• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of shifted lattice model to 3D compressible lattice Boltzmann method

    2023-10-11 07:55:42HaoYuHuang黃好雨KeJin金科KaiLi李凱andXiaoJingZheng鄭曉靜
    Chinese Physics B 2023年9期

    Hao-Yu Huang(黃好雨), Ke Jin(金科),4, Kai Li(李凱),4, and Xiao-Jing Zheng(鄭曉靜)

    1School of Aerospace Science and Technology,Xidian University,Xi’an 710071,China

    2School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    3Shaanxi Key Laboratory of Space Extreme Detection,Xi’an 710071,China

    4Key Laboratory of Equipment Efficiency in Extreme Environment,Ministry of Education,Xi’an 710071,China

    Keywords: lattice Boltzmann method,shifted lattice model,compressible flow,finite volume method

    1.Introduction

    Since the first paper about lattice Boltzmann method(LBM) appeared in 1988, the LBM[1–5]as a prominent tool in computational fluid dynamics has attracted much attention and become a major research hotspot.Unlike the traditional method based on macroscopic equations,the LBM is based on a mesoscopic kinetic model and obtains macroscopic quantities through statistics of distribution functions.The LBM is a multi-scale method, and its advantage is that the convection term is linear.Therefore, the LBM is applied to numerical calculation of various fluids, such as microscale flow,[6,7]turbulence,[8,9]multiphase flows,[10,11]blood flow,[12]and heat transfer.[13,14]

    The research object of this paper is compressible fluid.Because the single distribution model adds new discrete velocity based on the isothermal model,and the specific-heat ratio is related to the spatial dimension of the model,it does not have real physical properties.While the double distribution function(DDF)model can adjust the specific-heat ratio and Prandtl number.So the double distribution function method[15–18]is adopted to construct a compressible fluid model.Of course,adding a distribution function will inevitably increase the amount of calculation.In 1998, Heet al.[15]first proposed the double-distribution model, which attracts wide attention because of its good stability and adjustable Prandtl number.Guoet al.[16]proposed a total energy distribution function to replace the internal energy distribution function.Liet al.[17]proposed a two-dimensional (2D) compressible finite difference DDF model and obtained satisfactory simulation results in high Mach number flows.Li and Zhong[18]proposed the potential energy distribution function model and applied the finite volume method to it.

    Many researchers have made great efforts to develop three-dimensional (3D) compressible models.Kataoka and Tsutahara[19]proposed the D3Q15 model of compressible Euler equation, but this model only suitable for subsonic flows.Chenet al.[20]improved the Kataoka’s model and made the model suitable for higher speeds.Watari and Tsutahara[21]proposed the D3Q73 model,which can achieve a Mach number of 1.7.Liet al.[22]proposed the D3Q25 model of compressible Euler equation.According to Li’s model, Qiuet al.[23]introduced the total energy distribution function to optimize the D3Q25 model, and applied the Hermite expansion to the lattice Boltzmann model of D3Q27 to obtain a coupled double-distribution compressible model.

    Although compressible model is being developed, the simulation of high Mach number flow is always problematic.In order to solve this problem,Huanget al.[24]proposed a discrete velocity model centered on the local flow velocity and the velocity varies with the local temperature.They successfully simulated shock tubes, and it is the first time that asymmetrical discrete velocity model has entered into people’s view.Sun[25,26]and Sun and Hsu[27]proposed an adaptive LB model in which the discrete velocity changes with local flow velocity and internal energy,thus the model can accomplish high-Mach simulation, but the relaxation time of their model must equal 1, which is a great limitation.Chopardet al.[28]and Hedjripouret al.[29]proposed one-dimensional (1D) asymmetric discrete velocity model: the model can successfully simulate a wide range of subcritical and supercritical flow, making it possible to practically use the asymmetric model.Frapolliet al.[30]proposed a novel shifted lattice model, adding another velocity to the original discrete velocity, so that the discrete velocity is no longer symmetric.They multiplied the equilibrium distribution function by a transformation matrix,and accomplished the conversion of the stationary coordinate system into the moving coordinate system,which greatly increases the calculation range of LBM.Saadatet al.[31]applied Frapolli’s shifted lattice model to D2Q9 and successfully simulated the supersonic shock compressible flow.But the disadvantage of transformation matrix is too complex and it is easy to generate a singular matrix, which is only suitable for a small discrete speed.

