• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of shifted lattice model to 3D compressible lattice Boltzmann method

    2023-10-11 07:55:42HaoYuHuang黃好雨KeJin金科KaiLi李凱andXiaoJingZheng鄭曉靜
    Chinese Physics B 2023年9期

    Hao-Yu Huang(黃好雨), Ke Jin(金科),4, Kai Li(李凱),4, and Xiao-Jing Zheng(鄭曉靜)

    1School of Aerospace Science and Technology,Xidian University,Xi’an 710071,China

    2School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    3Shaanxi Key Laboratory of Space Extreme Detection,Xi’an 710071,China

    4Key Laboratory of Equipment Efficiency in Extreme Environment,Ministry of Education,Xi’an 710071,China

    Keywords: lattice Boltzmann method,shifted lattice model,compressible flow,finite volume method

    1.Introduction

    Since the first paper about lattice Boltzmann method(LBM) appeared in 1988, the LBM[1–5]as a prominent tool in computational fluid dynamics has attracted much attention and become a major research hotspot.Unlike the traditional method based on macroscopic equations,the LBM is based on a mesoscopic kinetic model and obtains macroscopic quantities through statistics of distribution functions.The LBM is a multi-scale method, and its advantage is that the convection term is linear.Therefore, the LBM is applied to numerical calculation of various fluids, such as microscale flow,[6,7]turbulence,[8,9]multiphase flows,[10,11]blood flow,[12]and heat transfer.[13,14]

    The research object of this paper is compressible fluid.Because the single distribution model adds new discrete velocity based on the isothermal model,and the specific-heat ratio is related to the spatial dimension of the model,it does not have real physical properties.While the double distribution function(DDF)model can adjust the specific-heat ratio and Prandtl number.So the double distribution function method[15–18]is adopted to construct a compressible fluid model.Of course,adding a distribution function will inevitably increase the amount of calculation.In 1998, Heet al.[15]first proposed the double-distribution model, which attracts wide attention because of its good stability and adjustable Prandtl number.Guoet al.[16]proposed a total energy distribution function to replace the internal energy distribution function.Liet al.[17]proposed a two-dimensional (2D) compressible finite difference DDF model and obtained satisfactory simulation results in high Mach number flows.Li and Zhong[18]proposed the potential energy distribution function model and applied the finite volume method to it.

    Many researchers have made great efforts to develop three-dimensional (3D) compressible models.Kataoka and Tsutahara[19]proposed the D3Q15 model of compressible Euler equation, but this model only suitable for subsonic flows.Chenet al.[20]improved the Kataoka’s model and made the model suitable for higher speeds.Watari and Tsutahara[21]proposed the D3Q73 model,which can achieve a Mach number of 1.7.Liet al.[22]proposed the D3Q25 model of compressible Euler equation.According to Li’s model, Qiuet al.[23]introduced the total energy distribution function to optimize the D3Q25 model, and applied the Hermite expansion to the lattice Boltzmann model of D3Q27 to obtain a coupled double-distribution compressible model.

    Although compressible model is being developed, the simulation of high Mach number flow is always problematic.In order to solve this problem,Huanget al.[24]proposed a discrete velocity model centered on the local flow velocity and the velocity varies with the local temperature.They successfully simulated shock tubes, and it is the first time that asymmetrical discrete velocity model has entered into people’s view.Sun[25,26]and Sun and Hsu[27]proposed an adaptive LB model in which the discrete velocity changes with local flow velocity and internal energy,thus the model can accomplish high-Mach simulation, but the relaxation time of their model must equal 1, which is a great limitation.Chopardet al.[28]and Hedjripouret al.[29]proposed one-dimensional (1D) asymmetric discrete velocity model: the model can successfully simulate a wide range of subcritical and supercritical flow, making it possible to practically use the asymmetric model.Frapolliet al.[30]proposed a novel shifted lattice model, adding another velocity to the original discrete velocity, so that the discrete velocity is no longer symmetric.They multiplied the equilibrium distribution function by a transformation matrix,and accomplished the conversion of the stationary coordinate system into the moving coordinate system,which greatly increases the calculation range of LBM.Saadatet al.[31]applied Frapolli’s shifted lattice model to D2Q9 and successfully simulated the supersonic shock compressible flow.But the disadvantage of transformation matrix is too complex and it is easy to generate a singular matrix, which is only suitable for a small discrete speed.

