• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of shifted lattice model to 3D compressible lattice Boltzmann method

    2023-10-11 07:55:42HaoYuHuang黃好雨KeJin金科KaiLi李凱andXiaoJingZheng鄭曉靜
    Chinese Physics B 2023年9期

    Hao-Yu Huang(黃好雨), Ke Jin(金科),4, Kai Li(李凱),4, and Xiao-Jing Zheng(鄭曉靜)

    1School of Aerospace Science and Technology,Xidian University,Xi’an 710071,China

    2School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    3Shaanxi Key Laboratory of Space Extreme Detection,Xi’an 710071,China

    4Key Laboratory of Equipment Efficiency in Extreme Environment,Ministry of Education,Xi’an 710071,China

    Keywords: lattice Boltzmann method,shifted lattice model,compressible flow,finite volume method

    1.Introduction

    Since the first paper about lattice Boltzmann method(LBM) appeared in 1988, the LBM[1–5]as a prominent tool in computational fluid dynamics has attracted much attention and become a major research hotspot.Unlike the traditional method based on macroscopic equations,the LBM is based on a mesoscopic kinetic model and obtains macroscopic quantities through statistics of distribution functions.The LBM is a multi-scale method, and its advantage is that the convection term is linear.Therefore, the LBM is applied to numerical calculation of various fluids, such as microscale flow,[6,7]turbulence,[8,9]multiphase flows,[10,11]blood flow,[12]and heat transfer.[13,14]

    The research object of this paper is compressible fluid.Because the single distribution model adds new discrete velocity based on the isothermal model,and the specific-heat ratio is related to the spatial dimension of the model,it does not have real physical properties.While the double distribution function(DDF)model can adjust the specific-heat ratio and Prandtl number.So the double distribution function method[15–18]is adopted to construct a compressible fluid model.Of course,adding a distribution function will inevitably increase the amount of calculation.In 1998, Heet al.[15]first proposed the double-distribution model, which attracts wide attention because of its good stability and adjustable Prandtl number.Guoet al.[16]proposed a total energy distribution function to replace the internal energy distribution function.Liet al.[17]proposed a two-dimensional (2D) compressible finite difference DDF model and obtained satisfactory simulation results in high Mach number flows.Li and Zhong[18]proposed the potential energy distribution function model and applied the finite volume method to it.

    Many researchers have made great efforts to develop three-dimensional (3D) compressible models.Kataoka and Tsutahara[19]proposed the D3Q15 model of compressible Euler equation, but this model only suitable for subsonic flows.Chenet al.[20]improved the Kataoka’s model and made the model suitable for higher speeds.Watari and Tsutahara[21]proposed the D3Q73 model,which can achieve a Mach number of 1.7.Liet al.[22]proposed the D3Q25 model of compressible Euler equation.According to Li’s model, Qiuet al.[23]introduced the total energy distribution function to optimize the D3Q25 model, and applied the Hermite expansion to the lattice Boltzmann model of D3Q27 to obtain a coupled double-distribution compressible model.

    Although compressible model is being developed, the simulation of high Mach number flow is always problematic.In order to solve this problem,Huanget al.[24]proposed a discrete velocity model centered on the local flow velocity and the velocity varies with the local temperature.They successfully simulated shock tubes, and it is the first time that asymmetrical discrete velocity model has entered into people’s view.Sun[25,26]and Sun and Hsu[27]proposed an adaptive LB model in which the discrete velocity changes with local flow velocity and internal energy,thus the model can accomplish high-Mach simulation, but the relaxation time of their model must equal 1, which is a great limitation.Chopardet al.[28]and Hedjripouret al.[29]proposed one-dimensional (1D) asymmetric discrete velocity model: the model can successfully simulate a wide range of subcritical and supercritical flow, making it possible to practically use the asymmetric model.Frapolliet al.[30]proposed a novel shifted lattice model, adding another velocity to the original discrete velocity, so that the discrete velocity is no longer symmetric.They multiplied the equilibrium distribution function by a transformation matrix,and accomplished the conversion of the stationary coordinate system into the moving coordinate system,which greatly increases the calculation range of LBM.Saadatet al.[31]applied Frapolli’s shifted lattice model to D2Q9 and successfully simulated the supersonic shock compressible flow.But the disadvantage of transformation matrix is too complex and it is easy to generate a singular matrix, which is only suitable for a small discrete speed.