    In the standard lattice Boltzmann equation (LBE), the discrete velocity of particles determines the type of computational grid.Generally, grids must be uniformly symmetric(regular hexagon, square).Although it is easy to construct such grids,they are not flexible enough to be applied to complex flow fields.In order to solve this problem,many scholars have conducted in-depth research on non-standard LBE models and proposed a variety of models.Reider and Sterling[32]first applied the fourth-order central difference scheme and the fourth-order Runge–Kuta scheme to LBM and proved the feasibility of the finite-difference LBM.Penget al.[33,34]proposed cell-vertex method, and they stored physical quantities on grid nodes and successfully used finite volume LBM to simulate the flow in a coaxial rotating cylinder.In this study,we use the third order monotone upwind scheme for scalar conservation laws(MUSCLs)finite volume scheme.

    In this paper, we introduce the potential energy distribution function based on Li’s[22]D3Q25 density distribution function to create a new DDF model.In addition,a new shifted lattice model is proposed based on the linear equation.The 3D shifted lattice model is applied to the D3Q25 model to obtain better numerical stability.The rest of this article is organized as follows.In Section 2,we briefly introduce the DDF model,D3Q25 model and the shifted lattice model.In Section 3,we introduce the numerical method.In Section 4, we carry out numerical simulations of some typical compressible flows to prove the good effect of the shifted model.Finally, conclusions are drawn in Section 5.

    2.The 3D compressible double distribution function model

    2.1.Compressible D3Q25 LBM model

    Li and Zhong[18]introduced the potential energy distribution function on the basis of the density distribution function, and proposed a DDF compressible LB model.An additional potential energy distribution function can be introduced to overcome the shortcomings of the Boltzmann Bhatnagar–Gross–Krook (BGK) equation that cannot present adjustable specific heat ratio nor Prandtl number.The functional model for this paper is the DDF LB model,and its dynamic equations are as follows:

    whereZa=(ea-u)2/2,fαis the density distribution function,hαis the potential energy distribution function,andare the corresponding equilibrium distribution functions,eαis the discrete velocity of the particle,τfandτhare the relaxation time of density and potential energy respectively,τhfis the potential energy relaxation rate that can be determined from the following equation:

    whenτf=τhthis model degenerates into the original BGK model,withτfdefined as

    whereμis the viscosity andpthe pressure(p=ρRT), withRbeing the specific gas constant andTthe temperature.ThePrnumber can be created arbitrary by adjusting the two relaxation times as shown below:

    Potential energy distribution function can be obtained easily from the following equation:

    whereK=b-D,bis the number of degrees of freedom(DOFs),Dis the space dimension.

    The D3Q25 based circular distribution function which is proposed by Liet al.[22]is shown in Fig.1.

    Fig.1.Illustration of D3Q25 discrete velocity model.

    2.2.The 3D shifted lattice model

    In this study, we propose the shifted lattice model, by using a linear equation to replace the transformation matrix,thereby realizing the conversion of coordinates,increasing the feasibility of the model,and making the multi-discrete velocity model also able to use the shifted lattice model.Each discrete velocity is increased by a velocityvas shown in Fig.2.The magnitude of velocityvcan be a fixed value or change with the velocity of the flow field.In this work, we define that the value ofvis proportional to the sum of maximum and minimum velocity after each collision.Then we addvinto the initial symmetric discrete velocity to obtain a real discrete velocity

    wherecαis the initial discrete velocity of Li’s D3Q25,[22]vnis the shifted speed obtained in then-th iteration,andis the real discrete velocity of then-th iteration.

    The dynamic equation of the density distribution function is divided into the following two parts: flow process and coordinate transformation

    We will adopt the MUSCL finite volume scheme to calculate Eqs.(9),(12),and(13).The specific content will be described in detail in the next section.

    Fig.2.Illustration of shifted lattice model.

    2.3.Boundary conditions

    2.3.1.Non-slip wall boundary condition

    Wall flow variables are as follows:

    Under the non-slip wall boundary condition,non-equilibrium extrapolation scheme[35]is used.Density and potential energy distribution functions on the wall are expressed as

    Equilibrium distribution functions are computed with the flow variables.The subscripts “cf” denotes the interface on the boundary and“in”denotes its neighbor cell.

    At present,the shifted lattice model is suitable for isothermal wall conditions.While adiabatic wall conditions will produce some errors, and the results can be improved by multiplying the non-equilibrium term with a number less than 1.

    2.3.2.Inlet flow boundary condition

    where ∞denotes the inflow state.