    In the standard lattice Boltzmann equation (LBE), the discrete velocity of particles determines the type of computational grid.Generally, grids must be uniformly symmetric(regular hexagon, square).Although it is easy to construct such grids,they are not flexible enough to be applied to complex flow fields.In order to solve this problem,many scholars have conducted in-depth research on non-standard LBE models and proposed a variety of models.Reider and Sterling[32]first applied the fourth-order central difference scheme and the fourth-order Runge–Kuta scheme to LBM and proved the feasibility of the finite-difference LBM.Penget al.[33,34]proposed cell-vertex method, and they stored physical quantities on grid nodes and successfully used finite volume LBM to simulate the flow in a coaxial rotating cylinder.In this study,we use the third order monotone upwind scheme for scalar conservation laws(MUSCLs)finite volume scheme.

    In this paper, we introduce the potential energy distribution function based on Li’s[22]D3Q25 density distribution function to create a new DDF model.In addition,a new shifted lattice model is proposed based on the linear equation.The 3D shifted lattice model is applied to the D3Q25 model to obtain better numerical stability.The rest of this article is organized as follows.In Section 2,we briefly introduce the DDF model,D3Q25 model and the shifted lattice model.In Section 3,we introduce the numerical method.In Section 4, we carry out numerical simulations of some typical compressible flows to prove the good effect of the shifted model.Finally, conclusions are drawn in Section 5.

    2.The 3D compressible double distribution function model

    2.1.Compressible D3Q25 LBM model

    Li and Zhong[18]introduced the potential energy distribution function on the basis of the density distribution function, and proposed a DDF compressible LB model.An additional potential energy distribution function can be introduced to overcome the shortcomings of the Boltzmann Bhatnagar–Gross–Krook (BGK) equation that cannot present adjustable specific heat ratio nor Prandtl number.The functional model for this paper is the DDF LB model,and its dynamic equations are as follows:

    whereZa=(ea-u)2/2,fαis the density distribution function,hαis the potential energy distribution function,andare the corresponding equilibrium distribution functions,eαis the discrete velocity of the particle,τfandτhare the relaxation time of density and potential energy respectively,τhfis the potential energy relaxation rate that can be determined from the following equation:

    whenτf=τhthis model degenerates into the original BGK model,withτfdefined as

    whereμis the viscosity andpthe pressure(p=ρRT), withRbeing the specific gas constant andTthe temperature.ThePrnumber can be created arbitrary by adjusting the two relaxation times as shown below:

    Potential energy distribution function can be obtained easily from the following equation:

    whereK=b-D,bis the number of degrees of freedom(DOFs),Dis the space dimension.

    The D3Q25 based circular distribution function which is proposed by Liet al.[22]is shown in Fig.1.

    Fig.1.Illustration of D3Q25 discrete velocity model.

    2.2.The 3D shifted lattice model

    In this study, we propose the shifted lattice model, by using a linear equation to replace the transformation matrix,thereby realizing the conversion of coordinates,increasing the feasibility of the model,and making the multi-discrete velocity model also able to use the shifted lattice model.Each discrete velocity is increased by a velocityvas shown in Fig.2.The magnitude of velocityvcan be a fixed value or change with the velocity of the flow field.In this work, we define that the value ofvis proportional to the sum of maximum and minimum velocity after each collision.Then we addvinto the initial symmetric discrete velocity to obtain a real discrete velocity

    wherecαis the initial discrete velocity of Li’s D3Q25,[22]vnis the shifted speed obtained in then-th iteration,andis the real discrete velocity of then-th iteration.

    The dynamic equation of the density distribution function is divided into the following two parts: flow process and coordinate transformation

    We will adopt the MUSCL finite volume scheme to calculate Eqs.(9),(12),and(13).The specific content will be described in detail in the next section.

    Fig.2.Illustration of shifted lattice model.

    2.3.Boundary conditions

    2.3.1.Non-slip wall boundary condition

    Wall flow variables are as follows:

    Under the non-slip wall boundary condition,non-equilibrium extrapolation scheme[35]is used.Density and potential energy distribution functions on the wall are expressed as

    Equilibrium distribution functions are computed with the flow variables.The subscripts “cf” denotes the interface on the boundary and“in”denotes its neighbor cell.

    At present,the shifted lattice model is suitable for isothermal wall conditions.While adiabatic wall conditions will produce some errors, and the results can be improved by multiplying the non-equilibrium term with a number less than 1.

    2.3.2.Inlet flow boundary condition

    where ∞denotes the inflow state.

