• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor*

    2015-11-25 11:31:35WANGZhikai王志凱ZENGZhuoxiong曾卓雄LIKai李凱XUYihua徐義華
    關(guān)鍵詞:李凱

    WANG Zhi-kai (王志凱), ZENG Zhuo-xiong (曾卓雄), LI Kai (李凱), XU Yi-hua (徐義華)

    1. China Aviation Powerplant Research Institute, Aviation Industry Corporation of China, Zhuzhou 412002,China, E-mail: nhwzk12@126.com

    2. College of Power and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090,China

    3. School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China

    Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor*

    WANG Zhi-kai (王志凱)1, ZENG Zhuo-xiong (曾卓雄)2, LI Kai (李凱)3, XU Yi-hua (徐義華)3

    1. China Aviation Powerplant Research Institute, Aviation Industry Corporation of China, Zhuzhou 412002,China, E-mail: nhwzk12@126.com

    2. College of Power and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090,China

    3. School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China

    2015,27(5):730-737

    The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor (TVC). The results show that the structural parameters have significant effects on the TVC. As a/H increases, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase.b/Bdoes not have a significant effect on the cavity flow structure and the total pressure loss, and the wall shear stress at the bottom of the cavity increases asb/Bincreases. There is no significant increase of the turbulent intensity with the increase ofb/B . The increase of c/L has little effect on the total pressure loss, and it is not conducive to a stable combustion. As c/L increases, the wall shear stress at the bottom of the cavity decreases. When a/H =0.4,b/B =0.4,c/L=0.1, a desirable dual-vortex structure is formed with an acceptable pressure loss to achieve a stable combustion. Moreover, to ascertain that the flame is stable for different values ofVmawith the optimal structural parameters, the effect of Vmaon the flow field is discussed. Results suggest that the dual-vortex structure has no relationship with the increase ofVma. Furthermore, an unsteady simulation is conducted to show the generation and the development of the dual-vortex.

    trapped vortex combustor (TVC), dual-vortex, flow guide vane, structural parameters, numerical simulation

    Introduction

    The stable combustion with the fuel-lean operation and a high efficiency in aircraft engines is an issue that has received an extensive attention in recent years. The trapped vortex combustor (TVC) is a new concept for gas turbine engines with high performance,low total pressure loss, low emissions and improved pattern factor[1,2], in which a cavity is employed for the vortex stabilization. The stable combustion is achieved by the use of low velocity recirculation zones to provide a continuous source of ignition mixing hot products with the incoming fuel and air[3-8]. Some new generations of the TVC have been developed since it was first proposed by Hsu et al.[9-11].

    In the third generation, the studies of the TVC indicate that the cavity injection strategies play a major role in the flame stability. Meyer et al.[12]and Stone and Menon[13]investigated the cavity injection in the TVC. These studies show that a dual-vortex structure can be formed in the cavity with the fuel injecting from the front wall of the cavity and the air injecting from the rear wall of the cavity. Xing et al.[14]studied the dual-vortex in the cavity with the PIV measurements and the CFD. The results show that there is an optimal value for the afterwall-air speed to enhance the stability of the dual-vortex. Zhang et al.[15]studied the lean-blow-out performance of the double/fuel-leanTVC with experiments by changing the value of Ma and the temperature and some structural parameters. Fan et al.[16]investigated the effect of the dual-vortex on the emissions of the combustor, and the results show that the dual-vortex structure can be observed when the combustor is operating under the condition of low emissions. Furthermore, Meyer et al.[12]pointed that the dual-vortex structure in the cavity is the best for a good combustor performance.

    To achieve a dual-vortex structure in the cavity,many experimental and numerical investigations were carried out in recent few years. Most of them[12-16]relied on the fuel injecting from the front wall of the cavity and the air injecting from the rear wall of the cavity. The cavity air has to reach the face of the front wall to generate the dual-vortex structure, which requires that the cavity length is not too long, and a smaller ignition zone will be formed. Meanwhile, the rear wall air jets of the cavity are close to the mainstream flow, and the jets can easily be affected by the mainstream flow, which opposes the cavity air jets,thereby reduces its tendency to reach the opposite cavity face and establish the desirable vortex. It is a challenge to control the effect of the mainstream on the cavity jets and Agarwal and Ravikrishna[17]proposed a strategy in 2010 to do so. This strategy involves placing an L-shaped flow guide vane at the leading edge of the cavity to divert a small portion of the mainstream flow along the cavity wall. The TVC with a flow guide vane leads to the formation of a desirable dualvortex in the cavity. The underside vortex acts as a pilot while the upside vortex enhances the mass and energy transport between the mainstream flow and the cavity.

    However, the effect of the flow guide vane structural parameters on the combustor is an issue to be further studied. The vortex structures and the flow characteristics of the TVC are sensitive to the structural parameters of the flow guide vane. Hence, it is necessary to study the structural parameters of the flow guide vane to discover the optimal structural parameters, and to improve the performance of the TVC. Moreover, in order to ascertain whether there will be a desirable dual-vortex structure in the cavity for various mainstream velocities, the effect of the mainstream velocities on the flow fields is analyzed in detail. Finally, to have a better picture of the generation and the development of the dual-vortex in the cavity, an unsteady simulation is conducted.