    2.3.3.Outflow flow boundary condition

    3.Numerical methods

    In order to capture the discontinuity well,we need to introduce artificial dissipation.There are two ways to introduce artificial dissipation.One is the model dissipation, and the other is the numerical dissipation from numerical methods.When the viscosity is very small, the model dissipation is unable to capture discontinuities without oscillation.So the numerical scheme is used to provide the additional dissipation.

    Many researchers have applied different numerical schemes to LBM, such as, the weighted essentially technique[36]and the 6th-order compact finite difference method.[37]Although they are both high-resolution discretization schemes, they are more complex than the MUSCL scheme.[38–40]The MUSCL scheme is a simple spatial discretization scheme,which is very popular among researchers.

    We have adopted the MUSCL finite volume scheme in the previous subsection.Taking the density distribution function for example,equation(1)can be rewritten as

    whereΓis the corresponding grid boundary,Vis the volume of mesh,and ˉfαis the average distribution function on the grid,

    withnbeing the normal vector in the outward direction, andˉΩf,αthe average collision term.

    It can be seen from Fig.3 thatn1ton6are the normal vectors of the six corresponding surfaces, with each surface having corresponding flux and area as follows:

    whereΦα,i±1/2,j,k,Φα,i,j±1/2,k,andΦα,i,j,k±1/2are the numerical fluxes on each grid surface,the specific value is as follows:

    whereandare the distribution function on the internal side and the external side of the interface (i+1/2,j,k).We use the third order monotonic upwind scheme for scalar conservation law with the smooth limiter to obtain the following values:

    whereκ=1/3,ris the van Albada limiter[41]given by

    withλbeing a small number, which is usually taken to be 10-12toavoid dividing by 0,and

    Now, we can figure out the specific number of fluxΦ.Next,we use the sum of the product of the flux and the area of the six faces to simplify the integral in Eq.(20)into a linear summation formula,the dynamic equation can be obtained by simplification as follows:

    The potential energy distribution function is treated in the same way as the density distribution function.

    Fig.3.Numerical flux on grid surface.

    4.Numerical simulations

    A series of numerical simulations is conducted in this section to verify the stability and accuracy of the proposed compressible model,mainly simulating Riemann problems,Taylor vertex flow,Couette flow,Regular shock reflection,3D explosion in a box, and 3D flat-plate.In the simulation, the reference density isρref=1.0,the reference velocity isUref=1.0,and the reference temperature isTref=1.0.The characteristic temperatureTcis often a little bit higher than the maximum stagnation temperature in the whole flow field.

    4.1.Riemann problems

    Riemann problem is one of the core problems in computational fluid dynamics.In computational fluid dynamics, almost all high-precision schemes are based on solving Riemann problems.Owing to the Riemann problem including smooth solutions and discontinuous problems,it is a difficult and core problem of computational aerodynamics.

    As a standard 1D problem, the length of shock tube is 1, the size of the calculate region isNx×Ny×Nz= 401×8×8.Both the exit and entrance are set as initial conditions, other boundary conditions are set as periodic boundaries.the specific-heat ratio isγ=1.4, the Prandtl number isPr=0.71,and the viscosity isμ=2×10-5.In this paper,two different examples are simulated, and the difference between the D3Q25 model with and without shifted lattice model is compared respectively.It is proved that the accuracy and stability of D3Q25 model can be improved by adding shifted lattice model.

    The first example of the simulation is Sod shock tube,the initial conditions are as follows:

    where the time step is Δt=1×10-5, and the characteristic temperature isTc=2.5.

    Figure 4 shows the results of density, pressure, temperature,and velocity with shifted lattice model att=0.2 respectively.For a better comparison, the analytical solutions are also plotted.

    Fig.4.Simulation results and analytical results from shifted lattice model of the Sod shock tube: (a)density,(b)pressure,(c)temperature,and(d)velocity.

    The second example of the simulation is the stability contrast test,the initial conditions are as follows:

    where the pressure on the left side is 1, the pressure on the right side is adjustable.We test the stability of the shifted lattice model by controlling the pressure ratio.The time step is Δt=1×10-5,and the characteristic temperature isTc=1,the size of the calculate region isNx×Ny×Nz=201×8×8.