    2.3.3.Outflow flow boundary condition

    3.Numerical methods

    In order to capture the discontinuity well,we need to introduce artificial dissipation.There are two ways to introduce artificial dissipation.One is the model dissipation, and the other is the numerical dissipation from numerical methods.When the viscosity is very small, the model dissipation is unable to capture discontinuities without oscillation.So the numerical scheme is used to provide the additional dissipation.

    Many researchers have applied different numerical schemes to LBM, such as, the weighted essentially technique[36]and the 6th-order compact finite difference method.[37]Although they are both high-resolution discretization schemes, they are more complex than the MUSCL scheme.[38–40]The MUSCL scheme is a simple spatial discretization scheme,which is very popular among researchers.

    We have adopted the MUSCL finite volume scheme in the previous subsection.Taking the density distribution function for example,equation(1)can be rewritten as

    whereΓis the corresponding grid boundary,Vis the volume of mesh,and ˉfαis the average distribution function on the grid,

    withnbeing the normal vector in the outward direction, andˉΩf,αthe average collision term.

    It can be seen from Fig.3 thatn1ton6are the normal vectors of the six corresponding surfaces, with each surface having corresponding flux and area as follows:

    whereΦα,i±1/2,j,k,Φα,i,j±1/2,k,andΦα,i,j,k±1/2are the numerical fluxes on each grid surface,the specific value is as follows:

    whereandare the distribution function on the internal side and the external side of the interface (i+1/2,j,k).We use the third order monotonic upwind scheme for scalar conservation law with the smooth limiter to obtain the following values:

    whereκ=1/3,ris the van Albada limiter[41]given by

    withλbeing a small number, which is usually taken to be 10-12toavoid dividing by 0,and

    Now, we can figure out the specific number of fluxΦ.Next,we use the sum of the product of the flux and the area of the six faces to simplify the integral in Eq.(20)into a linear summation formula,the dynamic equation can be obtained by simplification as follows:

    The potential energy distribution function is treated in the same way as the density distribution function.

    Fig.3.Numerical flux on grid surface.

    4.Numerical simulations

    A series of numerical simulations is conducted in this section to verify the stability and accuracy of the proposed compressible model,mainly simulating Riemann problems,Taylor vertex flow,Couette flow,Regular shock reflection,3D explosion in a box, and 3D flat-plate.In the simulation, the reference density isρref=1.0,the reference velocity isUref=1.0,and the reference temperature isTref=1.0.The characteristic temperatureTcis often a little bit higher than the maximum stagnation temperature in the whole flow field.

    4.1.Riemann problems

    Riemann problem is one of the core problems in computational fluid dynamics.In computational fluid dynamics, almost all high-precision schemes are based on solving Riemann problems.Owing to the Riemann problem including smooth solutions and discontinuous problems,it is a difficult and core problem of computational aerodynamics.

    As a standard 1D problem, the length of shock tube is 1, the size of the calculate region isNx×Ny×Nz= 401×8×8.Both the exit and entrance are set as initial conditions, other boundary conditions are set as periodic boundaries.the specific-heat ratio isγ=1.4, the Prandtl number isPr=0.71,and the viscosity isμ=2×10-5.In this paper,two different examples are simulated, and the difference between the D3Q25 model with and without shifted lattice model is compared respectively.It is proved that the accuracy and stability of D3Q25 model can be improved by adding shifted lattice model.

    The first example of the simulation is Sod shock tube,the initial conditions are as follows:

    where the time step is Δt=1×10-5, and the characteristic temperature isTc=2.5.

    Figure 4 shows the results of density, pressure, temperature,and velocity with shifted lattice model att=0.2 respectively.For a better comparison, the analytical solutions are also plotted.

    Fig.4.Simulation results and analytical results from shifted lattice model of the Sod shock tube: (a)density,(b)pressure,(c)temperature,and(d)velocity.

    The second example of the simulation is the stability contrast test,the initial conditions are as follows:

    where the pressure on the left side is 1, the pressure on the right side is adjustable.We test the stability of the shifted lattice model by controlling the pressure ratio.The time step is Δt=1×10-5,and the characteristic temperature isTc=1,the size of the calculate region isNx×Ny×Nz=201×8×8.

    Through testing, it is found that the maximum pressure ratio can reach 70 without adding the shifted lattice model.In the case of shifted lattice model, the maximum pressure ratio can reach 145.The simulation results are shown in Fig.5.When the pressure ratio is 75,the non-shifted model begins to oscillate and then diverges, while the shifted model has good stability.Obviously,the shifted lattice model can increase the stability of DDF model.