    In the standard lattice Boltzmann equation (LBE), the discrete velocity of particles determines the type of computational grid.Generally, grids must be uniformly symmetric(regular hexagon, square).Although it is easy to construct such grids,they are not flexible enough to be applied to complex flow fields.In order to solve this problem,many scholars have conducted in-depth research on non-standard LBE models and proposed a variety of models.Reider and Sterling[32]first applied the fourth-order central difference scheme and the fourth-order Runge–Kuta scheme to LBM and proved the feasibility of the finite-difference LBM.Penget al.[33,34]proposed cell-vertex method, and they stored physical quantities on grid nodes and successfully used finite volume LBM to simulate the flow in a coaxial rotating cylinder.In this study,we use the third order monotone upwind scheme for scalar conservation laws(MUSCLs)finite volume scheme.

    In this paper, we introduce the potential energy distribution function based on Li’s[22]D3Q25 density distribution function to create a new DDF model.In addition,a new shifted lattice model is proposed based on the linear equation.The 3D shifted lattice model is applied to the D3Q25 model to obtain better numerical stability.The rest of this article is organized as follows.In Section 2,we briefly introduce the DDF model,D3Q25 model and the shifted lattice model.In Section 3,we introduce the numerical method.In Section 4, we carry out numerical simulations of some typical compressible flows to prove the good effect of the shifted model.Finally, conclusions are drawn in Section 5.

    2.The 3D compressible double distribution function model

    2.1.Compressible D3Q25 LBM model

    Li and Zhong[18]introduced the potential energy distribution function on the basis of the density distribution function, and proposed a DDF compressible LB model.An additional potential energy distribution function can be introduced to overcome the shortcomings of the Boltzmann Bhatnagar–Gross–Krook (BGK) equation that cannot present adjustable specific heat ratio nor Prandtl number.The functional model for this paper is the DDF LB model,and its dynamic equations are as follows:

    whereZa=(ea-u)2/2,fαis the density distribution function,hαis the potential energy distribution function,andare the corresponding equilibrium distribution functions,eαis the discrete velocity of the particle,τfandτhare the relaxation time of density and potential energy respectively,τhfis the potential energy relaxation rate that can be determined from the following equation:

    whenτf=τhthis model degenerates into the original BGK model,withτfdefined as

    whereμis the viscosity andpthe pressure(p=ρRT), withRbeing the specific gas constant andTthe temperature.ThePrnumber can be created arbitrary by adjusting the two relaxation times as shown below:

    Potential energy distribution function can be obtained easily from the following equation:

    whereK=b-D,bis the number of degrees of freedom(DOFs),Dis the space dimension.

    The D3Q25 based circular distribution function which is proposed by Liet al.[22]is shown in Fig.1.

    Fig.1.Illustration of D3Q25 discrete velocity model.

    2.2.The 3D shifted lattice model

    In this study, we propose the shifted lattice model, by using a linear equation to replace the transformation matrix,thereby realizing the conversion of coordinates,increasing the feasibility of the model,and making the multi-discrete velocity model also able to use the shifted lattice model.Each discrete velocity is increased by a velocityvas shown in Fig.2.The magnitude of velocityvcan be a fixed value or change with the velocity of the flow field.In this work, we define that the value ofvis proportional to the sum of maximum and minimum velocity after each collision.Then we addvinto the initial symmetric discrete velocity to obtain a real discrete velocity

    wherecαis the initial discrete velocity of Li’s D3Q25,[22]vnis the shifted speed obtained in then-th iteration,andis the real discrete velocity of then-th iteration.

    The dynamic equation of the density distribution function is divided into the following two parts: flow process and coordinate transformation

    We will adopt the MUSCL finite volume scheme to calculate Eqs.(9),(12),and(13).The specific content will be described in detail in the next section.

    Fig.2.Illustration of shifted lattice model.

    2.3.Boundary conditions

    2.3.1.Non-slip wall boundary condition

    Wall flow variables are as follows:

    Under the non-slip wall boundary condition,non-equilibrium extrapolation scheme[35]is used.Density and potential energy distribution functions on the wall are expressed as

    Equilibrium distribution functions are computed with the flow variables.The subscripts “cf” denotes the interface on the boundary and“in”denotes its neighbor cell.

    At present,the shifted lattice model is suitable for isothermal wall conditions.While adiabatic wall conditions will produce some errors, and the results can be improved by multiplying the non-equilibrium term with a number less than 1.

    2.3.2.Inlet flow boundary condition

    where ∞denotes the inflow state.

    2.3.3.Outflow flow boundary condition

    3.Numerical methods

    In order to capture the discontinuity well,we need to introduce artificial dissipation.There are two ways to introduce artificial dissipation.One is the model dissipation, and the other is the numerical dissipation from numerical methods.When the viscosity is very small, the model dissipation is unable to capture discontinuities without oscillation.So the numerical scheme is used to provide the additional dissipation.

