• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser

    2023-03-13 09:19:00XuDeWang汪徐德XuGeng耿旭JieYuPan潘婕妤MengQiuSun孫夢秋MengXiangLu陸夢想KaiXinLi李凱芯andSuWenLi李素文
    Chinese Physics B 2023年2期
    關(guān)鍵詞:婕妤李凱夢想

    Xu-De Wang(汪徐德) Xu Geng(耿旭) Jie-Yu Pan(潘婕妤) Meng-Qiu Sun(孫夢秋)Meng-Xiang Lu(陸夢想) Kai-Xin Li(李凱芯) and Su-Wen Li(李素文)

    1School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China

    2Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation,Huaibei Normal University,Huaibei 235000,China

    Keywords: fiber laser,soliton pulsation,soliton molecule,dispersive Fourier transformation

    1.Introduction

    As an ideal experimental platform, fiber lasers have the capacity to produce ultrashort pulses which could find important applications in the fields ranging from fundamental physics to industrial purposes.[1]Using the passive modelocking techniques, various exotic soliton phenomena can be experimentally observed in fiber lasers, such as conventional soliton,[2]dissipative soliton (DS),[3]vector soliton,[4]dark soliton,[5]and polarization domain wall soliton.[6]In particular,DSs exist in nonconservative dissipative systems,in which the additional balance between gain and loss is crucial in the formation of DSs.[7]The DSs exhibit complex dynamic behaviors;therefore,they can unveil the underlying physics and mechanisms of soliton dynamics.

    Over the past decade,parameter-invariant stationary DSs have been widely investigated in fiber lasers.However,under a certain parameter condition,solitons operate in nonstationary state and exhibit complex nonlinear transient dynamics,which are difficult to detect by time-averaged measurement apparatuses.In recent years,a novel real-time measurement method,called dispersive Fourier transform (DFT) technique, allows the characterization of the transient dynamics of DSs.[8,9]Through time-stretch method, the pulse spectrum can be mapped into a temporal waveform to obtain the real-time spectral information.Hence,utilizing DFT,various complex ultrafast nonlinear phenomena, such as soliton explosions,[10-12]soliton pulsations,[13,14]and soliton buildup dynamics,[15-17]as well as internal motions of soliton molecule,[18-20]have been well investigated.

    Recently, soliton pulsation has attracted attention as a typical nonstationary oscillating pulse structure.In contrast to the scenarios of constant-amplitude pulse train generated in fiber lasers, the amplitude of the pulsating soliton evolves periodically along with the cavity round trips.The mechanisms of the pulsating behaviors,[21]including spectral filtering, dispersion effects, nonlinear effects, slow gain dynamics, and saturable absorption, are complex.Pulsating soliton states have been theoretically predicted based on the complex Ginzburg-Landau equation.[22,23]The formation of soliton pulsation has an intrinsic nature in dissipative fiber laser,regardless of the dispersion regime.[24,25]Pulsating solitons with different properties, such as pure soliton pulsation,[26]breathing DS explosion,[27]creeping soliton,[28]and pulsating soliton with chaotic behavior,[29]have been successively investigated.In earlier studies,the pulsation process was generally identified by the pulse energy or amplitude oscillation.This pulsation state is referred to as visible soliton pulsation.In addition to the energy pulsation, several studies involving invisible soliton pulsation have been performed,[30]where the soliton pulsates in the pulse profile and the peak power but remains energy-invariable under certain parametric conditions.Benefiting from the DFT technique to acquire the shot-to-shot pulse spectrum, the real-time spectral evolution of invisible soliton pulsation can be well observed and analyzed.The investigation of soliton pulsation is important to gain an insight into laser physics, which could help optimize laser performance.In contrast to the great progress made in the study of stationary soliton dynamics in ultrafast lasers,soliton pulsation has not been thoroughly explored.In light of the diverse nonlinear dynamical phenomena involved in fiber lasers,new types of soliton pulsations,particularly invisible soliton pulsation,could be discovered by using the DFT.

    In this study,the real-time evolutionary dynamics of soliton pulsation is investigated by using the DFT technique.Visible and invisible soliton pulsation are generated in the netnormal-dispersion fiber laser.The visible soliton pulsation can operate in single- and dual-soliton states, which has obvious energy oscillation.Notably,by adjusting cavity parameters,the phenomenon of invisible soliton pulsation with constant energy can be observed.The shot-to-shot spectra exhibit quasiperiodic spectral pulsation arising from periodic oscillation of the soliton inside the molecule.The experimental results could facilitate an in-depth understanding of the complex features of pulsating solitons.