    Fig.5.Speed comparison at pressure ratio 75.

    4.2.Taylor vortex flow

    This case is used to test the spatial accuracy of the present method.And this case has the following analytical solution:

    Fig.6.Spatial accuracy validation of the present method.

    wherep0= 100.0,u0= 1.0,A=B= 2π,α=A2+B2,μ=0.001 is the shear viscosity,densityρ=2λ p,λ=0.005,time step is Δt=1×10-5,and the characteristic temperature isTc=144.The computational domain is set to be 0≤x ≤1 and 0≤y ≤1.The computation domain is discretized into 16×16×5,32×32×5,64×64×5,and 128×128×5.To test the order of the present method, the results from different meshes have been used to calculate L2 errors in velocity field.Figure 6 illustrates a model that is almost second-order accurate.Figure 7 shows the velocity profiles compared with analytical solutions at different times.It can be seen that the evolution is correct through the present method.

    Fig.7.Comparison among velocity profiles of(a)u and(b)v at different times.

    4.3.Couette flow

    Couette flow is a classic test case driven by two parallel plates.For this problem, the computational domain has the initial conditions(ρ,T0,u,v,w)=(1,1,0,0,0).When simulation starts, the top plate moves at a constant velocityU0.In a steady state, the temperature profiles satisfy the following relation:

    whereH=1 is the height of the two plates, andyis the distance of any point in the computation domain from the bottom plate.In the simulation, a meshNx×Ny×Nz=6×65×6 is used.The non-equilibrium extrapolation method is applied to the top and bottom wall, and periodic boundary condition is imposed on theyandzdirection.The viscosity isμ=8×10-3,and the time step is Δt=2×10-3.

    The Prandtl numberPr=τf/τhis adjustable.The range of the Prandtl number is from 0.4 to 10 approximately.Figure 8 shows the temperature profiles compared with analytical solutions along theydirection forU0=1,b=5,andPr=1,3,5,8.It can be found that the simulation results and analytical results are in satisfactory agreement.

    Fig.8.Temperature profiles along the y direction for different Prandtl numbers.

    4.4.Regular shock reflection

    A steady 2D compressible flow, i.e., a regular shock reflection on a wall, is considered in this test.This problem involves three flow regions separated by an oblique shock and its reflection from a wall.A shock wave of Mach number 2.9 is incident on the wall at an angle.The Dirichlet conditions are imposed on the left and top boundaries,respectively.

    The bottom boundary condition is the reflection boundary, the right boundary is supersonic flow where the zerothorder extrapolation scheme is used.They-direction boundary is a periodic boundary,and the value of the entire flow field is set as the left boundary condition at the beginning.The size of the calculate region isNx×Ny×Nz=150×50×5.The time step is Δt=1×10-5,the characteristic temperature isTc=2,the viscosity isμ=1×10-5,the Prandtl number isPr=0.71.

    Figure 9 shows the results of density, pressure, temperature,and velocity from the shifted lattice model: three distinct areas can be clearly seen in the picture, the incident angle is measured to be 29.05°[arctan(1/1.8)], of which the exact result is 29°.

    Fig.9.Simulation results of(a)density,(b)pressure,(c)temperature,and(d)velocity of regular shock reflection,obtained from shifted lattice model.

    The residual curve of shifted model and non-shifted model for comparison are plotted in Fig.10.Because the distribution function is divided into two parts and the shifted lattice velocity changes with time,the convergence speed of the shifted model is slightly slower than that of the non-shifted model.The final residuals of both models satisfy the convergence condition.

    Fig.10.Residual curves of regular shock reflection.

    4.5.The 3D explosion in a box

    In this subsection,we test the explosion in a box.[42]The results are shown in Fig.11.At the beginning of the simulation, the velocity in space is zero, the pressure and density in the sphere space are defined as follows:

    Space sphere equation is defined as follows:

    The dimension of space is[0,1]×[0,1]×[0,1],the size of the calculate region isNx×Ny×Nz=80×80×80,the time step is Δt=1×10-6, the viscosity isμ=1×10-5, the Prandtl number isPr=0.71,and the boundaries of these six surfaces are all periodic.

    Fig.11.3D explosion in a box.

    Figure 12 shows the density contour atz=0.4 andt=0.5,which accords well with results of Refs.[22,42].

    Fig.12.Density contours for z=0.4,t=0.5: (a)simulation result of the present study and results cited from(b)Ref.[20]and(c)Ref.[36].

