion coupling occurs.(a)The ideal transmitted beam with the jitter propagating into the telescope aperture of another spacecraft.(b) The propagation of the beam carrying wavefront errors.The truncated wavefront is transformed from the spherical wave(a)to the distorted one(b).

    Frits Zernike and Bernard Nijboer developed a diffraction theory,which provides a description of the aberrated complex field in the image plane.[14]Through the aperture of telescope,the electric field is expressed as

    whereE0(r;0)is the amplitude of an assumed truncated circular Gaussian beam

    Thew0is the waist radius of the Gaussian beam andrais the aperture radius of the telescope.Ωain Eq.(1)is the total phase departure,which is formed by a set of Zernike polynomials

    with

    The phase differenceδΘ(x,y,z) of the wavefront is between the distorted Gaussian beamE(r,ψ,z)and the given reference distortion-free Gaussian beamE(r,ψ,z)0

    3.Gaussian beam decomposition

    As the mixture of Zernike polynomials increases, expression (5) becomes more complex.Via neglecting a significant number of unimportant terms in the expansions of Zernike polynomials and Hermite-Gaussian modal decomposition based propagation of an approximation in the initial beam, TTL noise associated with various wavefront errors is estimated in Ref.[11].Furthermore, the beam decomposition methods are required for more conveniently simulating the diffraction of an aberrated or distorted Gaussian beam.

    In this paper, the Gaussian beam decomposition (GBD)is used for the beam profile decomposition to compute the diffraction propagation including propagation between the optical components.The basic idea of GBD is to describe the propagation of a beam as the sum of a series of fundamental Gaussian beam propagation.These Gaussian beams are distributed on a grid, also called grid beams.Each grid beam propagates following the ABCD law and has its own intersection point with optical components.Therefore,GBD can also be considered as one kind of “fat rays” tracing.GBD was firstly proposed by Greynolds in 1986,[15]and has been further developed in recent years.The further details of GBD and its computation process can be found in Appendix A.This paper focuses on the diffraction propagation of aberrated Gaussian beam by using GBD.We program C++code to perform these calculations numerically.The code is included into IfoCAD[16]package for the first time.

    Table 1.List of the parameters for distorted circular Gaussian beam clipped by a circular aperture centered in the beam waist.

    By means of GBD we can obtain the radial electric field distribution of the transmitted beam at the far field after propagation.We firstly perform the numerical calculations based on the same parameters as in Sasso’s work,[7]to verify the validity of the GBD method.These parameters are listed in Table 1.The wavefront error generated randomly is constrained toλ/20 peak-to-valley deviation from a plane.The radial plane radius of the received beam is determined by the jitter of S/C

    whenLis 2.5 Mkm arm length, andais 100 nrad jitter, the receiving plane corresponds to a circular plane with 250 m radius.On this plane, we compute the phase differenceδΘbetween distorted Gaussian beam and a reference distortionfree Gaussian beam with Eq.(7).The peak-to-valley phase difference is calculated by

    The best-fit coefficients of Zernike polynomials in expression (3) for the transmitted beam are shown in Table 2.The results of relevant calculation are shown in Fig.2, where the left is the wavefront error at the transmitter,and the right one is the wavefront error at the receiving plane.It is shown that PV=14.116 pm is consistent with the result in the paper.[7]

    Table 2.The best-fit Zernike coefficients of distortion,which come from fitting Zernike polynomials to the wavefront at receiver.

    Fig.2.Wavefront at the transmitter(a)and the wavefront error(b)at the receiver.The coefficients of Zernike polynomials for the numerical calculation are listed in Table 2.The transmitted wavefront has λ/20 peak-to-valley deviation from a plane.The numerical calculated values of peak and valley are 32.9119 nm and-20.2904 nm,respectively.The wavefront error described by PV in the right graph is about 14.1 pm.The numerical calculated values of peak and valley are 8.49655 pm and-5.61987 pm,respectively.

    4.Numerical results

    Based on the given parameters including propagation distances in the context, the numerical calculation of wavefront(WF)error has been verified for consistency.In order to analyze deeply the lower limit of the far-field wavefront error,the different parameters,the arm length,the aperture diameter and the pointing jitter,are also considered.