    Many researchers have applied different numerical schemes to LBM, such as, the weighted essentially technique[36]and the 6th-order compact finite difference method.[37]Although they are both high-resolution discretization schemes, they are more complex than the MUSCL scheme.[38–40]The MUSCL scheme is a simple spatial discretization scheme,which is very popular among researchers.

    We have adopted the MUSCL finite volume scheme in the previous subsection.Taking the density distribution function for example,equation(1)can be rewritten as

    whereΓis the corresponding grid boundary,Vis the volume of mesh,and ˉfαis the average distribution function on the grid,

    withnbeing the normal vector in the outward direction, andˉΩf,αthe average collision term.

    It can be seen from Fig.3 thatn1ton6are the normal vectors of the six corresponding surfaces, with each surface having corresponding flux and area as follows:

    whereΦα,i±1/2,j,k,Φα,i,j±1/2,k,andΦα,i,j,k±1/2are the numerical fluxes on each grid surface,the specific value is as follows:

    whereandare the distribution function on the internal side and the external side of the interface (i+1/2,j,k).We use the third order monotonic upwind scheme for scalar conservation law with the smooth limiter to obtain the following values:

    whereκ=1/3,ris the van Albada limiter[41]given by

    withλbeing a small number, which is usually taken to be 10-12toavoid dividing by 0,and

    Now, we can figure out the specific number of fluxΦ.Next,we use the sum of the product of the flux and the area of the six faces to simplify the integral in Eq.(20)into a linear summation formula,the dynamic equation can be obtained by simplification as follows:

    The potential energy distribution function is treated in the same way as the density distribution function.

    Fig.3.Numerical flux on grid surface.

    4.Numerical simulations

    A series of numerical simulations is conducted in this section to verify the stability and accuracy of the proposed compressible model,mainly simulating Riemann problems,Taylor vertex flow,Couette flow,Regular shock reflection,3D explosion in a box, and 3D flat-plate.In the simulation, the reference density isρref=1.0,the reference velocity isUref=1.0,and the reference temperature isTref=1.0.The characteristic temperatureTcis often a little bit higher than the maximum stagnation temperature in the whole flow field.

    4.1.Riemann problems

    Riemann problem is one of the core problems in computational fluid dynamics.In computational fluid dynamics, almost all high-precision schemes are based on solving Riemann problems.Owing to the Riemann problem including smooth solutions and discontinuous problems,it is a difficult and core problem of computational aerodynamics.

    As a standard 1D problem, the length of shock tube is 1, the size of the calculate region isNx×Ny×Nz= 401×8×8.Both the exit and entrance are set as initial conditions, other boundary conditions are set as periodic boundaries.the specific-heat ratio isγ=1.4, the Prandtl number isPr=0.71,and the viscosity isμ=2×10-5.In this paper,two different examples are simulated, and the difference between the D3Q25 model with and without shifted lattice model is compared respectively.It is proved that the accuracy and stability of D3Q25 model can be improved by adding shifted lattice model.

    The first example of the simulation is Sod shock tube,the initial conditions are as follows:

    where the time step is Δt=1×10-5, and the characteristic temperature isTc=2.5.

    Figure 4 shows the results of density, pressure, temperature,and velocity with shifted lattice model att=0.2 respectively.For a better comparison, the analytical solutions are also plotted.

    Fig.4.Simulation results and analytical results from shifted lattice model of the Sod shock tube: (a)density,(b)pressure,(c)temperature,and(d)velocity.

    The second example of the simulation is the stability contrast test,the initial conditions are as follows:

    where the pressure on the left side is 1, the pressure on the right side is adjustable.We test the stability of the shifted lattice model by controlling the pressure ratio.The time step is Δt=1×10-5,and the characteristic temperature isTc=1,the size of the calculate region isNx×Ny×Nz=201×8×8.

    Through testing, it is found that the maximum pressure ratio can reach 70 without adding the shifted lattice model.In the case of shifted lattice model, the maximum pressure ratio can reach 145.The simulation results are shown in Fig.5.When the pressure ratio is 75,the non-shifted model begins to oscillate and then diverges, while the shifted model has good stability.Obviously,the shifted lattice model can increase the stability of DDF model.

    Fig.5.Speed comparison at pressure ratio 75.

    4.2.Taylor vortex flow

    This case is used to test the spatial accuracy of the present method.And this case has the following analytical solution:

    Fig.6.Spatial accuracy validation of the present method.

    wherep0= 100.0,u0= 1.0,A=B= 2π,α=A2+B2,μ=0.001 is the shear viscosity,densityρ=2λ p,λ=0.005,time step is Δt=1×10-5,and the characteristic temperature isTc=144.The computational domain is set to be 0≤x ≤1 and 0≤y ≤1.The computation domain is discretized into 16×16×5,32×32×5,64×64×5,and 128×128×5.To test the order of the present method, the results from different meshes have been used to calculate L2 errors in velocity field.Figure 6 illustrates a model that is almost second-order accurate.Figure 7 shows the velocity profiles compared with analytical solutions at different times.It can be seen that the evolution is correct through the present method.

