• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording

    2023-03-13 09:19:42ZhiLi李智KunZhang張昆AoDu杜奧HongchaoZhang張洪超WeibinChen陳偉斌NingXu徐寧RunrunHao郝潤潤ShishenYan顏世申WeishengZhao趙巍勝andQunwenLeng冷群文
    Chinese Physics B 2023年2期
    關(guān)鍵詞:李智群文

    Zhi Li(李智) Kun Zhang(張昆) Ao Du(杜奧) Hongchao Zhang(張洪超)Weibin Chen(陳偉斌) Ning Xu(徐寧) Runrun Hao(郝潤潤)Shishen Yan(顏世申) Weisheng Zhao(趙巍勝) and Qunwen Leng(冷群文)

    1Fert Beijing Research Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    2Beihang-Goertek Joint Microelectronics Institute,Qingdao Research Institute,Beihang University,Qingdao 266101,China

    3School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    Keywords: granular Co/Pt multilayers,perpendicular magnetic anisotropy,remanent moment-thickness product,magnetic recording

    1.Introduction

    Co/Pt multilayers have been attracting large amounts of attentions because of its great interest in fundamental physics,such as spin-orbit torque effect,magnetic skyrmions and synthetic antiferromagnetic structure, as well as its great application potential in magnetic recording and magnetic randomaccess memories (MRAM).[1-11]The strong perpendicular magnetic anisotropy(PMA)and excellent processing compatibility of Co/Pt multilayers are urgently desired by the application of high-density magnetic recording medium.However,the out of plane (OOP) magnetic hysteresis (M-H) loop of Co/Pt multilayers transforms from a rectangular shape to a bowknot shape with the increasing repetition number, leading to the remarkable reduction of remanent magnetization(Mr).Note that, the product ofMrand thickness (i.e., the remanent moment-thickness product,Mrt) is a key parameter in magnetic recording for high signal-to-noise data reading and high-density information storage, which also decreases dramatically with the increasing repetition number.[12]This is because that the magneto-static energy increases linearly with the increasing repetition number of Co/Pt multilayers,reversed magnetic domains come into being, and theMrtvalue is normally restricted to lower than 0.5 memu/cm2.Therefore,there is always a contradiction point between theMrtvalue and the repetition number of Co/Pt multilayers, which hinders its further practical applications in high-density magnetic recording.[13-16]

    Recently, many researches focus on improving the magnetic performance of Co/Pt multilayers for magnetic recording.For example, patterned microstructures and nanoporous substrates are utilized for fabricating Co/Pt multilayers,whose coercivity is enhanced by optimizing the size of dot or nanopore.[17,18]Meanwhile, interface-degradation-induced irreversible PMA loss of Co/Pt multilayers during hightemperature annealing are investigated.[19]Moreover, the optimization of PMA in Co/Pt multilayers is studied to improve their thermal stability.For instance, Co/Pt multilayers with strong PMA can be achieved by the strategy of exchange biased structure, or by optimizing interface quality.[20,21]However,the magnetic performance of Co/Pt multilayers with high total thickness is seldom studied.

    In this work, high repetition [Co/Pt]80multilayers with total thickness of 68 nm are deposited on granular SiNxbuffer layer by magnetron sputtering technology.As a result, the magnetic parameters, such asMrt, OOP coercivity (Hcoop),andMrto saturation magnetization (Ms) ratio, are significantly improved compared with that of a continuous multilayer on smooth substrate.The magnetic domain characterization and micromagnetic simulation indicate that granular microstructure brings large amounts of grain boundaries,which can efficiently impede the expansion and propagation of reversed magnetic domains to improve the magnetic performance.Moreover, the magnetic performance of granular[Co/Pt]80multilayers can be further improved through tuning the granular microstructure of SiNxbuffer layer, which can be realized by controlling the deposition parameters.This work implements excellent magnetic performance in high repetition Co/Pt multilayers,which can promote the development of high-density magnetic recording mediums.

    2.Methods

    2.1.Film preparation

    The 100-nm SiNxbuffer layer is deposited on silicon wafer at 350°C by ULVAC CC-200Cz PECVD system.The flow ratio of SiH4and NH3is set as 4:5, and the deposition pressure of the SiNxlayer is 1 Torr(1 Torr=1.33322×102Pa),which introduces a granular surface structure.[22]Ta(2.0 nm)/Pt(1.5 nm)/[Co(0.5 nm)/Pt(0.35 nm)]Nmultilayers are then deposited on granular Si/SiNxsubstrates at room temperature by Singulus ROTARIS sputtering system with a base pressure of 5×10-8Torr.Comparison samples with coordinating film structure are deposited on smooth Si/SiO2substrates.The deposition rate is 0.87 °A/s for Co and 1.21 °A/s for Pt,respectively.