    2.Experimental setup

    The experimental setup is shown in Fig.1.The DS is generated by using a net-normal-dispersion mode-locked fiber laser and stretched by the DFT system.In the ring laser cavity, a 4.5-m-long erbium-doped fiber with a dispersion coefficient of-18.5 ps·nm-1·km-1was used as a gain fiber and pumped by a 980-nm laser diode through a wavelengthdivision multiplexer.A 1.2-m-long dispersion-compensation fiber with a dispersion coefficient of-152.7 ps·nm-1·km-1was used to regulate the cavity dispersion.The residual fiber was a 9.9-m single mode fiber with an anomalous dispersion of 17 ps·nm-1·km-1.A fiber-based polarization-dependent isolator(PD-ISO)was used,along with two polarization controllers(PCs)that were included to achieve the nonlinear polarization rotation (NPR)-based mode-locking and ensure the unidirectional oscillation of the laser.A 90:10 optical coupler was employed to emit laser output.The total cavity length was approximately 15.6 m with a net cavity dispersion of~0.125 ps2; thus, the fiber laser operated in the net-normaldispersion regime.

    Fig.1.Experimental setup of dissipative soliton all-fiber laser.LD: laser diode; WDM: wavelength-division multiplexer; EDF: erbium-doped fiber;PC: polarization controller; PD-ISO: polarization-dependent isolator; DCF:dispersion compensation fiber;OC:optical coupler;SMF:single mode fiber;PD:photodetector;OSA:optical spectrum analyzer.

    In order to provide enough dispersion for DFT measurement system,a roll of SMF with a length of 26 km and the total dispersion of-572 ps2was employed to stretch the output pulses.The stretched pulses were detected by a 4-GHz oscilloscope together with a 12.5-GHz fast photodiode.Therefore,the real-time spectral resolution by DFT is~0.57 nm.The spectral information can be directly measured by the oscilloscope,thereby enabling real-time access to the soliton dynamics.

    3.Results and analysis

    3.1.Fundamental mode-locked dissipative soliton

    Owing to the NPR effect, the stable mode-locked pulse train is achieved at pump power of~80 mW.The laser performance of the DS is depicted in Fig.2.

    Fig.2.Fundamental mode-locking operation.(a) Pulse train, (b) optical spectrum recorded by OSA, (c) RF spectrum, (d) optical spectrum measured by OSA(blue curve)and DFT(red curve),(d)shot-to-shot spectra by DFT.

    Figure 2(a) shows the pulse train at a pulse interval of 75.9 ns as determined by the cavity length.Figure 2(b) presents the corresponding spectrum,which has characteristically steep spectral edges in the normal-dispersion regime.The central wavelength is 1567 nm at a 3-dB bandwidth of 26.1 nm.Moreover, the radio-frequency(RF)spectrum in Fig.2(c)indicates that the laser operates at a fundamental repetition rate of 13.17 MHz with a signal-to-noise ratio of 50.9 dB.

    To validate the reliability and accuracy of DFT technique, the spectrum measured by the optical spectrum analyzer(OSA)and the spectrum obtained by the DFT are compared in a linear spectrum range as shown in Fig.2(d).We can see that the average spectrum over 1000 round trips measured by the DFT (red curves) coincident well with the one measured by the OSA(blue curves).The consistency between the two spectra indicates that the DFT technique can be used to accurately measure the spectral characteristics of pulses.Notably, the fluctuation of DFT spectrum is mainly due to the low output power and measurement noise from the detection system.Figure 2(d)shows the evolution of 1000 consecutive real-time spectra.The profile of each spectrum remains nearly unchanged in the process of evolution, further indicating that the DS fiber laser can operate in a stable state.