    4.6.The 3D flat-plate boundary conditions

    A 3D flat-plate(Fig.13)is simulated in this subsection to verify the feasibility of the shifted lattice model with a nonslip boundary.Previously,Carter[43]accomplished the numerical simulation of the 2D flat-plate supersonic boundary layer.With a 3D shifted lattice model added to the lattice Boltzmann method,the supersonic flat-plate boundary layer is simulated.Mach numberMa=3.0,Reynolds numberRe=1000,γ=1.4,Pr=0.72, the bottom boundary are used in a nonequilibrium extrapolation scheme,and both the front side and the back side are set as periodic boundaries.The size of the calculate region isNx×Ny×Nz=100×100×5.the time step is Δt=1×10-4.

    Fig.13.3D flat-plate.

    Figure 14 shows the distribution of flow field.

    Fig.14.Flow field of flat-plate.

    Figure 15 shows the ratio of the bottom pressure to the initial pressurePw/P0andu/u∞atx/L0=1 compared with Carter’s result,showing good agreement with each other.

    Fig.15.Comparison of (a) Pw/P0 versus x and (b) y/L versus u/u0 between Cater and shifted model for 3D flat-plate.

    5.Conclusions

    A D3Q25 LBM DDF compressible flow model and a shifted lattice model are established in this work.With the finite volume scheme, the shifted lattice model is applied to D3Q25 model, with numerical experiments including Sod shock tube, Taylor vortex flow, Couette flow, regular shock reflection, 3D explosion in a box, and 3D flat-plate.The numerical results obtained are basically consistent with the analytical solutions or simulation data in the existing literature,it is proved that the stability of D3Q25 DDF model can be improved by adding the shifted lattice model.This paper also has some shortcomings.Although the shifted model can increase the stability to a certain extent, the maximum Mach number of this model can only reach 3.In the future, the shifted model is hoped to combine with multiple-relaxationtime LBM to simulate higher Mach number.Overall,this work further optimizes the 3D compressible model,and has guiding significance for the simulation of high Mach supersonic flow.

    Appendix A: Discrete equilibrium distribution function of 3D LB model

    Acknowledgements

    We sincerely thank Dr.Pan Dong-Xing for his help with the mesoscopic method.

    Project supported by the Youth Program of the National Natural Science Foundation of China (Grant Nos.11972272,12072246, and 12202331), the National Key Project, China(Grant No.GJXM92579), and the Natural Science Basic Research Program of Shaanxi Province, China (Program No.2022JQ-028).