    1. Geometry of model

    Figure 1 shows the geometric model of the TVC with a flow guide vane. The combustor is 0.2 m in length, the flow guide vane is 0.001 m in thickness. H =0.02mis the depth of the inlet, so the size of the inlet face is 0.02m×0.02m.B =0.03mis the depth of the cavity,L =0.036mis the length of the cavity. Structure parameters (a,b,c)of the flow guide vane are marked in Fig.1. In this paper,a is the distance from the vane to the upper surface of the cavity,b is the length of the vane inside the cavity,c is the distance from the vane to the front surface of the cavity. Details of the structure parameters and various mainstream velocities (Vma)are listed in Table 1.

    Fig.1 The geometric model of TVC

    Table 1 Structure parameters and various Vma

    2. Boundary condations

    Numerical simulations are performed by solving the incompressible Navier-Stokes equations and the realizable k-εmodel is adopted as the turbulence model. The method of coupling the pressure and the velocity is the SIMPLE, the second-order central difference scheme is used for the diffusion terms, and the second-order upwind differencing scheme is used for the convective terms. The boundary conditions include the velocity inlet, the pressure outlet and the noslip wall boundary.

    In order to obtain the optimal structural parameters of the flow guide vane,Vma=50m/sis adopted at the inlet boundary. Moreover, in this paper, the effects of Vmaon the TVC are analyzed when the optimal structural parameters of the flow guide vane are taken.

    3. Results and discussions

    The comparison of the total pressure lossδ?be-tween the experimental results[17]and the numerical simulation results when a/H=0.1is shown in Fig.2,where a good agreement is evident. Moreover, the relative errors maintain within 5%. Thus, the geometric model and the boundary conditions in this paper are acceptable.

    Fig.2 Comparison of experimental and numerical total pressure loss when a/H=0.1

    Fig.3 Effect of a/Hon flow fields of center section

    3.1 Effect ofa/Hon characteristics of TVC

    Figure 3 shows the effect ofa/Hon the flow fields at the TVC center section, which indicates that a dual-vortex structure is formed in the cavity for each a/H, which means that a dual-vortex might be formed even without any cavity air injection when there is a flow guide vane at the leading edge of the cavity. Furthermore, asa/Hincreases, the velocity in the main combustion zone increases accordingly. Higher velocity and higher momentum in the main combustion zone will enhance the fuel-air mixing and improve the TVC performance.

    When a/H=0.2, the dual-vortex is smaller than those in other cases. Increasinga/Hto 0.4, the underside vortex in the cavity becomes larger and a small vortex appears in the downstream of the TVC,which will lead to a larger pressure loss. Whena/H continues to increase, reaching a large number as a/ H=0.8, as shown in Fig.3, the underside vortex develops beyond the cavity, and the air velocity around the underside vortex increases significantly, all of which may break the stable combustion in the cavity. In addition, the newly generated vortex in the downstream of the TVC becomes larger with the increase of a/H. Finally, the vortex is large enough, which leads to the formation of a low velocity recirculation zone.

    Fig.4 Effect of a/Hon total pressure loss of outlet

    Figure 4 shows the effect of a/Hon the total pressure loss. The total pressure loss at the outlet is described by the following equation

    whereδ?denotes the total pressure loss,is the total pressure of the inlet,is the total pressure of the outlet.

    Fig.5 Effect of a/Hon wall shear stress at the bottom of cavity

    From Fig.4 it can be seen that as a/Hincreases,the total pressure loss increases significantly. This is because whenaincreases, the flow resistance from the flow guide vane to the mainstream flow increases accordingly. Generally speaking, increasing the total pressure loss will reduce the aero-engine thrust[18], so the total pressure loss might not be too large.

    Fig.6 Effect of a/Hon turbulent intensity at central axis of the main combustion zone

    Fig.7 Effect of b/Bon flow fields of center section

    Figure 5 shows the effect of a/Hon the wall shear stress(τ)at the central lines of the bottom of the cavity. As a/Hincreases, the wall shear stress at the bottom of the cavity increases. This is due to the fact that the vortex in the cavity becomes larger, and the velocity gradient in the cavity increases accordingly as the increase ofa/H. Figure 6 shows the effect ofa/H on the turbulent intensity (I)at the central axis of the main combustion zone. It can be seen that the turbulent intensity increases with the increase of a/H, because the increase of the momentum in the main combustion zone will enhance the turbulent motion.

    As above-mentioned, whena/H=0.4, a desirable dual-vortex structure will be formed with an acceptable pressure loss to achieve the stable combustion. Meanwhile the velocity in the main combustion zone is large enough, which can help to enhance the mixing of the fuel and the air. So the case ofa/H=0.4is selected to conduct the following study.

    3.2 Effect ofb/Bon characteristics of TVC

    Figure 7 shows the flow fields at the TVC center section withb/Bin the range from 0.2 to 0.8. It can be seen that a desirable dual-vortex structure forms in the cavity for eachb/B , which indicates that b/B has no obvious effect on the cavity flow structure. It should be noted that for b/B=0.8, the velocity in the main combustion zone increases significantly. It shows that whenb/Bincreases to a value large enough, it is favorable for enhancing the mixing of the fuel and the air.