    3.2.Conventional visible soliton pulsation

    By subtly adjusting the PCs,the stable mode-locking operation transforms to the soliton pulsation state at 105 mW.The spectrum of the pulsating soliton presents as arcuate at both edges,instead of the conventional steep edges,when the DS starts to pulsate[31]as shown in Fig.3(a).The ensemble average of the real-time spectra results in arcuate edges on the spectrum measured by using the OSA.Limited to the scan rate of the OSA,the spectrum remains almost unchanged with time going by.The inset of Fig.3(a) shows the pulse train of the pulsating soliton on a large time scale.The intensity modulation with a period of~22.6 μs is exerted on the pulse train.The RF spectrum has two symmetric side peaks around the main peak with a 44.21-kHz frequency difference as shown in Fig.3(b),indicating that the typical pulsating soliton is generated by the fiber laser.The frequency difference of 44.21 kHz corresponds to the period of soliton pulsation.The real-time spectral and temporal evolution dynamics of 1000 consecutive round trips are recorded by the high-speed oscilloscope as shown in Figs.3(d) and 3(e), respectively.The pulse periodically varies its energy and spectral bandwidth with time.By integrating the DFT spectrum intensity in each round trip,the energy evolution over 1000 round trips can be determined as shown in Fig.3(c),which exhibits the periodic energy oscillation for this case.The energy evolved synchronously with the spectral bandwidth breathing with a period of 298 round trips(22.6μs).

    Figure 4 shows six transient spectral profiles corresponding to different round trips within a pulsating period.The realtime spectral bandwidth and amplitude continually vary with round trip.The stronger the pulsating soliton energy,the larger the real-time spectral bandwidth and amplitude are.This variation ascribes to the incomplete balance among the dispersion,nonlinearity, gain and loss within one round trip.Notably,sharp spectral peaks at the edges arising from discontinuities in the spectral phase are not observed, which is possibly attributed to the insufficient nonlinearity in the laser cavity.[32]

    Fig.3.Single-soliton pulsation operation.(a)OSA spectrum,(b)RF spectrum,(c)energy evolution,(d)consecutive shot-to-shot spectra,(e)temporal evolution.

    Fig.4.Transient spectral profiles within a pulsating period under single-soliton pulsation.

    Fig.5.Dual-soliton pulsation operation.(a)OSA spectrum,with inset showing pulse train on a large time scale),(b)RF spectrum,(c)energy evolution,(d)consecutive shot-to-shot spectra,(e)temporal evolution.

    Fig.6.Transient spectral profiles within a pulsating period under dual-soliton pulsation.

    By slightly adjusting the PCs and the pump power, the fiber laser enters into the dual-soliton pulsation regime.Figure 5(a) shows the spectrum from the OSA at 115 mW.Like the single-soliton pulsation, the spectrum still has arcuate edges.The pulse train on a 100-μs time scale exhibits deeper amplitude modulation as shown in the inset of Fig.5(a).The RF spectrum is displayed in Fig.5(b).The frequency separation between multiple peaks is~65.9 kHz,which is roughly equivalent to the pulsating period of~200 round trips.Comparing with the RF spectrum in Fig.3(b),there are many subpeaks around the main peak, indicating that the dual-soliton pulsation is more stable.The periodic evolution of spectral intensity and temporal intensity are represented in Figs.5(d)and 5(e),respectively.The two solitons have the same pulsating characteristics.As shown in Fig.3, the pulsation period(~200 round trips) is shorter than the single-soliton pulsation period (~298 round trips), and the dual-soliton pulsation is stronger in both temporal domain and spectral domain.The corresponding energy evolution is depicted in Fig.5(c).Obviously, the energy oscillates periodically in a zigzag pattern.The energy modulation within each period approaches to nearly 50%.The arcuate extents of the spectral edges are related to the pulsating state experimentally.Generally, the stronger the pulsating soliton, the larger the arcuate extent of the spectral edges is.

    Figure 6 shows six typical single-shot spectra within a pulsating period.Similarly, real-time spectral bandwidth and amplitude vary with round trip.Because the energy of dualsoliton pulsation is larger than that of single-soliton pulsation,the variations in bandwidth and amplitude are more obvious.In particular, the sharp spectral peak arises at the edges in the spectrum widening process, which relates to shock-wave dynamics occurring in normal-dispersion mode-locked fiber lasers.[33]