    Firstly, the pointing jitter is chosen as 100 nrad, which is used at LISA configuration.Besides, the invariant parameters are initial wavefront errorλ/20 and aperture diameter 400 mm.The propagation distance expressed as arm length is in the range of 10-4Mkm to 103Mkm for space-based gravitational wave detection.The ZernikesZmnare scanned by changingmandnvalues.Based on the parameters, the far-field wavefront error is calculated by IfoCAD[16]package including GDB method in the context.The numerical results are shown in Fig.3.

    Fig.3.At 100 nrad jitter, PV values of the wavefront error of distorted Gaussian beam at the receiver after propagation,which are relevant to the different Zernikes.The initial wavefront error is constrained to 53.2 nm.The diameter of the telescope aperture is 400 mm.

    As shown in Fig.3, the PV values of wavefront error related to the different Zernikes have the remarkable difference for the several orders of magnitude in picometer.When ZernikesZmnare scanned by changingmandnvalues, it is found that the main source of wavefront errors is relevant to low-order aberration(n&lt;5)and higher-order aberrations become more obvious in shorter arm lengths than long arm.The lower limit of wavefront error is in the range of 0.1-0.002 pm related to the arm length from 10-4Mkm to 10 Mkm.

    Secondly, the pointing jitter is changed as 10 nrad, decreased by an order of magnitude.The aperture diameter is chosen as 300 mm.As shown in Fig.4, with a smaller jitter,the PV values of wavefront error are depressed by 1 to 2 orders of magnitude,covering the whole arm length range.Furthermore, the trend of PV values has not much changes with arm length increasing.In the arm length range of 0.1 Mkm to 10 Mkm,the main sources of wavefront errors are relevant toZ[2,0],Z[2,±2],Z[4,0]andZ[4,±2], corresponding to defocus, astigmatism, primary spehrical, and 2nd astigmatism,respectively.In this case,the lower limit of wavefront error is from 0.5 fm to 0.015 fm.

    Fig.4.Similar results to Fig.3 with 10 nrad jitter and 300 mm aperture diameter.

    Finally,the effect of different telescope apertures is considered.The aperture diameters vary from 200 mm to 500 mm.The 100 nrad and 10 nrad jitter are both used.Referring to the results from Figs.3 and 4,the chosenZ[5,3]is almost relevant to the least PV values of wavefront error among the Zernikes in the arm length range of 0.1 Mkm to 10 Mkm.As shown in Fig.5,with the aperture diameter increasing,the wavefront error is not monotonic and has the oscillation.Two groups of the broken lines are relevant to the different jitters.The lower lines are relevant to the 10 nrad jitter.The lowest limit of wavefront error is near 0.01 fm consistent with the results in Fig.4.As an inference,the aperture diameter selection is not easy to be fixed at the range for reducing the wavefront error.

    Fig.5.At Zernike Z[5,3], PV values of the wavefront error of propagated beam with the telescope aperture diameter increasing at the transmitter.

    When the distance of laser beam propagation is very long,the change of wavefront error is tiny.That result is shown in Fig.6(a).Two groups of the lines are relevant to the 100 nrad and 10 nrad jitter, respectively.The wavefront error is very slightly increasing in the arm length range of 10-1Mkm to 103Mkm.The different aperture diameters of 240 mm and 500 mm bring an order of magnitude increasing in wavefront error.

    The magnitude of the gravitational wave is the strainh=δL/Lcharacterized the change of the proper distance between the space-time points.In the heterodyne interferometry,the wavefront plane of the laser beam is like the scale of a ruler to measure the distance.The wavefront error means the scale error of a ruler.Thus, PV/Lvalues have effect on the measured magnitude of gravitational wave.The relation between the best arm lengthLof S/Cs and the detectable frequencyf?of gravitational wave source is expressed as the transfer frequency(Cis the light speed).[19]Thus, the change of PV/Lwith arm length increasing is transformed into the transfer frequency decreasing.These calculations are shown in Fig.6(b).The upper and lower bounds of PV/Lvalues are relevant to the aperture diameters of 500 mm and 240 mm.As shown in Fig.6(b),the PV/Lvalues increase with transfer frequency increasing and the lowest limit of PV/Lis relevant to the 10 nrad jitter.Thus, as an inference, the decrease of the wavefront error brings the sensitivity to gravitational wave sources increasing.