    色5月婷婷丁香| av天堂久久9| 亚洲精品久久午夜乱码| 免费在线观看成人毛片| a级片在线免费高清观看视频| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 超碰97精品在线观看| 久久毛片免费看一区二区三区| 国产精品一区二区性色av| 久久久久久伊人网av| 最近中文字幕高清免费大全6| 免费在线观看成人毛片| 国产伦在线观看视频一区| 亚洲精品自拍成人| 有码 亚洲区| 一区二区三区乱码不卡18| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡 | 国产无遮挡羞羞视频在线观看| 午夜免费观看性视频| 一级毛片黄色毛片免费观看视频| 精品午夜福利在线看| 精品久久久精品久久久| tube8黄色片| 国产av精品麻豆| 又大又黄又爽视频免费| 免费观看无遮挡的男女| 国产91av在线免费观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频精品一区| 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕在线视频 | 高清av免费在线| 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 欧美xxⅹ黑人| 啦啦啦在线观看免费高清www| 夜夜骑夜夜射夜夜干| 亚洲av在线观看美女高潮| 大香蕉久久网| 99热网站在线观看| 成年人午夜在线观看视频| 国产色爽女视频免费观看| 黑丝袜美女国产一区| 亚洲怡红院男人天堂| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 草草在线视频免费看| 毛片一级片免费看久久久久| 一个人免费看片子| 边亲边吃奶的免费视频| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 久久久久人妻精品一区果冻| 18禁动态无遮挡网站| 成年人免费黄色播放视频 | 亚洲精品第二区| 国产在线男女| 街头女战士在线观看网站| 9色porny在线观看| 高清毛片免费看| 久久久国产精品麻豆| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久| 亚洲第一av免费看| 亚洲精品aⅴ在线观看| 日韩av免费高清视频| 黄色视频在线播放观看不卡| 亚洲国产精品999| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲综合精品二区| 中文字幕久久专区| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 欧美 日韩 精品 国产| 国产成人精品福利久久| 亚洲怡红院男人天堂| 久久精品久久精品一区二区三区| 久久久久久久久久久丰满| 免费av不卡在线播放| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 中文在线观看免费www的网站| 在线天堂最新版资源| 亚州av有码| 中文乱码字字幕精品一区二区三区| 成人综合一区亚洲| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 日本黄色日本黄色录像| 男女边摸边吃奶| 日韩精品有码人妻一区| 搡女人真爽免费视频火全软件| 搡女人真爽免费视频火全软件| 十分钟在线观看高清视频www | av在线播放精品| 春色校园在线视频观看| 亚洲图色成人| 又爽又黄a免费视频| 夜夜爽夜夜爽视频| 欧美老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃 | 欧美bdsm另类| 国产亚洲欧美精品永久| 亚洲精品国产成人久久av| 99久久综合免费| 99热这里只有精品一区| 欧美成人午夜免费资源| 国产成人精品福利久久| 日本-黄色视频高清免费观看| 纵有疾风起免费观看全集完整版| 婷婷色综合大香蕉| 又粗又硬又长又爽又黄的视频| 好男人视频免费观看在线| 日韩一区二区三区影片| 晚上一个人看的免费电影| 内地一区二区视频在线| 国产色爽女视频免费观看| 午夜免费男女啪啪视频观看| 精品少妇黑人巨大在线播放| av.在线天堂| 日韩中字成人| 欧美另类一区| 最近手机中文字幕大全| 久久久久久久大尺度免费视频| 国产成人午夜福利电影在线观看| 午夜福利在线观看免费完整高清在| 亚洲天堂av无毛| 国产亚洲最大av| 老司机亚洲免费影院| 亚洲国产精品国产精品| 欧美区成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品福利在线免费观看| 国模一区二区三区四区视频| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| videossex国产| 精品国产乱码久久久久久小说| 2018国产大陆天天弄谢| 日韩精品有码人妻一区| 伦精品一区二区三区| 欧美日韩在线观看h| 好男人视频免费观看在线| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 成人无遮挡网站| 日韩电影二区| 在线观看免费日韩欧美大片 | 少妇熟女欧美另类| 五月开心婷婷网| 久久久久视频综合| 香蕉精品网在线| 夜夜看夜夜爽夜夜摸| 国产精品三级大全| 97在线人人人人妻| 只有这里有精品99| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 夜夜看夜夜爽夜夜摸| 国产亚洲最大av| 国产91av在线免费观看| 午夜日本视频在线| 一本久久精品| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 美女主播在线视频| 欧美精品亚洲一区二区| 亚洲无线观看免费| 亚洲综合色惰| 免费看日本二区| 全区人妻精品视频| 成人18禁高潮啪啪吃奶动态图 | 国产淫语在线视频| 一区二区av电影网| 99热这里只有是精品在线观看| 久久久国产精品麻豆| 九色成人免费人妻av| 成人二区视频| 欧美三级亚洲精品| 啦啦啦视频在线资源免费观看| 欧美97在线视频| av在线观看视频网站免费| 国产精品久久久久久av不卡| 91精品一卡2卡3卡4卡| 少妇人妻 视频| 热99国产精品久久久久久7| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 三级国产精品欧美在线观看| 久久韩国三级中文字幕| 