    3.3.Invisible soliton pulsation

    Further increasing the pump power to 150 mW and carefully adjusting the PCs,the soliton molecule is generated in the cavity,which is indicated by the modulated spectrum from the OSA shown in Fig.7(a).The modulation period is 0.73 nm,suggesting that the pulse separation inside the soliton molecule is 11.1 ps.The pulse train in Fig.7(b)operates at a fundamental repetition rate, and the pulse intensity is uniform without visible fluctuation on a large time scale.Owing to the limited bandwidth of the oscilloscope,the pulse separation is too small to be observed.Consequently, the soliton molecule appears as one pulse in the oscilloscope.Based on the results, a stable soliton molecule is generated in the fiber laser.However,with the aid of the DFT system, there occurs the distinctive phenomenon of consecutive shot-to-shot spectra exhibiting the quasiperiodic spectral pulsation.The corresponding shot-toshot spectra of 3000 round trips are plotted in Fig.7(c),where the spectra pulsate obviously with a period of approximately 410 round trips.Figure 7(d)illustrates the more detailed feature of real-time spectra from the 100th to 1100th round trip,revealing the evolution dynamics with a typical interference pattern presented in the spectrum of a soliton molecule.In the evolution process,the separation of the spectral fringe remains nearly unchanged.Constant spectral-modulation spacing implies a fixed intermolecular pulse separation in the time domain.Note that the position of spectral fringe shifts at the lowest spectral intensity between two adjacent pulsations.According to the principle of interference, we speculate that the difference in phase between soliton molecules implies a periodic transition between in phase and out of phase.

    Fig.7.Invisible soliton pulsation operation.(a)OSA spectrum,(b)pulse train,(d)three-dimensional contour plot of spectra by DFT,(e)close-up of spectra.

    Figures 8(a) and 8(b) present the spectral and temporal evolution during 3000 consecutive round trips, respectively.Spectral bandwidth does not vary with time, whereas the intensity does.Over cavity round trips, the pulse train remains stable.The energy evolution in Fig.8(c) is almost constant by integrating the shot-to-shot spectrum, which is consistent with stable pulse train observed by oscilloscope.The realtime spectrum varies significantly as shown in Fig.7(c).Thus,it is necessary to investigate the intermolecular pulse distribution in the time domain.To obtain the temporal information about the soliton molecule,the corresponding field autocorrelation trace is present in Fig.8(d),which is obtained by using the Fourier transform of the corresponding spectra in Fig.7(c).This method could capture transient distribution of DSs inside bound solitons.[34]Clearly, the field autocorrelation trace in Fig.8(d) confirms that the soliton molecule is composed of two solitons with unequal intensities,in which the weak soliton periodically is generated and annihilated over a period of approximately 410 round trips,indicating that the two solitons periodically exchange energy.

    Fig.8.Evolution dynamics.(a)Shot-to-shot spectral evolution,(b)temporal evolution,(c)energy evolution,(d)field autocorrelation trace.

    Fig.9.Transient spectral profiles within a pulsating period.

    To gain an insight into spectral evolution in this case,eight typical spectral frames within one pulsating period are shown in Fig.9.The modulation depths of real-time spectra gradually increase from zero, and the normalized intensity at peak wavelength varies from 0.6 to 1 with round trips.Subsequently,the spectral modulation and intensity decrease,showing the reverse evolution trend.Combining the field autocorrelation trace in Fig.8(d),we believe that the variation in modulation depth is related to the energy oscillation of weak coherent soliton inside molecule.The larger the energy of weak soliton,the stronger the modulation depth is.The energy perturbation of weak soliton makes the spectral-modulation depth vary with round trip.In one pulsating period, the spectral bandwidth is invariable.From the real-time spectra in Fig.9,we can infer that the soliton state periodically switches between soliton molecule and soliton singlet.Despite the variation of periodic spectral profile,the spectral fringe interval remains nearly fixed at~0.73 nm over consecutive cavity round trips, implying that the soliton separation inside molecule is~11.1 ps.Such a separation matches well with the separation revealed by the field autocorrelation trace in Fig.8(d).Therefore,in the experiment,the soliton pulsates in a distinct manner; that is, real-time spectra pulsate with time but the pulse energy remains almost unchanged, which resembles the typical behavior of invisible soliton pulsation.

    In this study,various soliton pulsation dynamic behaviors are investigated by using the DFT.The DFT allows us to reveal the transient dynamics of soliton pulsation through the time-stretch method.In the experiment, we find that the formation mechanism of visible and invisible soliton pulsation is different.Generally, traditional soliton pulsation(i.e., visible soliton pulsation) is related to the period bifurcation, which results from the cavity nonlinear switching effect.[35]Solitons in the dissipative system at the bifurcation point have pulsating behaviors.The pulsating soliton can periodically change its energy and spectral bandwidth.Moreover,the transformations from single- to dual-soliton pulsation can be achieved by adjusting the power pump and the PCs,indicating that the soliton pulsations are sensitive to cavity parameters such as the nonlinear effect and polarization state.As for invisible soliton pulsation,it originates from the periodic oscillation of weak soliton within soliton molecules.Owing to the energy exchange, the weak soliton periodically generates and annihilates.Therefore,the pulsation soliton periodically switches between soliton molecule and soliton singlet.In this case,although there is no change in the total energy, it could still be termed soliton pulsation because of the periodic recurrence of its profile and spectral peak intensity after multiple cycles.