    Fig.7.Comparison among velocity profiles of(a)u and(b)v at different times.

    4.3.Couette flow

    Couette flow is a classic test case driven by two parallel plates.For this problem, the computational domain has the initial conditions(ρ,T0,u,v,w)=(1,1,0,0,0).When simulation starts, the top plate moves at a constant velocityU0.In a steady state, the temperature profiles satisfy the following relation:

    whereH=1 is the height of the two plates, andyis the distance of any point in the computation domain from the bottom plate.In the simulation, a meshNx×Ny×Nz=6×65×6 is used.The non-equilibrium extrapolation method is applied to the top and bottom wall, and periodic boundary condition is imposed on theyandzdirection.The viscosity isμ=8×10-3,and the time step is Δt=2×10-3.

    The Prandtl numberPr=τf/τhis adjustable.The range of the Prandtl number is from 0.4 to 10 approximately.Figure 8 shows the temperature profiles compared with analytical solutions along theydirection forU0=1,b=5,andPr=1,3,5,8.It can be found that the simulation results and analytical results are in satisfactory agreement.

    Fig.8.Temperature profiles along the y direction for different Prandtl numbers.

    4.4.Regular shock reflection

    A steady 2D compressible flow, i.e., a regular shock reflection on a wall, is considered in this test.This problem involves three flow regions separated by an oblique shock and its reflection from a wall.A shock wave of Mach number 2.9 is incident on the wall at an angle.The Dirichlet conditions are imposed on the left and top boundaries,respectively.

    The bottom boundary condition is the reflection boundary, the right boundary is supersonic flow where the zerothorder extrapolation scheme is used.They-direction boundary is a periodic boundary,and the value of the entire flow field is set as the left boundary condition at the beginning.The size of the calculate region isNx×Ny×Nz=150×50×5.The time step is Δt=1×10-5,the characteristic temperature isTc=2,the viscosity isμ=1×10-5,the Prandtl number isPr=0.71.

    Figure 9 shows the results of density, pressure, temperature,and velocity from the shifted lattice model: three distinct areas can be clearly seen in the picture, the incident angle is measured to be 29.05°[arctan(1/1.8)], of which the exact result is 29°.

    Fig.9.Simulation results of(a)density,(b)pressure,(c)temperature,and(d)velocity of regular shock reflection,obtained from shifted lattice model.

    The residual curve of shifted model and non-shifted model for comparison are plotted in Fig.10.Because the distribution function is divided into two parts and the shifted lattice velocity changes with time,the convergence speed of the shifted model is slightly slower than that of the non-shifted model.The final residuals of both models satisfy the convergence condition.

    Fig.10.Residual curves of regular shock reflection.

    4.5.The 3D explosion in a box

    In this subsection,we test the explosion in a box.[42]The results are shown in Fig.11.At the beginning of the simulation, the velocity in space is zero, the pressure and density in the sphere space are defined as follows:

    Space sphere equation is defined as follows:

    The dimension of space is[0,1]×[0,1]×[0,1],the size of the calculate region isNx×Ny×Nz=80×80×80,the time step is Δt=1×10-6, the viscosity isμ=1×10-5, the Prandtl number isPr=0.71,and the boundaries of these six surfaces are all periodic.

    Fig.11.3D explosion in a box.

    Figure 12 shows the density contour atz=0.4 andt=0.5,which accords well with results of Refs.[22,42].

    Fig.12.Density contours for z=0.4,t=0.5: (a)simulation result of the present study and results cited from(b)Ref.[20]and(c)Ref.[36].

    4.6.The 3D flat-plate boundary conditions

    A 3D flat-plate(Fig.13)is simulated in this subsection to verify the feasibility of the shifted lattice model with a nonslip boundary.Previously,Carter[43]accomplished the numerical simulation of the 2D flat-plate supersonic boundary layer.With a 3D shifted lattice model added to the lattice Boltzmann method,the supersonic flat-plate boundary layer is simulated.Mach numberMa=3.0,Reynolds numberRe=1000,γ=1.4,Pr=0.72, the bottom boundary are used in a nonequilibrium extrapolation scheme,and both the front side and the back side are set as periodic boundaries.The size of the calculate region isNx×Ny×Nz=100×100×5.the time step is Δt=1×10-4.

    Fig.13.3D flat-plate.