久久亚洲国产成人精品v| 国产伦精品一区二区三区视频9| 乱系列少妇在线播放| 免费看光身美女| 女人精品久久久久毛片| 丝袜在线中文字幕| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 丝袜喷水一区| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 亚洲国产日韩一区二区| av天堂久久9| videos熟女内射| 国产亚洲5aaaaa淫片| 日韩欧美精品免费久久| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片| 久久精品国产亚洲网站| 国产免费一级a男人的天堂| 国产高清有码在线观看视频| 午夜视频国产福利| 国产男人的电影天堂91| 精品亚洲乱码少妇综合久久| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| h日本视频在线播放| 亚洲欧洲日产国产| 成人美女网站在线观看视频| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 91精品国产国语对白视频| 国产在线男女| 午夜激情久久久久久久| 丁香六月天网| 日韩不卡一区二区三区视频在线| 丰满饥渴人妻一区二区三| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 久久热精品热| 男人和女人高潮做爰伦理| 久久鲁丝午夜福利片| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 曰老女人黄片| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 一二三四中文在线观看免费高清| 国产成人一区二区在线| 91久久精品国产一区二区三区| 十八禁高潮呻吟视频 | 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 性高湖久久久久久久久免费观看| 人人澡人人妻人| 男女无遮挡免费网站观看| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 日韩av在线免费看完整版不卡| 精品国产国语对白av| 久久久久久久久久成人| 夫妻午夜视频| 精品视频人人做人人爽| 亚州av有码| 高清毛片免费看| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 多毛熟女@视频| 一个人免费看片子| 99久久中文字幕三级久久日本| 91精品国产九色| 午夜日本视频在线| 亚洲人与动物交配视频| 久久久久久久久久久久大奶| 国产老妇伦熟女老妇高清| 老司机影院毛片| 色视频在线一区二区三区| 久久这里有精品视频免费| 免费不卡的大黄色大毛片视频在线观看| 三上悠亚av全集在线观看 | 国产在线一区二区三区精| 国产黄频视频在线观看| 亚洲人与动物交配视频| 国产精品一区二区性色av| 99九九在线精品视频 | av卡一久久| 国产日韩欧美亚洲二区| 精华霜和精华液先用哪个| 成年人午夜在线观看视频| 国产精品人妻久久久久久| 十分钟在线观看高清视频www | 国产黄频视频在线观看| 国产视频内射| 日日啪夜夜撸| 欧美日韩av久久| 欧美三级亚洲精品| 我要看黄色一级片免费的| .国产精品久久| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 国产亚洲91精品色在线| 欧美97在线视频| 国产精品国产三级国产av玫瑰| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 国内精品宾馆在线| 亚洲国产精品一区二区三区在线| 亚洲四区av| av福利片在线观看| 18禁在线无遮挡免费观看视频| 免费大片黄手机在线观看| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 伦理电影免费视频| a级一级毛片免费在线观看| 成年美女黄网站色视频大全免费 | 亚洲av在线观看美女高潮| 69精品国产乱码久久久| 欧美成人精品欧美一级黄| 国产精品成人在线| a级毛色黄片| 午夜日本视频在线| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 51国产日韩欧美| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 国产成人精品无人区| 美女福利国产在线| 三级经典国产精品| 亚洲高清免费不卡视频| 最近中文字幕2019免费版| 亚洲成人手机| 老司机影院毛片| 亚洲高清免费不卡视频| 国产精品.久久久| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 中国国产av一级| 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 另类亚洲欧美激情| 夫妻午夜视频| 亚洲精华国产精华液的使用体验| 2018国产大陆天天弄谢| 两个人免费观看高清视频 | 欧美激情极品国产一区二区三区 | 伦理电影免费视频| 色5月婷婷丁香| 青春草亚洲视频在线观看| 久久久欧美国产精品| av一本久久久久| 国产在线男女| 国产日韩一区二区三区精品不卡 | 三级经典国产精品| 亚洲国产最新在线播放| 全区人妻精品视频| 在线 av 中文字幕| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 国产一区二区三区av在线| 超碰97精品在线观看| 欧美日韩在线观看h| 婷婷色av中文字幕| 69精品国产乱码久久久| 欧美成人午夜免费资源| 色吧在线观看| 欧美97在线视频| 少妇的逼好多水| 秋霞伦理黄片| av天堂久久9| 色5月婷婷丁香| 天堂8中文在线网| 国产精品99久久久久久久久| 人人澡人人妻人| 日本黄色日本黄色录像| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 少妇 在线观看| 国产极品天堂在线| 欧美 日韩 精品 国产| 日韩伦理黄色片| 国产91av在线免费观看| 久久久久久久久大av| 老女人水多毛片| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 观看美女的网站| 看免费成人av毛片| 国产免费一区二区三区四区乱码| 