    Through testing, it is found that the maximum pressure ratio can reach 70 without adding the shifted lattice model.In the case of shifted lattice model, the maximum pressure ratio can reach 145.The simulation results are shown in Fig.5.When the pressure ratio is 75,the non-shifted model begins to oscillate and then diverges, while the shifted model has good stability.Obviously,the shifted lattice model can increase the stability of DDF model.

    Fig.5.Speed comparison at pressure ratio 75.

    4.2.Taylor vortex flow

    This case is used to test the spatial accuracy of the present method.And this case has the following analytical solution:

    Fig.6.Spatial accuracy validation of the present method.

    wherep0= 100.0,u0= 1.0,A=B= 2π,α=A2+B2,μ=0.001 is the shear viscosity,densityρ=2λ p,λ=0.005,time step is Δt=1×10-5,and the characteristic temperature isTc=144.The computational domain is set to be 0≤x ≤1 and 0≤y ≤1.The computation domain is discretized into 16×16×5,32×32×5,64×64×5,and 128×128×5.To test the order of the present method, the results from different meshes have been used to calculate L2 errors in velocity field.Figure 6 illustrates a model that is almost second-order accurate.Figure 7 shows the velocity profiles compared with analytical solutions at different times.It can be seen that the evolution is correct through the present method.

    Fig.7.Comparison among velocity profiles of(a)u and(b)v at different times.

    4.3.Couette flow

    Couette flow is a classic test case driven by two parallel plates.For this problem, the computational domain has the initial conditions(ρ,T0,u,v,w)=(1,1,0,0,0).When simulation starts, the top plate moves at a constant velocityU0.In a steady state, the temperature profiles satisfy the following relation:

    whereH=1 is the height of the two plates, andyis the distance of any point in the computation domain from the bottom plate.In the simulation, a meshNx×Ny×Nz=6×65×6 is used.The non-equilibrium extrapolation method is applied to the top and bottom wall, and periodic boundary condition is imposed on theyandzdirection.The viscosity isμ=8×10-3,and the time step is Δt=2×10-3.

    The Prandtl numberPr=τf/τhis adjustable.The range of the Prandtl number is from 0.4 to 10 approximately.Figure 8 shows the temperature profiles compared with analytical solutions along theydirection forU0=1,b=5,andPr=1,3,5,8.It can be found that the simulation results and analytical results are in satisfactory agreement.

    Fig.8.Temperature profiles along the y direction for different Prandtl numbers.

    4.4.Regular shock reflection

    A steady 2D compressible flow, i.e., a regular shock reflection on a wall, is considered in this test.This problem involves three flow regions separated by an oblique shock and its reflection from a wall.A shock wave of Mach number 2.9 is incident on the wall at an angle.The Dirichlet conditions are imposed on the left and top boundaries,respectively.

    The bottom boundary condition is the reflection boundary, the right boundary is supersonic flow where the zerothorder extrapolation scheme is used.They-direction boundary is a periodic boundary,and the value of the entire flow field is set as the left boundary condition at the beginning.The size of the calculate region isNx×Ny×Nz=150×50×5.The time step is Δt=1×10-5,the characteristic temperature isTc=2,the viscosity isμ=1×10-5,the Prandtl number isPr=0.71.

    Figure 9 shows the results of density, pressure, temperature,and velocity from the shifted lattice model: three distinct areas can be clearly seen in the picture, the incident angle is measured to be 29.05°[arctan(1/1.8)], of which the exact result is 29°.

    Fig.9.Simulation results of(a)density,(b)pressure,(c)temperature,and(d)velocity of regular shock reflection,obtained from shifted lattice model.

    The residual curve of shifted model and non-shifted model for comparison are plotted in Fig.10.Because the distribution function is divided into two parts and the shifted lattice velocity changes with time,the convergence speed of the shifted model is slightly slower than that of the non-shifted model.The final residuals of both models satisfy the convergence condition.

    Fig.10.Residual curves of regular shock reflection.

    4.5.The 3D explosion in a box

    In this subsection,we test the explosion in a box.[42]The results are shown in Fig.11.At the beginning of the simulation, the velocity in space is zero, the pressure and density in the sphere space are defined as follows:

    Space sphere equation is defined as follows:

    The dimension of space is[0,1]×[0,1]×[0,1],the size of the calculate region isNx×Ny×Nz=80×80×80,the time step is Δt=1×10-6, the viscosity isμ=1×10-5, the Prandtl number isPr=0.71,and the boundaries of these six surfaces are all periodic.

    Fig.11.3D explosion in a box.