    Figure 14 shows the distribution of flow field.

    Fig.14.Flow field of flat-plate.

    Figure 15 shows the ratio of the bottom pressure to the initial pressurePw/P0andu/u∞atx/L0=1 compared with Carter’s result,showing good agreement with each other.

    Fig.15.Comparison of (a) Pw/P0 versus x and (b) y/L versus u/u0 between Cater and shifted model for 3D flat-plate.

    5.Conclusions

    A D3Q25 LBM DDF compressible flow model and a shifted lattice model are established in this work.With the finite volume scheme, the shifted lattice model is applied to D3Q25 model, with numerical experiments including Sod shock tube, Taylor vortex flow, Couette flow, regular shock reflection, 3D explosion in a box, and 3D flat-plate.The numerical results obtained are basically consistent with the analytical solutions or simulation data in the existing literature,it is proved that the stability of D3Q25 DDF model can be improved by adding the shifted lattice model.This paper also has some shortcomings.Although the shifted model can increase the stability to a certain extent, the maximum Mach number of this model can only reach 3.In the future, the shifted model is hoped to combine with multiple-relaxationtime LBM to simulate higher Mach number.Overall,this work further optimizes the 3D compressible model,and has guiding significance for the simulation of high Mach supersonic flow.

    Appendix A: Discrete equilibrium distribution function of 3D LB model

    Acknowledgements

    We sincerely thank Dr.Pan Dong-Xing for his help with the mesoscopic method.

    Project supported by the Youth Program of the National Natural Science Foundation of China (Grant Nos.11972272,12072246, and 12202331), the National Key Project, China(Grant No.GJXM92579), and the Natural Science Basic Research Program of Shaanxi Province, China (Program No.2022JQ-028).