    4.Conclusion and perspectives

    We have experimentally investigated two types of soliton pulsations in a normal-dispersion fiber laser by using the DFT technique.Traditional single- and dual-soliton pulsations, as well as invisible soliton pulsation are observed.Visible soliton pulsation exhibits obvious energy oscillation and spectral bandwidth breathing,while invisible soliton pulsation pulsates in pulse profile and peak power,but the energy is almost constant.These results provide a new insight into the dynamical process of the soliton pulsation formation.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.41875040), the Natural Science Foundation of Anhui Province, China(Grant No.2008085MF211), the Foundation for Young Talents in College of Anhui Province, China (Grant No.gxyqZD2019034), and the Innovation Fund for Postgraduates of Huaibei Normal University, China (Grant No.CX2022035).

    猜你喜歡
    婕妤李凱夢想
    Application of shifted lattice model to 3D compressible lattice Boltzmann method
    李凱雕塑作品
    火花(2022年4期)2022-06-16 09:34:54
    Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
    童心童繪
    我的夢想
    兒童繪本(2017年22期)2017-12-13 00:00:02
    夢想
    夢想
    母親
    欠我一塊橡皮
    Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor*
    久热这里只有精品99| 91午夜精品亚洲一区二区三区| 美女国产视频在线观看| 免费观看无遮挡的男女| 色视频www国产| 一级毛片aaaaaa免费看小| 成人免费观看视频高清| 国产一区二区在线观看日韩| 久久99热这里只频精品6学生| 国产成人aa在线观看| 亚洲国产毛片av蜜桃av| 亚洲av二区三区四区| 国产 一区精品| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 国产av一区二区精品久久 | 亚洲内射少妇av| 亚洲综合精品二区| 国产爽快片一区二区三区| 久久久久久久久久成人| 国产精品福利在线免费观看| 天堂8中文在线网| 午夜激情福利司机影院| 亚洲人成网站在线观看播放| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| a级毛色黄片| 蜜桃在线观看..| 久久精品人妻少妇| 深爱激情五月婷婷| a级毛色黄片| 97超碰精品成人国产| 日韩人妻高清精品专区| 2018国产大陆天天弄谢| 精品一区二区三区视频在线| 免费人成在线观看视频色| 成年美女黄网站色视频大全免费 | 日本av免费视频播放| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 欧美97在线视频| 日本免费在线观看一区| 精品久久久久久久久av| 国产美女午夜福利| 日韩成人伦理影院| 久久国产乱子免费精品| 91精品伊人久久大香线蕉| 特大巨黑吊av在线直播| 三级经典国产精品| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 免费人成在线观看视频色| 两个人的视频大全免费| 丰满乱子伦码专区| 成人二区视频| 亚洲av二区三区四区| 一区二区av电影网| 高清欧美精品videossex| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 黄色视频在线播放观看不卡| 99久久精品一区二区三区| 国产高潮美女av| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 国产又色又爽无遮挡免| 精品人妻视频免费看| 天堂8中文在线网| 免费看日本二区| 欧美+日韩+精品| 欧美日韩视频精品一区| 嫩草影院入口| 一级爰片在线观看| 日韩av不卡免费在线播放| 亚洲国产欧美人成| 国产精品久久久久久久久免| 黑丝袜美女国产一区| 七月丁香在线播放| 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 国产av精品麻豆| 七月丁香在线播放| 午夜激情福利司机影院| 欧美激情极品国产一区二区三区 | 黄色欧美视频在线观看| 亚洲激情五月婷婷啪啪| 