    Figure 12 shows the density contour atz=0.4 andt=0.5,which accords well with results of Refs.[22,42].

    Fig.12.Density contours for z=0.4,t=0.5: (a)simulation result of the present study and results cited from(b)Ref.[20]and(c)Ref.[36].

    4.6.The 3D flat-plate boundary conditions

    A 3D flat-plate(Fig.13)is simulated in this subsection to verify the feasibility of the shifted lattice model with a nonslip boundary.Previously,Carter[43]accomplished the numerical simulation of the 2D flat-plate supersonic boundary layer.With a 3D shifted lattice model added to the lattice Boltzmann method,the supersonic flat-plate boundary layer is simulated.Mach numberMa=3.0,Reynolds numberRe=1000,γ=1.4,Pr=0.72, the bottom boundary are used in a nonequilibrium extrapolation scheme,and both the front side and the back side are set as periodic boundaries.The size of the calculate region isNx×Ny×Nz=100×100×5.the time step is Δt=1×10-4.

    Fig.13.3D flat-plate.

    Figure 14 shows the distribution of flow field.

    Fig.14.Flow field of flat-plate.

    Figure 15 shows the ratio of the bottom pressure to the initial pressurePw/P0andu/u∞atx/L0=1 compared with Carter’s result,showing good agreement with each other.

    Fig.15.Comparison of (a) Pw/P0 versus x and (b) y/L versus u/u0 between Cater and shifted model for 3D flat-plate.

    5.Conclusions

    A D3Q25 LBM DDF compressible flow model and a shifted lattice model are established in this work.With the finite volume scheme, the shifted lattice model is applied to D3Q25 model, with numerical experiments including Sod shock tube, Taylor vortex flow, Couette flow, regular shock reflection, 3D explosion in a box, and 3D flat-plate.The numerical results obtained are basically consistent with the analytical solutions or simulation data in the existing literature,it is proved that the stability of D3Q25 DDF model can be improved by adding the shifted lattice model.This paper also has some shortcomings.Although the shifted model can increase the stability to a certain extent, the maximum Mach number of this model can only reach 3.In the future, the shifted model is hoped to combine with multiple-relaxationtime LBM to simulate higher Mach number.Overall,this work further optimizes the 3D compressible model,and has guiding significance for the simulation of high Mach supersonic flow.

    Appendix A: Discrete equilibrium distribution function of 3D LB model

    Acknowledgements

    We sincerely thank Dr.Pan Dong-Xing for his help with the mesoscopic method.

    Project supported by the Youth Program of the National Natural Science Foundation of China (Grant Nos.11972272,12072246, and 12202331), the National Key Project, China(Grant No.GJXM92579), and the Natural Science Basic Research Program of Shaanxi Province, China (Program No.2022JQ-028).