    Fig.6.(a) PV values relevant to the arm length from 10-1 Mkm to 103 Mkm.(b)The calculated PV/L values with the transfer frequency increasing.

    5.Conclusion

    In space-based gravitational wave detection, TTLwavefront distortion coupling is one of the major noise sources.In the paper,we estimate the wavefront error,which is derived from the transmitted beam being distorted by various mechanisms.The initial wavefront error generated randomly is constrained toλ/20.Zernike polynomials are used for the description of the aberrated wavefront of the transmitted beam.In the analysis of multi-parameter minimization,the minimum of wavefront error tends toZ[5,3]Zernike in some parameter ranges.Some Zernikes have a strong correlation with the wavefront error of the received beam.By means of Gaussian beam decomposition, we obtain the radial electric field distribution of the transmitted beam at the far field after propagation.The phase difference between the distorted Gaussian beam and a reference distortion-free Gaussian beam is calculated by the peak-to-valley values.

    In the paper, the variant parameters, the arm length, the aperture diameter and the pointing jitter, are considered.The pointing jitter is very sensitive to the wavefront error, i.e., 10 times decrease from 100 nrad to 10 nrad brings more than an order of magnitude reduction in the far-field wavefront error.With the aperture diameter varying, the wavefront errors of the different aperture diameters are not monotonic and have the oscillation.It implies that the aperture diameter is not easy to be fixed at the range for reducing the far-field wavefront error.The wavefront error is very slightly increasing from 10-1Mkm to 103Mkm arm length atZ[5,3]Zernike and 10 nrad jitter.In the range of 10-4Mkm to 103Mkm,the lowest limit of wavefront error changes from 0.5 fm to 0.015 fm atZ[5,3]Zernike and 10 nrad jitter.All the results imply that the decrease of the wavefront error brings the increase of the sensitivity to gravitational wave sources.

    Appendix A:Gaussian beam decomposition

    The basic idea of GBD is to describe the propagation of a beam as the sum of a series of fundamental Gaussian beams.The propagation of Gaussian beam can be easily computed.Therefore, the implementation of GBD is to find the coefficient of each chosen fundamental Gaussian beam, and superimpose these fundamental beams to reconstruct the electric field.An illustration is shown in Fig.A1.

    Fig.A1.A simple illustration of GBD method.The green one is fundamental grid Gaussian beam,which is arranged in window.The window in the graph is chosen to be square.The blue one is the wavefront to be decomposed.

    By taking enough sampling points in space,the problem can be expressed as solving a system of linear equations

    whereWfrepresents the complex electric field sampled from the wavefront to be decomposed.cis the coefficient vector of fundamental Gaussian beams,andBis the set ofN×Nfundamental Gaussian beams in space

    Fundamental Gaussian beams are chosen on a grid ofN×Nin the plane area,which is called window.Fundamental Gaussian beams are placed on the center of each grid,also known as grid beams.On the window,there are various options for grid,the simplest being an square.The size of the window should be large enough to cover the entire beam spot, otherwise the decomposition accuracy will be highly affected because of information loss.It should be noted that choosing grid in the plane is not essential, but is a simple and practical way.In Ref.[20], methods of taking grid points were discussed on curved surfaces.

    Considering the uniqueness of the solution to the system of matrix linear equations, matrixBshould be determined.Therefore the number of space data pointsxishould be no less than the number of grid beamsN×N.Another relevant parameter for the chosen of grid beams is the waist factorfws.It determines both the waist of all grid beams and the tightness of the arrangement between grid beams

    whereDis the interval between two adjacent grid beams,determined by the window size and the grid beam number

    In this paper,the relevant parameters of GBD chosen in simulations are all based on Table A1.

    Acknowledgements

    Table A1.List of the parameters for GBD.