国产精品欧美亚洲77777| 国产美女午夜福利| 久久久久国产网址| 99久久中文字幕三级久久日本| 美女cb高潮喷水在线观看| 免费黄频网站在线观看国产| 身体一侧抽搐| 国产精品一区二区在线不卡| 在线亚洲精品国产二区图片欧美 | 亚洲,欧美,日韩| av国产免费在线观看| 午夜福利视频精品| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花 | 99热国产这里只有精品6| 亚洲aⅴ乱码一区二区在线播放| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花 | 成人无遮挡网站| 国产高清三级在线| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 欧美成人精品欧美一级黄| 国产黄片美女视频| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 国产伦在线观看视频一区| 亚洲熟女精品中文字幕| 婷婷色综合www| 精品一品国产午夜福利视频| 色网站视频免费| 国产精品无大码| 国产精品av视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 欧美激情极品国产一区二区三区 | 热99国产精品久久久久久7| 我的女老师完整版在线观看| av免费在线看不卡| 丰满乱子伦码专区| 91精品伊人久久大香线蕉| 在线免费十八禁| 香蕉精品网在线| 乱码一卡2卡4卡精品| 人人妻人人看人人澡| 国产欧美亚洲国产| 亚洲电影在线观看av| 欧美日韩视频精品一区| 精品久久久久久久久av| 亚洲成人手机| 特大巨黑吊av在线直播| 人妻制服诱惑在线中文字幕| 国产精品人妻久久久影院| 精品一区二区三区视频在线| 高清视频免费观看一区二区| 亚洲精品色激情综合| 下体分泌物呈黄色| 人妻制服诱惑在线中文字幕| 黑人高潮一二区| 99热6这里只有精品| 亚洲久久久国产精品| 成人国产麻豆网| 国产精品熟女久久久久浪| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 久久久久久久久大av| 成年人午夜在线观看视频| 中文资源天堂在线| 国产成人91sexporn| 久久久久网色| 黄色一级大片看看| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 亚洲av日韩在线播放| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 18禁在线播放成人免费| 亚洲av不卡在线观看| 亚洲成人av在线免费| 97超视频在线观看视频| 99热全是精品| 夜夜看夜夜爽夜夜摸| 欧美国产精品一级二级三级 | 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花 | 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 久久久午夜欧美精品| 国精品久久久久久国模美| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| av一本久久久久| 国产亚洲最大av| 久久久久久九九精品二区国产| 少妇人妻久久综合中文| 亚洲欧美日韩卡通动漫| 久热久热在线精品观看| 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 一区在线观看完整版| 交换朋友夫妻互换小说| 国产一区亚洲一区在线观看| 欧美xxxx黑人xx丫x性爽| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 免费大片黄手机在线观看| 国产成人免费观看mmmm| 超碰97精品在线观看| 欧美区成人在线视频| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 精品久久久久久久久av| 免费黄网站久久成人精品| 天堂中文最新版在线下载| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满| 91久久精品电影网| 天美传媒精品一区二区| 欧美97在线视频| av播播在线观看一区| 好男人视频免费观看在线| 97超碰精品成人国产| 99久久精品热视频| 国产精品一二三区在线看| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 中文字幕制服av| 国产精品久久久久久久电影| 亚洲国产精品一区三区| 国产日韩欧美在线精品| 精品国产三级普通话版| 久久人人爽人人片av| 国产精品.久久久| 国产男人的电影天堂91| 国产视频内射| 九九在线视频观看精品| 久久影院123| 欧美高清性xxxxhd video| 在线看a的网站| 综合色丁香网| 成年女人在线观看亚洲视频| 久久久成人免费电影| 三级国产精品片| 国产黄片美女视频| 欧美性感艳星| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看 | 亚洲怡红院男人天堂| 久久精品夜色国产| 制服丝袜香蕉在线| 精品久久久久久久末码| 91狼人影院| 中国三级夫妇交换| 纯流量卡能插随身wifi吗| 男女边摸边吃奶| 美女内射精品一级片tv| 欧美人与善性xxx| 中国三级夫妇交换| 久久久久久久国产电影| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 国产毛片在线视频| 国产成人精品婷婷| 97在线人人人人妻| 深夜a级毛片| 在线免费十八禁| 国产男女超爽视频在线观看| 