    亚洲av一区综合| 国产一级毛片在线| 欧美变态另类bdsm刘玥| 成人亚洲欧美一区二区av| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品精品国产色婷婷| 精品久久久精品久久久| 能在线免费看毛片的网站| 午夜福利视频1000在线观看| 欧美成人午夜免费资源| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 亚洲精品中文字幕在线视频 | 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 亚洲av成人精品一区久久| 黄色日韩在线| 亚洲综合色惰| av国产久精品久网站免费入址| 性色av一级| 国产午夜精品一二区理论片| 美女脱内裤让男人舔精品视频| 亚洲精品视频女| 少妇的逼好多水| 日本一二三区视频观看| 免费少妇av软件| 成人免费观看视频高清| 欧美日韩视频精品一区| 国产av国产精品国产| 色视频www国产| 国产成人午夜福利电影在线观看| 天天躁夜夜躁狠狠久久av| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 久久久久久伊人网av| 亚洲最大成人av| 国语对白做爰xxxⅹ性视频网站| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 亚洲欧美日韩无卡精品| 97超视频在线观看视频| 国产成人91sexporn| 亚洲国产精品999| 久久久久久久久久久丰满| 国产又色又爽无遮挡免| 精品酒店卫生间| 亚洲精品aⅴ在线观看| 久久99热这里只有精品18| 在线观看美女被高潮喷水网站| 性插视频无遮挡在线免费观看| 国内精品宾馆在线| 女人被狂操c到高潮| 秋霞伦理黄片| 夜夜看夜夜爽夜夜摸| 久久久亚洲精品成人影院| 国产高潮美女av| 国产永久视频网站| 爱豆传媒免费全集在线观看| 亚洲精品国产成人久久av| 春色校园在线视频观看| 国产69精品久久久久777片| 简卡轻食公司| 一本一本综合久久| 亚洲精品456在线播放app| 亚洲精品国产av蜜桃| 水蜜桃什么品种好| 国产精品久久久久久久久免| 80岁老熟妇乱子伦牲交| 亚洲av二区三区四区| 欧美日韩视频精品一区| 精品久久国产蜜桃| 亚洲精品影视一区二区三区av| 三级国产精品片| 日韩电影二区| 亚洲欧美一区二区三区黑人 | 免费播放大片免费观看视频在线观看| 国产精品爽爽va在线观看网站| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 最近手机中文字幕大全| 国产欧美日韩一区二区三区在线 | 国产毛片a区久久久久| 国产亚洲5aaaaa淫片| 七月丁香在线播放| 国产片特级美女逼逼视频| 国产成人aa在线观看| 可以在线观看毛片的网站| 成人亚洲精品一区在线观看 | 国产又色又爽无遮挡免| 天天一区二区日本电影三级| 你懂的网址亚洲精品在线观看| av在线蜜桃| 婷婷色麻豆天堂久久| 精品久久久久久久久亚洲| 国产精品久久久久久精品电影| 又粗又硬又长又爽又黄的视频| 亚洲,一卡二卡三卡| 久久久久九九精品影院| 狂野欧美激情性bbbbbb| 欧美日韩亚洲高清精品| 亚洲在线观看片| 国产精品人妻久久久久久| 久久久久国产网址| 久久久久久九九精品二区国产| 免费观看a级毛片全部| 日本猛色少妇xxxxx猛交久久| 热99国产精品久久久久久7| 日韩视频在线欧美| 国产午夜精品久久久久久一区二区三区| 色视频在线一区二区三区| 91精品国产九色| 91狼人影院| 国产黄色免费在线视频| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 日日啪夜夜撸| 欧美成人a在线观看| 老女人水多毛片| 交换朋友夫妻互换小说| 国产av国产精品国产| 又爽又黄a免费视频| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| 三级国产精品片| 岛国毛片在线播放| av免费在线看不卡| 国产精品国产三级国产专区5o| 看免费成人av毛片| 亚洲精品色激情综合| 在线免费十八禁| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久 | 秋霞伦理黄片| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 蜜桃久久精品国产亚洲av| 99视频精品全部免费 在线| xxx大片免费视频| 一级黄片播放器| 在线精品无人区一区二区三 | av卡一久久| 午夜精品一区二区三区免费看| 久久久亚洲精品成人影院| 在线观看美女被高潮喷水网站| 欧美成人午夜免费资源| 日日啪夜夜撸| 日韩免费高清中文字幕av| 中文在线观看免费www的网站| 午夜激情福利司机影院| 深爱激情五月婷婷| 日日摸夜夜添夜夜爱| 国产精品伦人一区二区| av.在线天堂| 国产亚洲午夜精品一区二区久久 | 2021天堂中文幕一二区在线观| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 午夜日本视频在线| 一区二区三区免费毛片| kizo精华| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx在线观看| 成人二区视频| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久末码| 国产综合精华液| 在线观看美女被高潮喷水网站| av国产久精品久网站免费入址| 秋霞伦理黄片| 亚洲av成人精品一二三区| 一本一本综合久久| 91狼人影院| 欧美三级亚洲精品| 又爽又黄a免费视频| 尾随美女入室| 亚洲精品视频女| 在线观看三级黄色| 亚洲av电影在线观看一区二区三区 | 中文欧美无线码| av又黄又爽大尺度在线免费看| 女人十人毛片免费观看3o分钟| 亚洲国产精品成人久久小说| av线在线观看网站| 熟女av电影| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产乱来视频区| 国产免费又黄又爽又色| 看十八女毛片水多多多| 在线观看一区二区三区| 天美传媒精品一区二区| 中文字幕久久专区| 亚洲av成人精品一二三区| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 在线亚洲精品国产二区图片欧美 | 国产视频内射| 天堂中文最新版在线下载 | 久久久精品免费免费高清| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆| 听说在线观看完整版免费高清| 