    Fig.8 Effect of b/Bon total pressure loss of outlet

    Figure 8 presents the effect of b/Bon the total pressure loss of the outlet. It can be seen that asb/B increases, the total pressure loss increases. This is because whenb increases, the flow resistance from the flow guide vane in the cavity increases accordingly. It should be noted that for all values of b/B, the total pressure loss varies within a small range of 2.14% to 2.31%. A major implication of this phenomenon is thatb/Bhas little effect on the total pressure loss. To make best of the flow guide vane, with consideration of the total pressure loss and the mixing of the fuel with the air,b/B=0.4is adopted in practical applications.

    Figure 9 shows the effect ofb/Bon the wall shear stress at central lines of the bottom of the cavity. Asb/Bincreases, the wall shear stress at the bottom of the cavity increases, which is due to the fact that the mass flow into the bottom of the cavity along theflow guide vane increases as b/Bincreases. However,the difference of the wall shear stress betweenb/B= 0.4 and 0.6 is not significant. Figure 10 shows the effect of b/Bon the turbulent intensity at the central axis of the main combustion zone. It can be seen that very little variation of the turbulent intensity can be observed whenb/B=0.2, 0.4 and 0.6. Further increasingb/Bto 0.8, the turbulent intensity becomes larger. This is because, as can be seen in Fig.7, when b/B=0.8, the velocity in the main combustion zone increases, and the increase of the momentum in the main combustion zone enhances the turbulent motion. But the turbulent intensity is slightly larger than those in the above cases. This may imply that there is no significant increase of the turbulent intensity in the main combustion zone with the increase ofb/B.

    Fig.9 Effect of b/Bon wall shear stress at the bottom of cavity

    Fig.10 Effect of b/Bon turbulent intensity of central axis in the main combustion zone

    3.3 Effect of c/Lon characteristics of TVC

    The flow fields in the cavity are strongly related withc/L. Hence, in order to have a better understanding of the effect ofc/Lon the cavity flow fields,the details of the cavity flow fields are shown in Fig.11.

    As can be seen in Fig.11, a desirable dual-vortex structure forms in the cavity whenc/L=0.1. Increasingc/Lto 0.2, the dual-vortex is still in the cavity,while the area of the underside vortex reduces, because the effective length of the cavity reduces as c/L increases. Furthermore, there is a small vortex near the front wall of the cavity. When c/Lcontinues to increase to 0.3 and 0.4, the area of the underside vortex, as a pilot, becomes extremely small, which is not conducive to the ignition in the main combustion zone. The area of the upside vortex which enhances the mass and energy transport becomes smaller with the increases ofc/L. Moreover, the newly generated vortex near the front wall becomes large enough, which will break the stable combustion of the TVC.

    Fig.11 Effect of c/L on flow fields of cavity center section

    Fig.12 Effect of c/Lon wall shear stress at the bottom of cavity

    Figure 12 shows the effect of c/Lon the wall shear stress at the central axis of the bottom of the cavity. Asc/Lincreases, the wall shear stress at the bottom of the cavity decreases. The reason is, as can be seen in Figure 11(b), that the underside vortex is away from the cavity bottom asc/Lincreases, which will reduce the wall shear stress at the cavity bottom.

    Fig.13 Effect of c/Lon turbulent intensity of central axis of the main combustion zone

    Figure 13 shows the effect of c/Lon the turbulent intensity at the central axis of the main combustion zone. Each curve can be divided into four parts. In the range of 0 to 0.025 m, the curves with different c/Lare overlapped. In the range of 0.025 m to 0.086 m, due to the effect of the flow guide vane, the curves begin to deviate from each other, and the turbulent intensity reduces with the increase ofc/L. As can be seen in Fig.11, with the decrease ofc/L, the velocity in the main combustion zone increases, which enhances the turbulent motion. For each curve in this range, the turbulent intensity firstly increases, then decreases and finally increases. In the range of 0.086 m to 0.14 m, the turbulent intensity increases with the increase ofc/L. For each curve in this range, the turbulent intensity decreases with the shift of the position. After 0.14 m, the turbulent intensity continues to decrease, while due to this position is at the downstream of the combustor, the increase ofc/Lhas no effect on the turbulent intensity in this range.

    Fig.14 Effect of c/L on total pressure loss at outlet

    Figure 14 shows the effect of c/Lon the total pressure loss at the outlet. As can be seen from Fig.14,the total pressure loss atc/L=0.1is a little larger than those in other cases. It indicates thatc/Lhas little effect on the total pressure loss. Based on the above discussion, whenc/L=0.1, the total pressure loss is relatively low, and a desirable dual-vortex structure forms in the cavity, which means that the optimal structural parameter isc/L=0.1.

    3.4 Effect ofVmaon characteristics of TVC

    From the above discussion, the optimal structural parameters of the flow guide vane area/H =0.4,b/B =0.4,c/L=0.1. In order to ascertain whether there will be a desirable dual-vortex structure in the cavity for various mainstream velocities(Vma), the effect ofVmaon flow fields of TVC is analyzed in detail.