    看黄色毛片网站| 久久久久九九精品影院| 精品久久久久久久久久免费视频| 99在线人妻在线中文字幕| 久久久久久人人人人人| 国产精品 欧美亚洲| 久久天堂一区二区三区四区| 99久久99久久久精品蜜桃| 99在线视频只有这里精品首页| 亚洲中文av在线| 国产精品免费视频内射| 久久久久国内视频| 久久久久久久久中文| 久久性视频一级片| 少妇粗大呻吟视频| 韩国av一区二区三区四区| 国产亚洲欧美精品永久| 亚洲精品美女久久久久99蜜臀| 久久人人97超碰香蕉20202| 韩国av一区二区三区四区| 成人18禁在线播放| 99精品久久久久人妻精品| 香蕉丝袜av| 亚洲激情在线av| 自线自在国产av| 欧美日韩精品网址| 日韩欧美在线二视频| 99在线视频只有这里精品首页| 欧美日韩乱码在线| 久久精品国产清高在天天线| 精品少妇一区二区三区视频日本电影| 日韩欧美国产在线观看| 久久草成人影院| videosex国产| av天堂在线播放| 欧美日韩精品网址| 久久久久久久久中文| 最近最新中文字幕大全电影3 | 人人妻,人人澡人人爽秒播| av免费在线观看网站| 国产97色在线日韩免费| 午夜精品在线福利| 老鸭窝网址在线观看| 巨乳人妻的诱惑在线观看| 精品少妇一区二区三区视频日本电影| 一级毛片精品| 欧美国产日韩亚洲一区| 亚洲av第一区精品v没综合| 亚洲男人天堂网一区| 国产午夜福利久久久久久| 亚洲精品av麻豆狂野| 老司机福利观看| 三级毛片av免费| 精品熟女少妇八av免费久了| 国产精品av久久久久免费| 男女床上黄色一级片免费看| 久久天堂一区二区三区四区| 美女午夜性视频免费| 亚洲熟女毛片儿| 日日爽夜夜爽网站| 精品久久久久久成人av| 国产欧美日韩综合在线一区二区| 日日干狠狠操夜夜爽| 亚洲av成人av| 久热这里只有精品99| 亚洲精品在线观看二区| 777久久人妻少妇嫩草av网站| 中文字幕色久视频| 男女之事视频高清在线观看| 国产精品自产拍在线观看55亚洲| 精品不卡国产一区二区三区| 色综合婷婷激情| 亚洲avbb在线观看| 麻豆国产av国片精品| 亚洲五月婷婷丁香| 欧美黑人精品巨大| 国产午夜福利久久久久久| 亚洲色图av天堂| 国产99久久九九免费精品| 老司机午夜福利在线观看视频| 免费在线观看黄色视频的| 如日韩欧美国产精品一区二区三区| 国产成人精品在线电影| 人人妻人人爽人人添夜夜欢视频| 在线永久观看黄色视频| 国产欧美日韩一区二区三| 他把我摸到了高潮在线观看| 国语自产精品视频在线第100页| 国产精品亚洲美女久久久| 欧美久久黑人一区二区| 免费久久久久久久精品成人欧美视频| 男人操女人黄网站| av视频在线观看入口| 亚洲精品国产精品久久久不卡| 在线免费观看的www视频| 国产又色又爽无遮挡免费看| 不卡一级毛片| 一边摸一边做爽爽视频免费| 亚洲av片天天在线观看| 日日夜夜操网爽| 国产日韩一区二区三区精品不卡| 老司机午夜福利在线观看视频| 精品熟女少妇八av免费久了| 日韩高清综合在线| 一夜夜www| 嫩草影院精品99| 人人妻人人爽人人添夜夜欢视频| 一a级毛片在线观看| 国产在线观看jvid| 午夜影院日韩av| 日韩欧美国产一区二区入口| 久久婷婷成人综合色麻豆| 亚洲国产高清在线一区二区三 | 精品免费久久久久久久清纯| 日韩视频一区二区在线观看| 久久精品人人爽人人爽视色| 欧美激情极品国产一区二区三区| 91精品三级在线观看| 亚洲视频免费观看视频| 日韩欧美一区二区三区在线观看| 亚洲国产看品久久| 国产xxxxx性猛交| 日韩成人在线观看一区二区三区| 婷婷精品国产亚洲av在线| 自线自在国产av| 亚洲全国av大片| 久久久久久人人人人人| 99国产精品一区二区三区| 欧美一级a爱片免费观看看 | 日韩精品青青久久久久久| 好看av亚洲va欧美ⅴa在| 欧美大码av| 老司机福利观看| 久久久久久亚洲精品国产蜜桃av| 国产成人一区二区三区免费视频网站| 久久久国产成人免费| 国产精品久久视频播放| 日韩av在线大香蕉| 日本免费a在线| 国产精品九九99| 国产伦人伦偷精品视频| 午夜福利免费观看在线| 亚洲成av片中文字幕在线观看| 国产免费av片在线观看野外av| 日本 av在线| 国产不卡一卡二| 欧美黑人精品巨大| 国产一卡二卡三卡精品| 亚洲熟妇中文字幕五十中出| 99在线人妻在线中文字幕| 视频区欧美日本亚洲| 国产av一区二区精品久久| 两个人免费观看高清视频| 国产一区二区三区综合在线观看| 色综合站精品国产| 国产黄a三级三级三级人| 亚洲国产看品久久| 色综合亚洲欧美另类图片| 久久天堂一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 美女高潮到喷水免费观看| 一个人免费在线观看的高清视频| 黑丝袜美女国产一区| 90打野战视频偷拍视频| 国内毛片毛片毛片毛片毛片| 91av网站免费观看| 丝袜美腿诱惑在线| 亚洲成av片中文字幕在线观看| www.999成人在线观看| 国产欧美日韩精品亚洲av| 亚洲av电影在线进入| 久久精品国产亚洲av香蕉五月| 一二三四社区在线视频社区8| 嫩草影院精品99| 亚洲av第一区精品v没综合| 国产成人精品无人区| 日韩av在线大香蕉| 高清毛片免费观看视频网站| 久久九九热精品免费| 欧美日韩一级在线毛片| 国产成人av教育| 免费不卡黄色视频| 精品久久蜜臀av无| 成熟少妇高潮喷水视频| 欧美成人免费av一区二区三区| √禁漫天堂资源中文www| 久久热在线av| 国产1区2区3区精品| 精品久久久精品久久久| 欧美精品啪啪一区二区三区| 国产精品1区2区在线观看.| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久精品久久久| 欧美日韩精品网址| 嫩草影视91久久| 久久久国产欧美日韩av| 午夜福利欧美成人| 国产蜜桃级精品一区二区三区| 美女高潮喷水抽搐中文字幕| 成人免费观看视频高清| 性色av乱码一区二区三区2| 免费看十八禁软件| 久99久视频精品免费| 久久久久国产一级毛片高清牌| 国产av一区在线观看免费| 人妻丰满熟妇av一区二区三区| 看黄色毛片网站| 亚洲国产高清在线一区二区三 | 成人亚洲精品av一区二区| 国产精品一区二区在线不卡| 国产1区2区3区精品| 国产熟女xx| 午夜两性在线视频| 午夜福利18| 一进一出好大好爽视频| 免费高清在线观看日韩| 狠狠狠狠99中文字幕| 久久精品成人免费网站| 在线观看免费午夜福利视频| 精品无人区乱码1区二区| 很黄的视频免费| 免费久久久久久久精品成人欧美视频| 久久久久久久久免费视频了| 91九色精品人成在线观看| 久久精品亚洲熟妇少妇任你| 