日韩成人av中文字幕在线观看| 成人美女网站在线观看视频| 男女下面进入的视频免费午夜| 国产精品一区www在线观看| 伦理电影大哥的女人| 成人18禁高潮啪啪吃奶动态图 | 最近手机中文字幕大全| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 18禁动态无遮挡网站| freevideosex欧美| 97热精品久久久久久| 欧美+日韩+精品| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 国产精品福利在线免费观看| 少妇人妻精品综合一区二区| av福利片在线观看| 亚洲色图综合在线观看| 欧美+日韩+精品| 国国产精品蜜臀av免费| 99热这里只有是精品50| 久久久久精品久久久久真实原创| 美女高潮的动态| 国产爱豆传媒在线观看| 久久国内精品自在自线图片| 看十八女毛片水多多多| 人人妻人人添人人爽欧美一区卜 | 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 亚洲人成网站在线播| 一区二区三区乱码不卡18| 国产高清国产精品国产三级 | a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站| 搡女人真爽免费视频火全软件| 亚洲精品久久午夜乱码| 国产精品熟女久久久久浪| 国产成人freesex在线| 大片电影免费在线观看免费| 99热这里只有是精品50| 国产成人91sexporn| 中文字幕亚洲精品专区| 亚洲真实伦在线观看| 国内精品宾馆在线| 黄色配什么色好看| 少妇裸体淫交视频免费看高清| 日本欧美视频一区| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| 欧美亚洲 丝袜 人妻 在线| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 综合色丁香网| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 日日撸夜夜添| 亚洲图色成人| 少妇丰满av| 国产乱来视频区| 永久网站在线| 成人无遮挡网站| 国产在线视频一区二区| 久久人人爽av亚洲精品天堂 | 精品少妇久久久久久888优播| h视频一区二区三区| 美女国产视频在线观看| av黄色大香蕉| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 免费人妻精品一区二区三区视频| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 久久久久精品性色| 高清黄色对白视频在线免费看 | 亚洲国产毛片av蜜桃av| 黑人高潮一二区| 直男gayav资源| 欧美日韩在线观看h| 国产精品久久久久久精品电影小说 | 丰满迷人的少妇在线观看| 91久久精品电影网| 97热精品久久久久久| 亚洲色图av天堂| 久久ye,这里只有精品| 成年女人在线观看亚洲视频| 中文精品一卡2卡3卡4更新| 在线观看人妻少妇| 一级毛片 在线播放| 中文字幕免费在线视频6| 亚洲美女黄色视频免费看| 日本黄色片子视频| av在线观看视频网站免费| 精品一区二区三区视频在线| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 国产午夜精品一二区理论片| 久久久国产一区二区| 国产成人a区在线观看| 精品一区二区免费观看| 中文字幕免费在线视频6| 国产真实伦视频高清在线观看| 建设人人有责人人尽责人人享有的 | av一本久久久久| av专区在线播放| 日韩中文字幕视频在线看片 | 91久久精品国产一区二区三区| 午夜免费观看性视频| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久亚洲| 亚洲成人一二三区av| 只有这里有精品99| 美女高潮的动态| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| 色网站视频免费| 精品久久久久久久末码| 你懂的网址亚洲精品在线观看| 插阴视频在线观看视频| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 十八禁网站网址无遮挡 | 国产精品一二三区在线看| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 成年免费大片在线观看| 深夜a级毛片| 欧美成人精品欧美一级黄| 精品久久久久久久久亚洲| 在线亚洲精品国产二区图片欧美 | 国产黄色免费在线视频| 久久精品国产亚洲网站| 精品久久久久久久久亚洲| 香蕉精品网在线| 日本色播在线视频| 天堂俺去俺来也www色官网| 亚洲精品,欧美精品| 欧美丝袜亚洲另类| 欧美亚洲 丝袜 人妻 在线| 日韩一区二区三区影片| 亚洲天堂av无毛| 内地一区二区视频在线| 亚洲国产av新网站| 亚洲人成网站高清观看| 男女边吃奶边做爰视频| 熟女av电影| 久久ye,这里只有精品| 久久久欧美国产精品| 国产亚洲最大av| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 在线精品无人区一区二区三 | 免费观看av网站的网址| 国产人妻一区二区三区在| 日韩av不卡免费在线播放| 日本黄色片子视频| 日韩中字成人| 久久久久久人妻| 中国三级夫妇交换| 联通29元200g的流量卡| 久久久精品94久久精品| 色5月婷婷丁香| 啦啦啦中文免费视频观看日本| www.av在线官网国产| 午夜福利视频精品| 精品国产露脸久久av麻豆| 亚洲国产色片| 亚洲真实伦在线观看| 妹子高潮喷水视频| 日韩中字成人| 一级爰片在线观看| 国产亚洲午夜精品一区二区久久| 中国美白少妇内射xxxbb| 日本爱情动作片www.