    Fig.15 Effect of Vmaon flow fields of center section

    Figure 15 shows the effect of Vmaon the flow fields at the center section. As the mainstream velocityincreases, the velocity in the combustor increases accordingly, this is because the increase of Vmacan improve the momentum of the flow field. A desirable dual-vortex structure forms in the cavity for each Vma,with the same size and the same shape for all of these stable vortexes. It indicates that the dual-vortex structure is not related with the increase of Vma. With the optimal structural parameters of the flow guide vane,the flame is stable for all mainstream velocities.

    3.5 Unsteady simulations

    To have a better picture of the generation and the development of the vortex in the cavity, the unsteady simulation is conducted. The-6time step chosen for the unsteady simulation is 6×10 s. Figure 16 and Fig.17 show the instantaneous flow fields and the instantaneous vorticity contours at the center section of the TVC at time of 0.6 ms-3.0 ms.

    From Fig.16, when t =0.6ms, because of the diversion effect of the flow guide vane, in a small portion of the mainstream along the cavity front-wall, a non-fully developed vortex is formed, meanwhile,another vortex forms behind the flow guide vane. This phenomenon can be expected intuitively as shown in Fig.17. There are two obvious places of high-vorticity near the flow guide vane when t =0.6ms. It indicates that two small vortexes are formed in these places.

    Fig.17 Instantaneous vorticity contours at center section

    The underside vortex grows larger, the upside vortex is squeezed by the underside vortex and the upside vortex moves to the right of the cavity. When t =1.2 msthe upside vortex is about to be transported to the outside of the cavity. With time progressing,the underside vortex becomes larger, and a new upside vortex appears near the flow guide vane. When t= 3.0 ms, the two vortexes are fully developed, gradually it assumes a desirable cavity dual-vortex structure while ensuring an extremely steady combustion. According to Fig,17, the variation of the vorticity and the movement of the vortex core demonstrate that the vortex expands to downstream of the combustor gradually, with breakdown and formation of vortexes. The vorticity of the dual-vortex increases during this time.

    4. Conclusions

    The cold flow characteristics of the TVC are investigated to show the effect of the structural parameters of the flow guide vane and the mainstream velocities on the TVC. Within the parameter range of this paper, the conclusions are as follow:

    (1) As a/Hincreases, the velocity in the upper zone increases accordingly. Moreover, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase significantly.

    (2)b/Bdoes not have a significant effect on the cavity flow structure and the total pressure loss at the outlet. Asb/Bincreases, the wall shear stress at the bottom of the cavity increases. No significant increase is observed of the turbulent intensity in the main combustion zone with the increase ofb/B.

    (3) The increase of c/Lhas relatively little effect on the total pressure loss, and it is not conducive to the stable combustion. Asc/Lincreases, the wall shear stress at the bottom of the cavity decreases.

    (4) Whena/H =0.4,b/B =0.4,c/L=0.1, a desirable dual-vortex structure can be formed with an acceptable pressure loss to achieve a stable combustion. So it is the optimal structural parameters of the flow guide vane.

    (5) As the mainstream flow velocity increases,the velocity in the combustor increases. The dual-vortex structure is not related with the increase ofVma. With the optimal structural parameters of the flow guide vane, the flame is stable for all mainstream velocities.

    (6) An unsteady simulation in the paper is carried out for the generation and the development of the vortex in the cavity. The underside vortex grows larger,the upside vortex is transported to the outside of the cavity with breakdown and formation of vortexes. Then a new vortex appears near the flow guide vane. Finally, the two vortexes are fully developed, with a desirable cavity dual-vortex structure.

    References

    [1] HSU K. Y., GOSS L. P. and ROQUEMORE W. M. Characteristics of a trapped-vortex combustor[J]. Jour- nal of Propulsion and Power, 1998, 14(1): 57-65.

    [2] KATTA V. R., ROQUEMORE W. M. Numerical studies on trapped-vortex concepts for stable combustion[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(1): 60-68.

    [3] ZHANG Rong-chun, FAN Wei-jun. Experimental study of entrainment phenomenon in a trapped vortex combustor[J]. Chinese Journal of Aeronautics, 2013, 26(1): 63-73.

    [4] KULSHRESHTHA D. B., CHANNIWALA S. A. Trapped vortex combustion chamber: Design and experimental investigations using hydrogen as fuel[J]. Journal of the Institution of Engineers (India): Series C, 2014, 95(1): 69-75.

    [5] SINGHAL A., RAVIKRISHNA R. Single cavity trapped vortex combustor dynamics-Part-1: Experiments[J]. International Journal of Spray and Combu- stion Dynamics, 2011, 3(1): 23-44.

    [6] SINGHAL A., RAVIKRISHNA R. Single cavity trapped vortex combustor dynamics-Part-2: Simulations[J]. International Journal of Spray and Combustion Dy- namics, 2011, 3(1): 45-62.

    [7] AGARWAL K. K., KRISHNA S. and RAVIKRISHNA R. V. Mixing enhancement in a compact trapped vortex combustor[J]. Combustion Science and Technology, 2013, 185(3): 363-378.

    [8] CHEN S., CHUE R. S. M. and SCHLüTER J. et al. Numerical investigation of a trapped vortex miniature ramjet combustor[J]. Journal of Propulsion and Power, 2015, 31(3): 872-882.