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 亚洲真实伦在线观看| 免费看av在线观看网站| 亚洲美女视频黄频| av在线老鸭窝| 免费av中文字幕在线| 国产精品国产av在线观看| 久久影院123| 十八禁网站网址无遮挡 | 天天操日日干夜夜撸| 最近2019中文字幕mv第一页| 欧美精品一区二区免费开放| 亚洲不卡免费看| 最近最新中文字幕免费大全7| 国产精品麻豆人妻色哟哟久久| 午夜激情久久久久久久| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 大陆偷拍与自拍| 亚洲av免费高清在线观看| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 五月伊人婷婷丁香| av黄色大香蕉| 日韩av免费高清视频| kizo精华| 一区二区三区四区激情视频| 99视频精品全部免费 在线| 在线 av 中文字幕| 在线观看免费日韩欧美大片 | 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 成人毛片a级毛片在线播放| 最近的中文字幕免费完整| 欧美精品一区二区免费开放| av线在线观看网站| 精品午夜福利在线看| 国产av一区二区精品久久| 人人澡人人妻人| 三级经典国产精品| 在线 av 中文字幕| 国产精品成人在线| 久久久久久久久久久丰满| 亚州av有码| 80岁老熟妇乱子伦牲交| 视频中文字幕在线观看| 欧美日韩综合久久久久久| 老司机影院成人| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久| 亚州av有码| 少妇被粗大的猛进出69影院 | 精品国产乱码久久久久久小说| 新久久久久国产一级毛片| 777米奇影视久久| 欧美高清成人免费视频www| 日韩成人av中文字幕在线观看| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 99热这里只有精品一区| 又粗又硬又长又爽又黄的视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品第二区| av免费观看日本| 国产日韩欧美亚洲二区| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| av网站免费在线观看视频| 免费看av在线观看网站| 桃花免费在线播放| 人妻 亚洲 视频| 午夜免费鲁丝| 九九在线视频观看精品| 亚洲精品第二区| 日韩伦理黄色片| 在线观看一区二区三区激情| 99九九线精品视频在线观看视频| 老司机影院毛片| 精品人妻熟女av久视频| 日韩中字成人| 精品一区二区三卡| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 国产成人aa在线观看| 美女主播在线视频| 夜夜爽夜夜爽视频| 午夜免费鲁丝| 免费观看在线日韩| 久久精品国产亚洲网站| 极品人妻少妇av视频| 国产伦精品一区二区三区四那| 免费观看性生交大片5| av.在线天堂| 国产精品国产三级国产专区5o| 精品国产一区二区久久| 一级毛片aaaaaa免费看小| 亚洲精品久久午夜乱码| 成年美女黄网站色视频大全免费 | 久久这里有精品视频免费| 亚洲欧洲日产国产| 人妻 亚洲 视频| 国产精品一区二区在线不卡| 卡戴珊不雅视频在线播放| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 久久久久视频综合| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 久久毛片免费看一区二区三区| 18禁在线播放成人免费| 精品人妻熟女毛片av久久网站| 色视频在线一区二区三区| 国产在线视频一区二区| 免费观看无遮挡的男女| 偷拍熟女少妇极品色| 亚洲精华国产精华液的使用体验| 伦理电影免费视频| 熟女av电影| 久久久久久久精品精品| 久久鲁丝午夜福利片| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 简卡轻食公司| 最新的欧美精品一区二区| 妹子高潮喷水视频| 日本午夜av视频| 欧美成人午夜免费资源| 国产成人免费观看mmmm| 99热这里只有是精品50| 有码 亚洲区| 久久亚洲国产成人精品v| 久久久久久久精品精品| 精品酒店卫生间| 好男人视频免费观看在线| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 99热这里只有是精品在线观看| 日本色播在线视频| 亚洲不卡免费看| av免费在线看不卡| 国产色婷婷99| 伦理电影免费视频| 亚洲久久久国产精品| 一二三四中文在线观看免费高清| 老司机影院毛片| 亚洲av免费高清在线观看| 亚洲精品自拍成人| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 国产毛片在线视频| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品电影小说| 日日啪夜夜撸| 中文字幕亚洲精品专区| 日日撸夜夜添| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 国产淫语在线视频| 国产高清国产精品国产三级| 人妻制服诱惑在线中文字幕| 大片免费播放器 马上看| 免费观看av网站的网址| 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 插逼视频在线观看| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 亚洲精品乱码久久久v下载方式| 久久久久视频综合| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 国产av精品麻豆| 国产成人aa在线观看| 国产 一区精品| 国产乱人偷精品视频| 少妇的逼好多水| 99re6热这里在线精品视频| 精品一区二区三区视频在线| 成人国产麻豆网| 久久亚洲国产成人精品v| 中文乱码字字幕精品一区二区三区| 草草在线视频免费看| 久久久久久久久久成人| 国产精品99久久99久久久不卡 | 国产日韩一区二区三区精品不卡 | 一区在线观看完整版| 两个人免费观看高清视频 | 亚洲精品,欧美精品| 中文字幕久久专区| 一区二区三区免费毛片| 欧美精品一区二区免费开放| 日韩欧美一区视频在线观看 | 免费高清在线观看视频在线观看| 国产免费又黄又爽又色|