    2.2.Structural and magnetic characterizations

    The magnetic hysteresis (M-H) loops are measured by a vibration sample magnetometer (VSM) from Lake Shore company.The Bruker Dimension Icon atomic force microscope (AFM) and Zeiss Sigma 300 scanning electron microscope(SEM)are used to analyze the surface morphology.The magnetic force microscope(MFM)measurement for magnetic structure characterization is accomplished by Bruker Dimension Icon.All the characterizations are operated at room temperature.

    3.Results and discussion

    3.1.Improved magnetic properties in granular [Co/Pt]N multilayers

    Figures 1(a) and 1(b) exhibits the OOPM-Hloops of[Co/Pt]Nmultilayers.Obviously,the OOPM-Hloops of granular and continuous[Co/Pt]Nmultilayers respectively exhibit rectangular and bowknot shape.As a result,the values ofHcoopandMr/Msratio for granular[Co/Pt]Nmultilayers are remarkably improved compared with that of continuous [Co/Pt]Nmultilayers.For example,the value ofHcoopandMr/Msratio are improved from 204 Oe and 17.0%to 1780 Oe and 69.4%forN=60.Similarly,the value ofHcoopandMr/Msratio are improved from 216 Oe and 14.6%to 1940 Oe and 67.0%forN=80.

    Figures 1(c)and 1(d)show the MFM images of granular and continuous[Co/Pt]80multilayers,respectively.The specimens are OOP saturated by electromagnet and investigated at remanent magnetization state.The bright and dark pixels represent the positive and negative magnetized regions.The corresponding AFM results,i.e.,the surface structure of the measured area,can be found in inserts.The MFM results are independent of the surface morphology, so the disturbance of the surface structure in the MFM results can be excluded.Maze domains can be clearly observed in the continuous [Co/Pt]80multilayers,and a weak remanent magnetization state is determined by the unconstrained domain nucleation and propagation.For the granular [Co/Pt]80multilayers, the nonuniform deposition at the grain boundaries induces soft magnet phase,resulting in a reduced exchange stiffnessAex,saturation magnetizationMs, and perpendicular magnetic anisotropy constantKu.[17,23,24]Meanwhile,the critical domain wall propagation field is in negative relationship with the above-mentioned parameters.[25]Therefore, the critical domain wall propagation field is enlarged.That means the propagation and expansion of reversed magnetic domains are impeded by the grain boundaries and a higherMr/Msratio is achieved.Moreover,because of the pinning effect of grain boundaries,a higher external magnetic field will be essential to expand the reversed magnetic domains,and a strongerHcoopcan be expected.

    Furthermore,the tendency ofMr/Msratio,HcoopandMrtvarying with the repetition numberNfrom 10 to 80 are systematically investigated, as shown in Figs.2(a)-2(c).For continuous Co/Pt multilayers, theHcoopexperiences a linear augment with increasingN, which is attributed to the slower domain propagation under a higher total film thickness.[13]TheMr/Msratio can reach about 100% whenN= 10 and 30, and a maximumMrtis observed as 1.695 memu/cm2forN=30.However, a sharp decline occurs whenNexceeds 30, which can be clearly observed in the OOPM-Hloops shown in Fig.2(d).This phenomenon can be attributed to the increased magneto-static energy (Emag-sta) with uniform magnetization[26]

    whereHdemag,M, andtrefer to the demagnetization field,magnetization, and layer thickness, respectively.With the increasing thickness, the magneto-static energyEmag-staincreases dramatically if the multilayers sustain a saturation magnetization state.As a result, the strong demagnetization fieldHdemagforce the premature nucleation of reversed magnetic domain,i.e.,the irreversible magnetization switching,resulting in the reducedMr.For the granular multilayers, theMr/Msratio andMrtforN=10 and 30 are similar to those of continuous multilayers,while theirHcoopslightly increase due to the granule structure.Excitingly,forN=60 and 80,it can be extracted thatMr/Msratio,Hcoop, andMrtare remarkably enhanced.It is worth noting thatMrtvalue in this work is observed as high as 2.97 memu/cm2for granular multilayer withN=80,which is a new record in Co/Pt multilayer systems to our knowledge.