    We thank Gudrun Wanner from Max Planck Institute for Gravitational Physics (Albert Einstein Institute) for the great contribution to the improvement of the quality of this paper.We thank Yun-Kau Lau for the useful discussions.This work has been supported in part by the National Key Research and Development Program of China(Grant No.2020YFC2201501), the National Natural Science Foundation of China (Grant No.12147103, special fund to the center for quanta-to-cosmos theoretical physics) (Grant No.11821505), the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23030100),and the Chinese Academy of Sciences (CAS).In this paper,the part of the numerical computation is finished by TAIJI Cluster.

    猜你喜歡
    雅正
    以“雅正” 靜待花開
    《濟(jì)北詩話》詩學(xué)思想淺析
    李開先曲學(xué)思想的初探
    戲劇之家(2016年23期)2016-12-20 21:50:38
    論詞學(xué)概念“雅正”中的詩教傳統(tǒng)
    文教資料(2015年35期)2016-03-23 02:48:33
    《牡丹亭》的文本語言分析
    淺談張炎《詞源》對《詩經(jīng)》“詩教”說的繼承
    午夜免费成人在线视频| 精品欧美一区二区三区在线| 麻豆一二三区av精品| av免费在线观看网站| 日韩成人在线观看一区二区三区| 国产午夜精品久久久久久| 1024视频免费在线观看| 91麻豆av在线| 亚洲一区中文字幕在线| 亚洲精品久久成人aⅴ小说| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 中文字幕熟女人妻在线| 最新在线观看一区二区三区| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 老汉色av国产亚洲站长工具| tocl精华| 亚洲精品av麻豆狂野| 人妻夜夜爽99麻豆av| 免费在线观看完整版高清| 亚洲五月天丁香| 可以免费在线观看a视频的电影网站| 中文字幕av在线有码专区| 国产精品综合久久久久久久免费| 亚洲无线在线观看| 夜夜夜夜夜久久久久| 国产激情偷乱视频一区二区| 国产精品影院久久| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点| av欧美777| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 国产精品99久久99久久久不卡| 精华霜和精华液先用哪个| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 久久精品91蜜桃| 91麻豆精品激情在线观看国产| 久久亚洲真实| 高清在线国产一区| 精品少妇一区二区三区视频日本电影| 岛国视频午夜一区免费看| 这个男人来自地球电影免费观看| svipshipincom国产片| 亚洲一区中文字幕在线| 宅男免费午夜| 无人区码免费观看不卡| 搞女人的毛片| 国产蜜桃级精品一区二区三区| 日本免费a在线| 最新在线观看一区二区三区| 欧美精品亚洲一区二区| 亚洲精品色激情综合| 成人手机av| 久久人妻av系列| 久久精品国产综合久久久| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 成人永久免费在线观看视频| 在线观看一区二区三区| a在线观看视频网站| 亚洲欧洲精品一区二区精品久久久| 三级男女做爰猛烈吃奶摸视频| 少妇被粗大的猛进出69影院| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 成在线人永久免费视频| 色av中文字幕| 欧美精品亚洲一区二区| 岛国视频午夜一区免费看| 毛片女人毛片| 日韩欧美在线乱码| 日韩 欧美 亚洲 中文字幕| 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站 | 后天国语完整版免费观看| 欧美大码av| 久久久久久免费高清国产稀缺| 日本 av在线| 中亚洲国语对白在线视频| 级片在线观看| 亚洲全国av大片| 一个人免费在线观看的高清视频| 精品日产1卡2卡| 色老头精品视频在线观看| 国产不卡一卡二| 麻豆av在线久日| 中文在线观看免费www的网站 | 最新在线观看一区二区三区| 黄色成人免费大全| 亚洲成人国产一区在线观看| 日本一区二区免费在线视频| 国产免费男女视频| 丰满人妻一区二区三区视频av | 国产精品免费一区二区三区在线| bbb黄色大片| 欧美高清成人免费视频www| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 在线a可以看的网站| 