    [9] GHENAI C., ZBEEB K. and JANAJREH I. Combustion of alternative fuels in vortex trapped combustor[J]. Energy Conversion and Management, 2013, 65: 819- 828.

    [10] ROQUEMORE W. M., SHOUSE D. and BURRUS D. et al. Trapped vortex combustor concept for gas turbine engines[R]. AIAA paper 2001-0483, 2001.

    [11] EZHIL KUMAR P. K., MISHRA D. P. Numerical simulation of cavity flow structure in an axisymmetric trapped vortex combustor[J]. Aerospace Science and Technology, 2012, 21(1): 16-23.

    [12] MEYER T. R., BROWN M. S. and FONOV S. et al. Optical diagnostics and numerical characterization of a trapped-vortex combustor[R]. AIAA paper 2002-3863, 2002.

    [13] STONE C., MENON S. Simulation of fuel-air mixing and combustion in a trapped vortex combustor[R]. AIAA paper 2000-0478, 2000.

    [14] XING Fei, MENG Xiang-tai and LI Ji-bao et al. Elementary study on cool flow field of double vortex in cavity for flame stabilization[J]. Journal of Propulsion Tech- nology, 2008, 29(2): 135-138(in Chinese).

    [15] ZHANG Tao, SONG Shuang-wen and FAN Wei-jun et al. Experimental study on lean-blow-out of double/fuellean trapped vortex combustor[J]. Journal of Aerospa- ce Power, 2011, 26(6): 1328-1333(in Chinese).

    [16] FAN Wei-jun,YI Qi and YAN Ming et al. A study of double vortex structure in the trapped vortex combustor[J]. Proceedings of the Chinese Society for Ele- ctrical Engineering, 2006, 26(9): 66-70(in Chinese).

    [17] AGARWAL K. K., RAVIKRISHNA R. V. Experimental and numerical studies in a compact trapped vortex combustor: Stability assessment and augmentation[J]. Combustion Science and Technology, 2011, 183(12): 1308-1327.

    [18] HUANG Yong. Combustion and combustor[M]. Beijing, China: Buaa Press, 2009, 244(in Chinese).

    10.1016/S1001-6058(15)60535-2

    (April 1, 2014, Revised December 9, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51066006, 51266013), the Aeronautical Science Fund (Grant Nos. 2013ZB56002,2013ZB56004).