在线观看| 亚洲国产日韩一区二区| 亚洲高清免费不卡视频| av.在线天堂| 国产精品99久久99久久久不卡 | 高清午夜精品一区二区三区| 男女免费视频国产| 国内精品宾馆在线| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 亚洲成人中文字幕在线播放| av黄色大香蕉| 免费av中文字幕在线| 国产在线男女| 免费观看性生交大片5| 久久久久久久久久久免费av| 亚洲精品日本国产第一区| 国产永久视频网站| 韩国av在线不卡| 国产一区二区三区av在线| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 欧美一级a爱片免费观看看| 男女国产视频网站| 看免费成人av毛片| 能在线免费看毛片的网站| 成人毛片60女人毛片免费| 国产老妇伦熟女老妇高清| av福利片在线观看| 1000部很黄的大片| 18禁在线播放成人免费| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频 | 成人一区二区视频在线观看| 深夜a级毛片| 精品一区二区三区视频在线| 伦理电影大哥的女人| 国国产精品蜜臀av免费| 纯流量卡能插随身wifi吗| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 亚洲不卡免费看| 这个男人来自地球电影免费观看 | 熟女人妻精品中文字幕| www.av在线官网国产| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 久久ye,这里只有精品| 观看免费一级毛片| 欧美日韩精品成人综合77777| 水蜜桃什么品种好| 成人亚洲欧美一区二区av| 亚洲,一卡二卡三卡| 蜜桃在线观看..| 国产亚洲91精品色在线| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 又黄又爽又刺激的免费视频.| 欧美国产精品一级二级三级 | 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 国内揄拍国产精品人妻在线| 国产成人精品一,二区| 成人影院久久| 国产黄片美女视频| 在现免费观看毛片| 国产精品成人在线| 久久精品国产鲁丝片午夜精品| 欧美少妇被猛烈插入视频| 伊人久久精品亚洲午夜| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠久久av| 久久久久久久大尺度免费视频| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 大陆偷拍与自拍| 国产精品一区www在线观看| 日本午夜av视频| 中文在线观看免费www的网站| 国产精品三级大全| 免费大片黄手机在线观看| 亚洲av免费高清在线观看| 国产精品国产三级专区第一集| 国产爽快片一区二区三区| 国产精品人妻久久久影院| 中文资源天堂在线| 性色avwww在线观看| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 日韩大片免费观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲成人手机| 久久久久久九九精品二区国产| 18禁动态无遮挡网站| 精品久久久久久久久av| 亚洲中文av在线| 2021少妇久久久久久久久久久| 亚洲欧美精品专区久久| 精品亚洲成a人片在线观看 | 成人亚洲精品一区在线观看 | 国产免费福利视频在线观看| 国产精品一二三区在线看| 久久久成人免费电影| 国产欧美日韩精品一区二区| 亚洲高清免费不卡视频| 亚洲精品日韩在线中文字幕| 亚洲人成网站在线播| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久久免费av| 在线免费十八禁| 最新中文字幕久久久久| 国产精品国产av在线观看| 久久韩国三级中文字幕| 午夜福利在线观看免费完整高清在| 成年免费大片在线观看| 亚洲精品色激情综合| 国产成人一区二区在线| 日韩免费高清中文字幕av| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 亚洲精品自拍成人| 日日啪夜夜爽| 亚洲av福利一区| 内射极品少妇av片p| 亚洲国产色片| 黄片wwwwww| 亚洲av中文字字幕乱码综合| 18禁在线无遮挡免费观看视频| 午夜福利高清视频| 久久久久久人妻| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品国产精品| 亚洲精品国产成人久久av| 免费av不卡在线播放| 在线免费观看不下载黄p国产| 国产伦精品一区二区三区视频9| 欧美高清成人免费视频www| 国产免费一区二区三区四区乱码| 日产精品乱码卡一卡2卡三| 国产成人精品一,二区| 国产av国产精品国产| 午夜福利网站1000一区二区三区| 中文字幕免费在线视频6| 一级毛片电影观看| 夫妻性生交免费视频一级片| 青春草国产在线视频| 日韩中文字幕视频在线看片 | 18禁裸乳无遮挡免费网站照片| 亚洲美女黄色视频免费看| 精品一品国产午夜福利视频| 18禁在线无遮挡免费观看视频| 在线观看免费日韩欧美大片 | 久久精品国产亚洲av天美| 在线观看国产h片| av天堂中文字幕网| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜爱| 亚洲av中文av极速乱| 国产高清三级在线|