丰满人妻一区二区三区视频av | 久久久国产精品麻豆| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 久久香蕉精品热| 男人舔奶头视频| 国产精品免费一区二区三区在线| 欧美性猛交黑人性爽| 18禁美女被吸乳视频| 午夜福利视频1000在线观看| e午夜精品久久久久久久| 蜜桃久久精品国产亚洲av| 国产99久久九九免费精品| 一级毛片精品| 国产乱人伦免费视频| 午夜视频精品福利| 亚洲乱码一区二区免费版| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 日本熟妇午夜| 亚洲激情在线av| 后天国语完整版免费观看| 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久九九精品影院| 亚洲成av人片在线播放无| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 亚洲人成网站高清观看| 亚洲av成人不卡在线观看播放网| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站 | 国产三级在线视频| a在线观看视频网站| 免费一级毛片在线播放高清视频| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 亚洲人成网站高清观看| 97人妻精品一区二区三区麻豆| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 国产三级中文精品| 中国美女看黄片| 日日爽夜夜爽网站| 丰满的人妻完整版| 女警被强在线播放| 超碰成人久久| 国产精品一区二区三区四区久久| 婷婷丁香在线五月| 久久久久久九九精品二区国产 | 欧美成人午夜精品| 90打野战视频偷拍视频| 亚洲avbb在线观看| 国产精品综合久久久久久久免费| av超薄肉色丝袜交足视频| 国产99久久九九免费精品| 亚洲自拍偷在线| 午夜福利在线观看吧| 人妻丰满熟妇av一区二区三区| 神马国产精品三级电影在线观看 | 老司机靠b影院| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 欧美日本亚洲视频在线播放| 午夜精品在线福利| 婷婷亚洲欧美| 国产黄a三级三级三级人| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 又紧又爽又黄一区二区| 亚洲九九香蕉| 日日夜夜操网爽| 美女大奶头视频| 男人的好看免费观看在线视频 | 老鸭窝网址在线观看| 成人欧美大片| 亚洲成人国产一区在线观看| 精品午夜福利视频在线观看一区| 97碰自拍视频| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 国产av不卡久久| 老鸭窝网址在线观看| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 亚洲精品美女久久久久99蜜臀| 少妇的丰满在线观看| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 欧洲精品卡2卡3卡4卡5卡区| 两个人的视频大全免费| 母亲3免费完整高清在线观看| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 在线观看免费日韩欧美大片| 午夜激情av网站| 国产一区二区激情短视频| 99热这里只有精品一区 | 中文字幕人成人乱码亚洲影| 亚洲欧美日韩高清专用| 久热爱精品视频在线9| 亚洲狠狠婷婷综合久久图片| 精品国产乱子伦一区二区三区| 成人三级黄色视频| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| 淫秽高清视频在线观看| 日韩欧美在线二视频| 神马国产精品三级电影在线观看 | 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 欧美 亚洲 国产 日韩一| 免费高清视频大片| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 在线观看日韩欧美| 国产精品国产高清国产av| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 国产精品av视频在线免费观看| 99热6这里只有精品| 国产亚洲精品久久久久久毛片| 亚洲九九香蕉| 人人妻人人看人人澡| 国产精品一及| 99热这里只有精品一区 | 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合一区二区三区| av视频在线观看入口| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 精品日产1卡2卡| 成人国产一区最新在线观看| 久久久国产成人免费| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 黄色毛片三级朝国网站| 亚洲av成人av| 最新美女视频免费是黄的| 久久久国产欧美日韩av| 三级毛片av免费| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区| 国产99久久九九免费精品| 国产蜜桃级精品一区二区三区| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费| 两个人视频免费观看高清| 国产精品野战在线观看| 十八禁网站免费在线| 