    Fig.1.(a) and (b) OOP M-H loops of the granular and continuous [Co/Pt]N multilayers with N =60 and 80.The data of the granular and continuous multilayers are marked as red and black, respectively.(c) and (d) MFM image of granular and continuous [Co/Pt]80 multilayers under zero external field after a saturate magnetization,i.e.,the remanent magnetization state.The corresponding AFM graphs are inserted at the upper-right corner of the images.

    Fig.2.The relationship of repetition number N versus (a) Mr/Ms, (b) Hcoop, and (c) Mrt of the granular and continuous Co/Pt multilayers.(d) OOP M-H loops of continuous Co/Pt multilayers with different repetition numbers.The inserted picture exhibits the zoomed graph of continuous Co/Pt multilayers with N=10 and 30.

    3.2.Surface morphology of granular SiNx layer and[Co/Pt]N multilayers

    To well understand the origin of granular structure,we investigate the surface morphology of granular SiNxbuffer layer and [Co/Pt]Nmultilayers.As exhibited in Fig.3(a), granular morphology is formed on the SiNxlayer by PECVD process.The [Co/Pt]80multilayers are then deposited on the granules.In this case, the granular morphology is transferred from the SiNxbuffer layer to the [Co/Pt]Nmultilayers as shown in Fig.3(b).The surface roughness (i.e.,Ra)of granular SiNxlayer and Co/Pt multilayers are 5.59 nm and 5.88 nm,respectively.As a contrast,the surface roughness of smooth SiO2buffer layer and continuous [Co/Pt]80multilayers are only about 0.11 nm and 0.50 nm,as shown in Fig.3(c).Here,the consistent roughness of SiNxbuffer layer and granular [Co/Pt]80multilayers indicate the layer-by-layer deposition mode and high depositing quality of the magnetic layers.Therefore, PMA in our granular Co/Pt multilayers can be attributed to the Co/Pt interfacial orbital hybridization.[27]Meanwhile, the bulk PMA originating from magnetocrystalline anisotropy can be excluded in this work because that the multilayers do not go through any hightemperature treatment,which is essential for the formation of PMA CoPt alloys with specific crystalline structure.[28,29]

    The granule size distributions of granular substrate and[Co/Pt]80multilayers are illustrated in Figs.3(d)and 3(e),that is measured as average dimensiond=105.7 nm and 103.9 nm with a standard deviation of 14.7% and 22.2%, respectively.The granule size here is defined by the average of Feret’s diameter,and is retained after the deposition of the Co/Pt multilayer while a remarkable increase of the standard deviation is confirmed.The reason of this phenomenon can be attributed to the flattening effect of Co/Pt multilayers.During the deposition process,the magnetic film is formed on both the surface and the gap of granules.The irregular film formation on the granular surface changes the uniformity of the magnetic layers, and meanwhile builds a barrier for impeding the domain propagation and expansion during the reversal of magnetic moment.Moreover, the surface structure of granular[Co/Pt]80multilayer is also studied by SEM with 45°incident electron beam to the film normal.The granular[Co/Pt]80multilayer with SiNxbuffer layer are clearly observed on the smooth Si substrate.The height of the granules can be estimated as 160 nm,which is accordance with the total thickness of SiNxand[Co/Pt]80layers.Something should be noted that,the surface structure of the SiNxbuffer layer including surface roughness, granule size, and distribution can be further manipulated by adjusting the process parameters.As can be easily understood, high deposition rate of the SiNxfilm leads to a limited film condition and high granule size,which can be achieved by high RF power,depositing chamber pressure,and SiH4proportion.On the contrary, lower granule size can be achieved by decreasing the aforesaid parameters.[30,31]Therefore,the magnetic performance of granular[Co/Pt]Nmultilayers can be further optimized technically.

    Fig.3.(a)and(b)Surface structure of granular SiNx buffer layer and granular[Co/Pt]80 multilayer.(c)AFM image of smooth SiO2 buffer layer and continuous[Co/Pt]80 multilayer,respectively.(d)and(e)The granule size distribution of granular SiNx buffer layer and granular[Co/Pt]80 multilayer.(f)The SEM image of granular[Co/Pt]80 multilayer measured with 45° incident electron beam to the film normal.