    Biography: WANG Zhi-kai (1989-), Male, Master

    ZENG Zhuo-xiong,E-mail: zengzhuoxiong@tsinghua.org.cn

    猜你喜歡
    李凱
    Application of shifted lattice model to 3D compressible lattice Boltzmann method
    Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
    李凱雕塑作品
    火花(2022年4期)2022-06-16 09:34:54
    Application of local Monte Carlo method in neutronics calculation of EAST radial neutron camera
    李凱:同心共筑教育夢
    妻子婚前秘密套牢創(chuàng)業(yè)基金:冷血算計(jì)怒紅顏
    Initiation mechanisms of acupuncture effect: a literature review of basic studies
    歌手廖芊芊催熟“高富帥”男友,收獲美滿的愛情
    欠我一塊橡皮
    井底之見
    故事會(huì)(2015年9期)2015-05-14 15:24:29
    乱码一卡2卡4卡精品| 久久国内精品自在自线图片| 在线免费十八禁| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美在线精品| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av日韩在线播放| 久久久久久久大尺度免费视频| 亚洲最大成人中文| 丝袜美腿在线中文| 高清在线视频一区二区三区| 久久99精品国语久久久| 午夜福利成人在线免费观看| 国产av不卡久久| 国产高清不卡午夜福利| 简卡轻食公司| 色综合亚洲欧美另类图片| 中文资源天堂在线| 亚洲人与动物交配视频| 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜爱| 午夜精品一区二区三区免费看| 亚洲av电影在线观看一区二区三区 | 少妇人妻精品综合一区二区| 国产乱人视频| av在线老鸭窝| 18禁在线无遮挡免费观看视频| 五月伊人婷婷丁香| 色5月婷婷丁香| 久久精品夜色国产| 久久久久久伊人网av| 久久久久久久久久久丰满| 欧美zozozo另类| av免费观看日本| 一个人看视频在线观看www免费| 51国产日韩欧美| 两个人视频免费观看高清| 国产熟女欧美一区二区| 久久草成人影院| 色播亚洲综合网| 国产三级在线视频| 联通29元200g的流量卡| 性插视频无遮挡在线免费观看| 亚洲综合色惰| 日韩成人伦理影院| 69人妻影院| 一区二区三区高清视频在线| 老师上课跳d突然被开到最大视频| 午夜福利视频精品| 免费观看av网站的网址| 久久午夜福利片| 免费av不卡在线播放| av线在线观看网站| 少妇猛男粗大的猛烈进出视频 | 久99久视频精品免费| 国产精品女同一区二区软件| 日本与韩国留学比较| 欧美区成人在线视频| av黄色大香蕉| 国产亚洲av嫩草精品影院| 日韩欧美精品免费久久| 97在线视频观看| 亚洲精品日韩av片在线观看| 久久草成人影院| 综合色丁香网| 最近中文字幕2019免费版| 熟妇人妻不卡中文字幕| 成人午夜高清在线视频| 91av网一区二区| 日本熟妇午夜| 国产v大片淫在线免费观看| 最近视频中文字幕2019在线8| 免费高清在线观看视频在线观看| 欧美97在线视频| av一本久久久久| 22中文网久久字幕| 欧美97在线视频| 亚洲精品日韩av片在线观看| 日韩在线高清观看一区二区三区| 2021少妇久久久久久久久久久| 国内精品一区二区在线观看| 久久精品夜色国产| 一级片'在线观看视频| 国产精品.久久久| 精品久久久噜噜| 爱豆传媒免费全集在线观看| 大话2 男鬼变身卡| 亚洲人成网站在线观看播放| 亚洲人成网站高清观看| 91久久精品国产一区二区成人| 久久热精品热| 欧美97在线视频| 男插女下体视频免费在线播放| 在线播放无遮挡| 国内精品宾馆在线| 欧美bdsm另类| 日韩av在线大香蕉| 精品人妻一区二区三区麻豆| 免费大片18禁| 熟女人妻精品中文字幕| 久久精品熟女亚洲av麻豆精品 | 女的被弄到高潮叫床怎么办| 婷婷六月久久综合丁香| 日本与韩国留学比较| 三级经典国产精品| 国产在视频线在精品| 18禁动态无遮挡网站| 六月丁香七月| 久久这里只有精品中国| 国产女主播在线喷水免费视频网站 | 波野结衣二区三区在线| 亚洲丝袜综合中文字幕| a级毛色黄片| 国精品久久久久久国模美| 一级毛片 在线播放| 国产白丝娇喘喷水9色精品| 精品人妻一区二区三区麻豆| 午夜激情福利司机影院| 一个人观看的视频www高清免费观看| 国产一区亚洲一区在线观看| 国产黄色免费在线视频| av天堂中文字幕网| 一级毛片aaaaaa免费看小| 汤姆久久久久久久影院中文字幕 | 久久久久九九精品影院| 国产精品三级大全| 久久久久精品久久久久真实原创| 免费观看av网站的网址| 人人妻人人看人人澡| 极品少妇高潮喷水抽搐| 国产麻豆成人av免费视频| 国产黄片视频在线免费观看| 好男人视频免费观看在线| 天天躁日日操中文字幕| 一本久久精品| 视频中文字幕在线观看| 久久6这里有精品| 亚洲最大成人av| 国产av不卡久久| 少妇被粗大猛烈的视频| 国产av码专区亚洲av| 成人美女网站在线观看视频| 中文字幕免费在线视频6| 97精品久久久久久久久久精品| 午夜精品在线福利| 国产av国产精品国产| 美女主播在线视频| av在线蜜桃| 亚洲国产高清在线一区二区三| 国产伦一二天堂av在线观看| 欧美潮喷喷水| 在线a可以看的网站| 免费看av在线观看网站| 久久午夜福利片| 国产一区二区亚洲精品在线观看| 久久国产乱子免费精品| 网址你懂的国产日韩在线| 日韩在线高清观看一区二区三区| 真实男女啪啪啪动态图| 亚洲av电影不卡..