亚洲专区国产一区二区| 少妇粗大呻吟视频| 精品久久久久久,| 在线永久观看黄色视频| 99在线人妻在线中文字幕| 欧美在线一区亚洲| 99riav亚洲国产免费| 操出白浆在线播放| 色综合欧美亚洲国产小说| 久久人人爽av亚洲精品天堂| 国产熟女xx| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕一区二区三区有码在线看 | 国产精品 欧美亚洲| 中文字幕久久专区| 欧美精品啪啪一区二区三区| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 久久狼人影院| АⅤ资源中文在线天堂| 欧美激情高清一区二区三区| 这个男人来自地球电影免费观看| bbb黄色大片| 国产激情久久老熟女| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 亚洲专区国产一区二区| 精品一区二区三区视频在线观看免费| 神马国产精品三级电影在线观看 | 真人一进一出gif抽搐免费| 精品国产一区二区久久| 中文字幕最新亚洲高清| 淫妇啪啪啪对白视频| av电影中文网址| 午夜两性在线视频| 国产精品久久久久久亚洲av鲁大| 精品电影一区二区在线| 亚洲专区中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 欧美+亚洲+日韩+国产| 国产男靠女视频免费网站| 久久国产精品男人的天堂亚洲| 18美女黄网站色大片免费观看| 男人的好看免费观看在线视频 | 变态另类成人亚洲欧美熟女 | 成年人黄色毛片网站| 国产区一区二久久| 国产在线精品亚洲第一网站| 99国产精品一区二区三区| 亚洲精品国产区一区二| 国产不卡一卡二| 免费高清在线观看日韩| 亚洲精品久久国产高清桃花| 国产精品秋霞免费鲁丝片| 怎么达到女性高潮| 九色亚洲精品在线播放| 男女午夜视频在线观看| 制服丝袜大香蕉在线| 久久性视频一级片| 国产av一区在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 欧美老熟妇乱子伦牲交| 亚洲人成77777在线视频| 午夜免费激情av| 欧美另类亚洲清纯唯美| 欧美日本视频| 日韩欧美国产一区二区入口| 在线免费观看的www视频| 亚洲精品中文字幕一二三四区| 老司机午夜十八禁免费视频| 色综合婷婷激情| 国产欧美日韩一区二区三区在线| 男女下面进入的视频免费午夜 | 黑人操中国人逼视频| 午夜两性在线视频| 亚洲精品一区av在线观看| 欧美午夜高清在线| 最近最新中文字幕大全免费视频| 国产精品美女特级片免费视频播放器 | 亚洲国产精品999在线| 人人妻人人爽人人添夜夜欢视频| 人成视频在线观看免费观看| 桃色一区二区三区在线观看| 精品久久久久久久久久免费视频| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 日本免费a在线| 给我免费播放毛片高清在线观看| 免费久久久久久久精品成人欧美视频| 91在线观看av| 午夜福利高清视频| 美女高潮喷水抽搐中文字幕| 一级片免费观看大全| 久久久国产成人精品二区| 真人做人爱边吃奶动态| 夜夜看夜夜爽夜夜摸| 精品一品国产午夜福利视频| 国产av精品麻豆| 69精品国产乱码久久久| 久久午夜综合久久蜜桃| 777久久人妻少妇嫩草av网站| 亚洲国产精品sss在线观看| 成人亚洲精品一区在线观看| 制服诱惑二区| 正在播放国产对白刺激| www日本在线高清视频| 91成人精品电影| 国产成人精品在线电影| 99精品久久久久人妻精品| 91老司机精品| 麻豆成人av在线观看| 国产高清激情床上av| 国产伦人伦偷精品视频| 精品日产1卡2卡| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| 电影成人av| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 波多野结衣高清无吗| 国产精品日韩av在线免费观看 | 淫妇啪啪啪对白视频| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 一级片免费观看大全| 国产av一区在线观看免费| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 欧美色视频一区免费| 久久久久精品国产欧美久久久| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 欧美中文综合在线视频| 又黄又爽又免费观看的视频| 日韩欧美一区视频在线观看| 91成年电影在线观看| 在线观看日韩欧美| 淫妇啪啪啪对白视频| 在线观看www视频免费| 亚洲精品美女久久av网站| 99在线视频只有这里精品首页| 我的亚洲天堂| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 桃红色精品国产亚洲av| av天堂久久9| 精品少妇一区二区三区视频日本电影| 丰满的人妻完整版| 如日韩欧美国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 亚洲欧美精品综合一区二区三区| 免费少妇av软件| 女人爽到高潮嗷嗷叫在线视频| 欧美亚洲日本最大视频资源| 日韩三级视频一区二区三区| 操出白浆在线播放| 成人永久免费在线观看视频| 日本欧美视频一区| 久久精品91无色码中文字幕| 免费观看精品视频网站| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 久久青草综合色| 999久久久国产精品视频| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 少妇 在线观看| 国产精品二区激情视频| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 精品电影一区二区在线| 久久精品人人爽人人爽视色| 在线av久久热| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 又大又爽又粗| 国产99久久九九免费精品| 日韩精品青青久久久久久| 欧美日韩亚洲综合一区二区三区_| 大码成人一级视频| 手机成人av网站| 国产私拍福利视频在线观看| 好男人在线观看高清免费视频 | 最新美女视频免费是黄的| 麻豆久久精品国产亚洲av| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影 | 国产精品av久久久久免费| 