日本三级黄在线观看| 亚洲精品在线观看二区| 日韩有码中文字幕| 99久久久亚洲精品蜜臀av| 久久精品91无色码中文字幕| 国产乱人伦免费视频| 香蕉丝袜av| 窝窝影院91人妻| 免费av毛片视频| 婷婷丁香在线五月| 美女免费视频网站| 桃色一区二区三区在线观看| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| 一个人观看的视频www高清免费观看 | 久久精品国产99精品国产亚洲性色| 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 亚洲中文字幕一区二区三区有码在线看 | 久久精品成人免费网站| 日本熟妇午夜| 国产精品自产拍在线观看55亚洲| 免费一级毛片在线播放高清视频| 天堂动漫精品| 首页视频小说图片口味搜索| 免费在线观看日本一区| 夜夜夜夜夜久久久久| 国产亚洲精品一区二区www| 色在线成人网| 国产高清有码在线观看视频 | 看片在线看免费视频| 亚洲国产精品999在线| a级毛片在线看网站| 夜夜躁狠狠躁天天躁| 日本五十路高清| 亚洲一码二码三码区别大吗| 久久国产精品人妻蜜桃| 男人舔奶头视频| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 亚洲乱码一区二区免费版| 久久久久国内视频| 丁香六月欧美| 看片在线看免费视频| 色综合婷婷激情| 村上凉子中文字幕在线| av视频在线观看入口| 国产久久久一区二区三区| 国产亚洲精品av在线| 黄色 视频免费看| 久久精品国产亚洲av香蕉五月| 天堂动漫精品| 大型av网站在线播放| 国产成人影院久久av| 99热6这里只有精品| 亚洲男人的天堂狠狠| 日韩欧美国产在线观看| 国产亚洲精品综合一区在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线黄色| 嫩草影院精品99| 两个人视频免费观看高清| 男插女下体视频免费在线播放| 中文字幕精品亚洲无线码一区| www.精华液| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 麻豆国产av国片精品| 在线观看66精品国产| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 又紧又爽又黄一区二区| 国产一区二区在线av高清观看| 日本三级黄在线观看| 最好的美女福利视频网| 一夜夜www| 老司机福利观看| 欧美日韩黄片免| 久久中文字幕一级| 国产久久久一区二区三区| 好男人电影高清在线观看| 久久久久久大精品| 亚洲人与动物交配视频| 久久国产精品人妻蜜桃| 日本免费一区二区三区高清不卡| 2021天堂中文幕一二区在线观| 久久天堂一区二区三区四区| 亚洲中文av在线| a级毛片在线看网站| 很黄的视频免费| 亚洲男人的天堂狠狠| 一级毛片精品| 亚洲色图av天堂| 国产精品,欧美在线| 亚洲精品久久国产高清桃花| 午夜福利视频1000在线观看| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 日本a在线网址| 狂野欧美激情性xxxx| 不卡av一区二区三区| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线| 搡老妇女老女人老熟妇| √禁漫天堂资源中文www| 不卡一级毛片| 黄色视频,在线免费观看| 午夜久久久久精精品| 男女午夜视频在线观看| 亚洲免费av在线视频| 国产亚洲精品第一综合不卡| 色综合欧美亚洲国产小说| 一a级毛片在线观看| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 欧美黑人巨大hd| 久热爱精品视频在线9| 日韩大码丰满熟妇| 亚洲成人久久性| 在线观看免费午夜福利视频| 精品人妻1区二区| 亚洲成a人片在线一区二区| 最好的美女福利视频网| 色av中文字幕| 国产91精品成人一区二区三区| xxx96com| 欧美一区二区国产精品久久精品 | 两个人免费观看高清视频| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 国产成人av激情在线播放| 日韩三级视频一区二区三区| 日日夜夜操网爽| 久久久久久大精品| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 99久久久亚洲精品蜜臀av| 久久久精品国产亚洲av高清涩受| 美女大奶头视频| 国产成人啪精品午夜网站| 1024香蕉在线观看| 一级毛片女人18水好多| 91成年电影在线观看| 成人永久免费在线观看视频| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 欧美人与性动交α欧美精品济南到| 久久久久久九九精品二区国产 | 在线永久观看黄色视频| 免费观看精品视频网站| 亚洲av电影在线进入| 一本大道久久a久久精品| cao死你这个sao货| 国产午夜福利久久久久久| 可以在线观看的亚洲视频| 国产精品影院久久| 色av中文字幕| 深夜精品福利| 色综合婷婷激情| 精品免费久久久久久久清纯| 女同久久另类99精品国产91| 久99久视频精品免费| 国产亚洲精品第一综合不卡| √禁漫天堂资源中文www| 久久人人精品亚洲av| 成人手机av| 欧美性长视频在线观看| 99久久精品热视频| 国产高清视频在线播放一区| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| ponron亚洲| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久末码| 