在线观看| 亚洲国产色片| 国精品久久久久久国模美| 日本猛色少妇xxxxx猛交久久| 国产爱豆传媒在线观看| 大香蕉久久网| 成人综合一区亚洲| 一级av片app| 午夜老司机福利剧场| av一本久久久久| 少妇丰满av| 国产极品天堂在线| av天堂中文字幕网| 亚洲在久久综合| av专区在线播放| 伊人久久国产一区二区| 人妻系列 视频| 水蜜桃什么品种好| 男人爽女人下面视频在线观看| 能在线免费看毛片的网站| 一二三四中文在线观看免费高清| 国产亚洲最大av| 亚洲av.av天堂| 欧美日韩在线观看h| 国产免费福利视频在线观看| 看十八女毛片水多多多| 亚洲,欧美,日韩| 少妇的逼水好多| 狠狠精品人妻久久久久久综合| 能在线免费观看的黄片| 国模一区二区三区四区视频| 丝袜美腿在线中文| 亚洲高清免费不卡视频| 国产精品人妻久久久影院| 深夜a级毛片| 男的添女的下面高潮视频| 男人舔奶头视频| 2022亚洲国产成人精品| 日日啪夜夜撸| 男的添女的下面高潮视频| 成人一区二区视频在线观看| 99久国产av精品| 国产片特级美女逼逼视频| 日本免费a在线| 激情五月婷婷亚洲| 国产不卡一卡二| 婷婷六月久久综合丁香| 久久这里只有精品中国| 亚洲怡红院男人天堂| 亚洲乱码一区二区免费版| 日韩av在线免费看完整版不卡| 亚洲精品自拍成人| 黄色配什么色好看| 久久亚洲国产成人精品v| 91精品一卡2卡3卡4卡| 亚洲欧美成人精品一区二区| 久久亚洲国产成人精品v| 亚洲,欧美,日韩| 搞女人的毛片| a级一级毛片免费在线观看| 国产成人精品一,二区| av黄色大香蕉| 建设人人有责人人尽责人人享有的 | 美女xxoo啪啪120秒动态图| 久久人人爽人人爽人人片va| 免费不卡的大黄色大毛片视频在线观看 | 亚洲天堂国产精品一区在线| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影小说 | 国产黄a三级三级三级人| 69人妻影院| 能在线免费观看的黄片| 精品久久久久久成人av| av专区在线播放| 三级经典国产精品| 男女啪啪激烈高潮av片| 精品国产三级普通话版| av又黄又爽大尺度在线免费看| 色综合站精品国产| 一本久久精品| 国产视频内射| 老司机影院毛片| 中文字幕av成人在线电影| 亚洲伊人久久精品综合| 97在线视频观看| 国产精品久久久久久av不卡| 在线 av 中文字幕| 国产精品久久久久久久久免| 国产色婷婷99| 国产探花极品一区二区| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 最近视频中文字幕2019在线8| 高清欧美精品videossex| 麻豆av噜噜一区二区三区| 又黄又爽又刺激的免费视频.| 91精品一卡2卡3卡4卡| 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| 亚洲国产欧美人成| 午夜老司机福利剧场| 99久国产av精品| 国产淫语在线视频| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 久久久久久久午夜电影| 最后的刺客免费高清国语| 中文字幕亚洲精品专区| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 久久久久久久久久黄片| 久久99热这里只频精品6学生| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 亚洲,欧美,日韩| 国内少妇人妻偷人精品xxx网站| 日日撸夜夜添| 毛片一级片免费看久久久久| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 久久久久久九九精品二区国产| 亚洲一级一片aⅴ在线观看| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| 国产淫语在线视频| 免费观看在线日韩| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 国产v大片淫在线免费观看| 中文资源天堂在线| 午夜福利在线在线| 日韩av免费高清视频| 大香蕉97超碰在线| 极品少妇高潮喷水抽搐| 99视频精品全部免费 在线| 国产av在哪里看| 日韩av免费高清视频| 国产在视频线精品| av线在线观看网站| 亚洲最大成人中文| 亚洲精品日韩av片在线观看| 一个人免费在线观看电影| 五月天丁香电影| 国产色婷婷99| 肉色欧美久久久久久久蜜桃 | 男女边摸边吃奶| 亚洲欧洲国产日韩| 亚洲av成人av| 男人和女人高潮做爰伦理| 观看免费一级毛片| av.在线天堂| 丰满人妻一区二区三区视频av| 99久国产av精品国产电影| 国产大屁股一区二区在线视频| 国产免费福利视频在线观看| 亚州av有码| 在线免费十八禁| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 久久久久久久午夜电影| 国产人妻一区二区三区在| 欧美变态另类bdsm刘玥| 在线观看av片永久免费下载| 亚洲av一区综合| 最近的中文字幕免费完整| 91精品一卡2卡3卡4卡| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 蜜桃亚洲精品一区二区三区| 国产精品.久久久| 日韩伦理黄色片| 成人午夜高清在线视频| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放| 2022亚洲国产成人精品| 久久久精品欧美日韩精品| 天堂俺去俺来也www色官网 | 精品一区二区三区人妻视频| 久久久久久久久久黄片| 亚洲最大成人手机在线| 日韩欧美一区视频在线观看 | 男女那种视频在线观看| 久久久久久九九精品二区国产| 777米奇影视久久| 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 肉色欧美久久久久久久蜜桃 | 国产乱人视频| 久久久久久国产a免费观看| 久久精品国产亚洲网站| 亚洲在久久综合| 久久99蜜桃精品久久| 色综合站精品国产| 国产黄色视频一区二区在线观看| 真实男女啪啪啪动态图| 国产av码专区亚洲av| 国产人妻一区二区三区在| 久久久久久久大尺度免费视频| 日日摸夜夜添夜夜添av毛片| av.在线天堂| 日韩三级伦理在线观看| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花 | 午夜久久久久精精品| 黄色日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 听说在线观看完整版免费高清| 久久久久性生活片| 国产成人午夜福利电影在线观看| 久久久午夜欧美精品| 国产精品三级大全| 久99久视频精品免费| 看黄色毛片网站| 亚洲精品自拍成人| 淫秽高清视频在线观看| 三级毛片av免费| 亚洲国产日韩欧美精品在线观看| 亚洲自拍偷在线| 两个人视频免费观看高清| 亚洲美女搞黄在线观看| 三级男女做爰猛烈吃奶摸视频| 色吧在线观看| 最后的刺客免费高清国语| 午夜免费观看性视频| 免费av观看视频| 91aial.com中文字幕在线观看| 两个人视频免费观看高清| 高清毛片免费看| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 午夜激情欧美在线| 少妇高潮的动态图| 国产成人精品婷婷| 欧美丝袜亚洲另类| 黄色一级大片看看| 国产 亚洲一区二区三区 | 最近中文字幕高清免费大全6| 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| av一本久久久久| 亚洲av不卡在线观看| 国产精品一二三区在线看| 欧美三级亚洲精品| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 乱系列少妇在线播放| 日本熟妇午夜| 国产 亚洲一区二区三区 | 国内精品宾馆在线| 日韩国内少妇激情av| 亚洲av免费在线观看| 久久精品久久久久久久性| 免费观看在线日韩| 一夜夜www| 成人美女网站在线观看视频| 国产 一区精品| 一本久久精品| 麻豆成人av视频| 亚洲欧美成人综合另类久久久| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 色吧在线观看| 成年免费大片在线观看| 插逼视频在线观看| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| 国产av在哪里看| 久久国内精品自在自线图片| 十八禁网站网址无遮挡 | 欧美日韩视频高清一区二区三区二| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 美女主播在线视频| 午夜精品在线福利| 亚洲国产日韩欧美精品在线观看| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 国产精品99久久久久久久久| 国产成年人精品一区二区| 婷婷色av中文字幕| 天堂中文最新版在线下载 | 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| 免费无遮挡裸体视频| 国产精品三级大全| 国产91av在线免费观看| 一区二区三区高清视频在线| 久久精品久久精品一区二区三区| 伊人久久精品亚洲午夜| 亚洲最大成人av| 国产在线男女| 有码 亚洲区| 国产淫语在线视频| 亚洲国产欧美在线一区| 午夜久久久久精精品| 男女下面进入的视频免费午夜| 国产美女午夜福利| 全区人妻精品视频| 一本久久精品| 国产精品1区2区在线观看.| 一个人免费在线观看电影| 小蜜桃在线观看免费完整版高清| 在线免费观看的www视频| 美女大奶头视频| 一区二区三区免费毛片| 麻豆成人av视频| 精品一区在线观看国产| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 嘟嘟电影网在线观看| 街头女战士在线观看网站| 免费观看的影片在线观看| 国产黄片美女视频| 欧美zozozo另类| 久久久久久久久久成人| 国产成人精品婷婷| 午夜福利成人在线免费观看| 国产午夜精品久久久久久一区二区三区| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 免费大片18禁| av专区在线播放| 国产 亚洲一区二区三区 | 国产精品一区www在线观看| 国产精品1区2区在线观看.| 日本av手机在线免费观看| 日韩成人伦理影院| 欧美另类一区| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看 | 国产一区有黄有色的免费视频 | 美女内射精品一级片tv| 大香蕉久久网| 亚洲精品色激情综合| 免费黄色在线免费观看| 亚洲欧美一区二区三区黑人 | 国产又色又爽无遮挡免| 国产一区二区在线观看日韩| 色视频www国产| 午夜福利在线在线| 在线免费十八禁| 亚洲欧美一区二区三区黑人 | 日韩制服骚丝袜av| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 国产单亲对白刺激| 神马国产精品三级电影在线观看| 水蜜桃什么品种好| 免费观看av网站的网址| 欧美xxxx黑人xx丫x性爽| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频 | 91在线精品国自产拍蜜月| 99re6热这里在线精品视频| 亚洲av电影在线观看一区二区三区 | 国产淫片久久久久久久久| 色网站视频免费| 国产av国产精品国产| 精品酒店卫生间| 在线观看免费高清a一片| 人妻制服诱惑在线中文字幕| 久久99热这里只频精品6学生| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美在线一区| 一级爰片在线观看| 色吧在线观看| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 国产在视频线在精品| 美女大奶头视频| 久热久热在线精品观看| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 深夜a级毛片| 国产精品伦人一区二区| 国产午夜精品久久久久久一区二区三区| 在线免费十八禁| av网站免费在线观看视频 | 中文字幕人妻熟人妻熟丝袜美| 国产精品一及| 国产综合懂色| 黑人高潮一二区| 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看 | 国产伦一二天堂av在线观看| 亚洲av电影在线观看一区二区三区 | a级毛色黄片| 少妇人妻一区二区三区视频| 中文字幕制服av| 亚洲怡红院男人天堂| 久热久热在线精品观看| 久久国产乱子免费精品| 国产一级毛片在线| 亚洲乱码一区二区免费版| 91精品国产九色| 日韩不卡一区二区三区视频在线| 成人亚洲精品av一区二区| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 深夜a级毛片| 亚洲av不卡在线观看| 亚洲av成人精品一二三区| 内地一区二区视频在线| 国产成人91sexporn| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 国产色婷婷99| 国产精品日韩av在线免费观看| 午夜免费观看性视频| 搡老乐熟女国产| 搞女人的毛片| 91久久精品国产一区二区成人| 色网站视频免费| 毛片女人毛片| 边亲边吃奶的免费视频| a级毛色黄片| 欧美日韩在线观看h| 国产一级毛片在线| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 亚洲最大成人av| 欧美97在线视频| 我的女老师完整版在线观看| 一级av片app| 亚洲精品视频女| 99久国产av精品国产电影| 国产精品1区2区在线观看.| 青青草视频在线视频观看| 欧美一级a爱片免费观看看| 亚洲怡红院男人天堂| 婷婷色av中文字幕| ponron亚洲| 性色avwww在线观看| 国产一区二区三区综合在线观看 | 麻豆精品久久久久久蜜桃| 寂寞人妻少妇视频99o| 国产免费视频播放在线视频 | 哪个播放器可以免费观看大片|