亚洲一区高清亚洲精品| 亚洲av五月六月丁香网| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到| 在线观看舔阴道视频| 在线观看一区二区三区| 母亲3免费完整高清在线观看| 国产精品一区二区免费欧美| 亚洲伊人色综图| 电影成人av| 国产精品电影一区二区三区| 国产三级在线视频| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 天天躁夜夜躁狠狠躁躁| 色播亚洲综合网| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免费看| 色精品久久人妻99蜜桃| aaaaa片日本免费| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 国产精华一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲少妇的诱惑av| 日韩高清综合在线| 欧美日本视频| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点 | 亚洲精品久久国产高清桃花| 窝窝影院91人妻| 午夜福利18| 中国美女看黄片| 亚洲中文日韩欧美视频| 久久国产精品男人的天堂亚洲| 黄片大片在线免费观看| 韩国av一区二区三区四区| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三| 午夜老司机福利片| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 精品福利观看| av有码第一页| 精品久久久久久成人av| 国产一区二区三区视频了| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 一区二区三区激情视频| 精品国产乱码久久久久久男人| 最新美女视频免费是黄的| 亚洲专区中文字幕在线| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址 | 两性夫妻黄色片| 香蕉久久夜色| 99精品欧美一区二区三区四区| 在线av久久热| 国产一区二区三区视频了| 国产高清有码在线观看视频 | 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看| 性少妇av在线| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| avwww免费| 国产精品秋霞免费鲁丝片| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 成人精品一区二区免费| 亚洲第一青青草原| 精品日产1卡2卡| 久久久久亚洲av毛片大全| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| av有码第一页| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲| 性欧美人与动物交配| av天堂在线播放| 高清毛片免费观看视频网站| av电影中文网址| 深夜精品福利| 精品日产1卡2卡| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 丁香欧美五月| aaaaa片日本免费| 999久久久精品免费观看国产| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 日韩欧美国产一区二区入口| 禁无遮挡网站| 免费无遮挡裸体视频| 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 亚洲,欧美精品.| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 欧美精品亚洲一区二区| 成在线人永久免费视频| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 自线自在国产av| 亚洲成av人片免费观看| 手机成人av网站| а√天堂www在线а√下载| 韩国av一区二区三区四区| 久久久久久大精品| 精品一区二区三区av网在线观看| 日韩精品免费视频一区二区三区| 久久草成人影院| 国产男靠女视频免费网站| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 亚洲五月天丁香| 国产精品国产高清国产av| 日本免费a在线| 亚洲一区二区三区不卡视频| 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 中文字幕人妻丝袜一区二区| 久久伊人香网站| 丁香欧美五月| 十分钟在线观看高清视频www| 嫩草影视91久久| 国产高清videossex| av福利片在线| 久久国产精品影院| 啪啪无遮挡十八禁网站| 亚洲专区字幕在线| 亚洲人成77777在线视频| 窝窝影院91人妻| 免费高清视频大片| 伦理电影免费视频| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 国产麻豆69| 97碰自拍视频| 久9热在线精品视频| 亚洲精品国产区一区二| 欧美色视频一区免费| 亚洲精品国产区一区二| 国产色视频综合| 成人特级黄色片久久久久久久| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 99在线视频只有这里精品首页| 妹子高潮喷水视频| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 好男人在线观看高清免费视频 | 欧美乱码精品一区二区三区| 国产精品精品国产色婷婷| 精品国产国语对白av| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| www日本在线高清视频| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| a在线观看视频网站| 欧美成人午夜精品| 国产精华一区二区三区| 欧美日韩黄片免| 久久香蕉激情| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 欧美一区二区精品小视频在线| 别揉我奶头~嗯~啊~动态视频| 午夜福利高清视频| 精品国产一区二区久久| 亚洲少妇的诱惑av| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频|