国产在线一区二区三区精| 亚洲精品视频女| 久久午夜福利片| 18+在线观看网站| 国产伦精品一区二区三区视频9| 国产 精品1| 国产毛片a区久久久久| 国产成人福利小说| 日韩 亚洲 欧美在线| 熟女av电影| 精品一区二区免费观看| 婷婷色av中文字幕| 日韩人妻高清精品专区| 亚洲四区av| 久久鲁丝午夜福利片| 国产成人精品婷婷| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 亚洲国产最新在线播放| 特级一级黄色大片| 日韩av免费高清视频| 蜜桃久久精品国产亚洲av| 男女边摸边吃奶| 日韩欧美精品免费久久| 看免费成人av毛片| 超碰av人人做人人爽久久| 免费少妇av软件| 少妇丰满av| 午夜激情福利司机影院| 日韩欧美 国产精品| 免费观看无遮挡的男女| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 日韩电影二区| 亚洲伊人久久精品综合| 国产v大片淫在线免费观看| 永久免费av网站大全| 丝袜美腿在线中文| 国产精品人妻久久久久久| 各种免费的搞黄视频| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 日本一二三区视频观看| av天堂中文字幕网| 国精品久久久久久国模美| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 99热这里只有精品一区| av国产免费在线观看| 亚洲人与动物交配视频| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 不卡视频在线观看欧美| 男女国产视频网站| 国产伦精品一区二区三区四那| 七月丁香在线播放| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 少妇 在线观看| 国产有黄有色有爽视频| 久久97久久精品| 丝瓜视频免费看黄片| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看| 女人被狂操c到高潮| 午夜福利高清视频| 日本欧美国产在线视频| 国产老妇女一区| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 国产一区二区亚洲精品在线观看| 成人美女网站在线观看视频| 亚洲熟女精品中文字幕| 欧美成人一区二区免费高清观看| av国产精品久久久久影院| 欧美少妇被猛烈插入视频| 禁无遮挡网站| 久久久精品欧美日韩精品| 男插女下体视频免费在线播放| av在线老鸭窝| 九九在线视频观看精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆成人午夜福利视频| 亚洲精品一二三| 精品久久久久久久久亚洲| 一本久久精品| 精品视频人人做人人爽| 免费看a级黄色片| 久久97久久精品| 最近最新中文字幕大全电影3| 国产中年淑女户外野战色| 看黄色毛片网站| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 午夜精品国产一区二区电影 | 日韩伦理黄色片| 亚洲精品影视一区二区三区av| 观看免费一级毛片| 男的添女的下面高潮视频| 男女国产视频网站| 亚洲精品456在线播放app| 成人亚洲精品一区在线观看 | 亚洲精品亚洲一区二区| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| av福利片在线观看| 五月玫瑰六月丁香| 国产人妻一区二区三区在| 人人妻人人爽人人添夜夜欢视频 | 最近2019中文字幕mv第一页| 亚洲国产精品999| 精华霜和精华液先用哪个| 丰满少妇做爰视频| 黄色欧美视频在线观看| 久久久午夜欧美精品| 免费观看性生交大片5| 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区黑人 | 国产v大片淫在线免费观看| 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 51国产日韩欧美| 久久久久久久久久成人| 少妇人妻久久综合中文| 99久国产av精品国产电影| a级一级毛片免费在线观看| 日韩欧美精品v在线| av卡一久久| 国产淫语在线视频| 精品久久久久久久久亚洲| 成年人午夜在线观看视频| 91狼人影院| 99热网站在线观看| av女优亚洲男人天堂| 内射极品少妇av片p| 久久久国产一区二区| 成人二区视频| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 超碰97精品在线观看| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久 | 日韩欧美精品v在线| 插阴视频在线观看视频| 久久久精品免费免费高清| 看非洲黑人一级黄片| 秋霞在线观看毛片| 少妇高潮的动态图| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 精品国产一区二区三区久久久樱花 | 天天一区二区日本电影三级| 大片电影免费在线观看免费| 日本黄色片子视频| 亚洲成人av在线免费| 日本猛色少妇xxxxx猛交久久| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 97精品久久久久久久久久精品| 亚洲色图av天堂| 国产男女内射视频| 极品教师在线视频| 亚洲av日韩在线播放| 免费大片18禁| 男女那种视频在线观看| 汤姆久久久久久久影院中文字幕| 国产成人免费无遮挡视频| 国产成人精品一,二区| 久久99精品国语久久久| 最后的刺客免费高清国语| kizo精华| 国产精品一及| 秋霞在线观看毛片| 99精国产麻豆久久婷婷| 久久影院123| tube8黄色片| 欧美日韩视频精品一区| 国内精品宾馆在线| 免费看光身美女| 自拍欧美九色日韩亚洲蝌蚪91 | 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 岛国毛片在线播放| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 99热网站在线观看| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 国产男女内射视频| 97在线人人人人妻| 日韩欧美精品v在线| 下体分泌物呈黄色| 色网站视频免费| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 国产成人91sexporn| 