亚洲欧美精品综合一区二区三区| 成人午夜高清在线视频| 亚洲一区二区三区不卡视频| 日本精品一区二区三区蜜桃| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 嫁个100分男人电影在线观看| 欧美日本视频| 国产不卡一卡二| 1024手机看黄色片| 在线观看66精品国产| 琪琪午夜伦伦电影理论片6080| 国产v大片淫在线免费观看| 欧美日韩精品网址| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av香蕉五月| 欧美人与性动交α欧美精品济南到| 熟妇人妻久久中文字幕3abv| 香蕉av资源在线| 久久久久性生活片| 黄色成人免费大全| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 日本成人三级电影网站| 18禁观看日本| 性色av乱码一区二区三区2| xxx96com| 97人妻精品一区二区三区麻豆| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 亚洲国产精品999在线| 午夜精品久久久久久毛片777| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| av免费在线观看网站| 十八禁网站免费在线| 日韩欧美在线二视频| 欧美av亚洲av综合av国产av| 成人欧美大片| 丰满的人妻完整版| 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 亚洲最大成人中文| 好男人在线观看高清免费视频| 国产野战对白在线观看| 久久午夜综合久久蜜桃| or卡值多少钱| 变态另类成人亚洲欧美熟女| 99久久国产精品久久久| 久久这里只有精品中国| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 每晚都被弄得嗷嗷叫到高潮| 国产v大片淫在线免费观看| 国产成年人精品一区二区| 国产亚洲精品一区二区www| 久久久久国内视频| av中文乱码字幕在线| 日韩欧美在线二视频| 亚洲国产欧美人成| 国产乱人伦免费视频| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 亚洲av成人精品一区久久| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 黄片小视频在线播放| 好看av亚洲va欧美ⅴa在| a在线观看视频网站| 免费看a级黄色片| 91大片在线观看| 叶爱在线成人免费视频播放| 夜夜看夜夜爽夜夜摸| 久久久久久亚洲精品国产蜜桃av| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 好男人在线观看高清免费视频| 国产在线观看jvid| 精品国产乱子伦一区二区三区| 男女之事视频高清在线观看| 三级国产精品欧美在线观看 | 韩国av一区二区三区四区| 国产成人影院久久av| 国产三级在线视频| 91老司机精品| 18禁美女被吸乳视频| 我的老师免费观看完整版| 成人三级做爰电影| 琪琪午夜伦伦电影理论片6080| 欧美精品亚洲一区二区| 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三| 9191精品国产免费久久| 又大又爽又粗| 2021天堂中文幕一二区在线观| 久久人妻av系列| 国产黄色小视频在线观看| 亚洲精品中文字幕在线视频| 人妻久久中文字幕网| 麻豆国产97在线/欧美 | 日本a在线网址| 亚洲人成网站在线播放欧美日韩| 香蕉国产在线看| 亚洲 国产 在线| 久99久视频精品免费| 一进一出抽搐gif免费好疼| x7x7x7水蜜桃| 日本免费一区二区三区高清不卡| 真人一进一出gif抽搐免费| 午夜两性在线视频| 国模一区二区三区四区视频 | 757午夜福利合集在线观看| 搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 亚洲中文日韩欧美视频| av有码第一页| 免费在线观看日本一区| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 免费在线观看完整版高清| xxx96com| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 国产高清视频在线观看网站| √禁漫天堂资源中文www| 男人舔女人的私密视频| 又大又爽又粗| 精品一区二区三区视频在线观看免费| 色精品久久人妻99蜜桃| 欧美日本视频| 一个人免费在线观看的高清视频| 香蕉久久夜色| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 精品午夜福利视频在线观看一区| 国产精品一及| 成人一区二区视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲色图av天堂| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 欧美一级a爱片免费观看看 | 国产精品永久免费网站| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看 | 看免费av毛片| 麻豆国产97在线/欧美 | 999久久久精品免费观看国产| 久久香蕉激情| 亚洲精品在线观看二区| 性欧美人与动物交配| 国内揄拍国产精品人妻在线|