国产精品久久久久久久久免| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 少妇丰满av| 干丝袜人妻中文字幕| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 十八禁网站网址无遮挡 | 国产精品人妻久久久久久| 国产精品人妻久久久影院| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 亚洲在久久综合| 久久6这里有精品| 亚洲经典国产精华液单| 久久久色成人| 亚洲av中文av极速乱| 久久99热6这里只有精品| av免费观看日本| 久久精品国产a三级三级三级| 97超视频在线观看视频| 看黄色毛片网站| 综合色丁香网| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 在线免费十八禁| 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说 | 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 国产美女午夜福利| 肉色欧美久久久久久久蜜桃 | 高清在线视频一区二区三区| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 亚洲天堂av无毛| 男插女下体视频免费在线播放| 亚洲欧美成人精品一区二区| 99热网站在线观看| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 欧美另类一区| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 日韩一区二区视频免费看| 久久久久精品久久久久真实原创| 亚洲国产色片| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲不卡免费看| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 97超碰精品成人国产| 日韩制服骚丝袜av| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区在线观看99| 国产视频首页在线观看| 亚洲图色成人| av在线观看视频网站免费| 国产亚洲精品久久久com| 十八禁网站网址无遮挡 | 国产淫语在线视频| 视频区图区小说| 免费在线观看成人毛片| 在线天堂最新版资源| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 日韩不卡一区二区三区视频在线| 99热6这里只有精品| 全区人妻精品视频| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| 亚洲怡红院男人天堂| 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 午夜福利视频精品| 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看| 国产一级毛片在线| 国产永久视频网站| 插阴视频在线观看视频| 成人高潮视频无遮挡免费网站| 欧美另类一区| 99热这里只有是精品50| 日韩精品有码人妻一区| 久久99热6这里只有精品| 人妻夜夜爽99麻豆av| 国产免费一区二区三区四区乱码| 国产伦在线观看视频一区| 亚洲av福利一区| 国产大屁股一区二区在线视频| 亚洲国产av新网站| 涩涩av久久男人的天堂| 777米奇影视久久| 日韩欧美一区视频在线观看 | 久久久a久久爽久久v久久| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区| 永久网站在线| 嫩草影院入口| 插逼视频在线观看| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频 | 丝瓜视频免费看黄片| 精品人妻视频免费看| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 一区二区三区四区激情视频| 人妻制服诱惑在线中文字幕| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区| 免费看av在线观看网站| 黄片wwwwww| 99久久人妻综合| 国产一区亚洲一区在线观看| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 王馨瑶露胸无遮挡在线观看| 午夜福利在线观看免费完整高清在| 在线 av 中文字幕| 亚洲精品自拍成人| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久噜噜| 精品久久久久久久久av| 久久亚洲国产成人精品v| 欧美激情在线99| 黄色日韩在线| 久久久色成人| 亚洲精品久久久久久婷婷小说| 女人被狂操c到高潮| 搡女人真爽免费视频火全软件| 久久久久久久亚洲中文字幕| 亚洲精品国产色婷婷电影| 不卡视频在线观看欧美| 成人无遮挡网站| 成人毛片60女人毛片免费| 99热这里只有是精品在线观看| 26uuu在线亚洲综合色| 国产大屁股一区二区在线视频| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 97热精品久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品古装| 美女国产视频在线观看| av专区在线播放| 69人妻影院| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 少妇人妻一区二区三区视频| 亚洲av在线观看美女高潮| 国产成人福利小说| 国产探花极品一区二区| 婷婷色综合www| 日产精品乱码卡一卡2卡三| 亚洲不卡免费看| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 青青草视频在线视频观看| 久久久久国产网址| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线 | 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看| 18+在线观看网站| videossex国产| 亚洲精品日韩在线中文字幕| 亚洲久久久久久中文字幕| 国产亚洲91精品色在线| 伦精品一区二区三区| h日本视频在线播放| 久久久久九九精品影院| 午夜福利高清视频| 干丝袜人妻中文字幕| 久久久久久伊人网av| 日韩在线高清观看一区二区三区| 久久午夜福利片| 男女边摸边吃奶|