    3.3.Micromagnetic simulation and theoretical analyses

    To further clarify the relationship between the granule size and the magnetic properties of granular [Co/Pt]Nmultilayers,a micromagnetic model is established and simulated by Object Oriented MicroMagnetic Framework (OOMMF).[32]The simulation region is set as 500 nm×500 nm×68 nm with a cell size of 2 nm, and the parameters of exchange coefficientAex, saturation magnetizationMs, damping coefficientα, and simulation temperatureTare set to be 1×10-11J/m,6.5×105A/m,1,and 300 K,respectively.The granular structure is imitated by gridded hexagonal units with their boundary of a lowerMs,i.e.,one-tenth of the normal value.It should be mentioned that the granule size here is defined as the average of the long axis and short axis of hexagonal units.The exchange coupling at the boundary is thus restricted and the domain propagation and expansion is hindered by this granular boundary.

    The simulatedM-Hloops of continuous and granular[Co/Pt]Nmultilayers are exhibited in Fig.4(a),which are consistent with the experimental observations.The continuous film experience lowestMr/MsandHcoop, that are typical in Co/Pt multilayers with high repetitionN.[14,33]The aforesaid parameters are enhanced from 6.7% and 413 Oe to 60% and 667 Oe,respectively in simulated granular films with granular size of 80 nm.In this case, the value ofMrtis improved simultaneously withMr/Msratio because that the value oftandMsstays constant.For further investigation of the relationship between granule size and magnetic performances, magnetic reversals with different granular sizes,i.e., the hexagon size,are studied.A rectangularM-Hloops with 100%Mr/Msratio and 5500-OeHcoopis achieved for the granular[Co/Pt]Nmultilayers with granule size 20 nm.As illustrated in Figs.4(b)and 4(c), the value ofHcoopandMr/Msdecline with the increase of the granule size.These simulation results indicate that the magnetic property of granular [Co/Pt]Nmultilayers can be further improved through reducing the granule size.

    To study the dynamic process of the magnetic reversal in granular[Co/Pt]Nmultilayers,the reversed domain nucleation and propagation processes are schematically studied,as shown in Figs.4(d)-4(i).For the state of points 1 andain Fig.4(a),the reversed magnetic domains nucleate and expand, and a multi-domain state is established under zero external field,i.e.,the remanent magnetization state.The reversed domain propagation is restrained by the grain boundary in granular film and an improved remanent magnetization is observed.Subsequently, a negative OOP field is applied at points 2 andb,and the total magnetization alongzaxis becomes zero,i.e.,the coercivity field state.A stronger external field is essential to achieve a zero perpendicular magnetization due to the inhibition of reversed domain propagation and expansion, and the coercivity is enhanced.For a stronger negative OOP field at points 3 andc, the positive domain starts to shrink and annihilate, and the magnetization state approaches reversed saturation state.A smoother shrinking process can be observed in the granular multilayer,which is due to the reduced exchange coupling at the grain boundaries.

    Fig.4.(a)The simulated OOP M-H loops of Co/Pt multilayers with different surface structures.(b)and(c)The tendency of Hcoop and Mr/Ms with increasing granule size.The blue dotted line represents the data extracted from continuous Co/Pt multilayers.(d)-(f) The magnetic domain reversal dynamics in Co/Pt multilayers with a granule size of 80 nm.(g)-(i) The magnetic domain reversal dynamics in continuous Co/Pt multilayers.The corresponding states are illustrated in panel(a)as points 1-3 for granular film and points a-c for continuous film.The red and blue areas refer to the spin-up and spin-down states,respectively.

    4.Conclusion and perspectives

    High repetition [Co/Pt]Nmultilayers with PMA are experimentally fabricated, in which the key magnetic performance such asMrt,Mr/Msratio, andHcoopare remarkably improved benefiting from the granular structure.The corresponding simulation results indicate that the magnetic parameters can be optimized by modifying the granule size.This research gives a new method to optimize the magnetic performance of Co/Pt multilayers with high total thickness, which exhibits strong potential in the application of high-density magnetic recording.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.51901008) and the National Key Research and Development Program of China (Grant No.2021YFB3201800).

    猜你喜歡
    李智群文
    學(xué)界翹楚李智
    群文閱讀教學(xué)模式探討
    Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
    五家渠市交通信號控制系統(tǒng)可行性改造研究
    Running the Hillsby James M. Janik
    例談群文閱讀中議題的確定
    甘肅教育(2020年18期)2020-10-28 09:07:02
    群文閱讀教學(xué)策略談
    甘肅教育(2020年14期)2020-09-11 07:58:36
    談以生為本的群文閱讀教學(xué)策略
    甘肅教育(2020年14期)2020-09-11 07:58:08
    老頭和小偷
    初中群文閱讀的文本選擇及組織
    甘肅教育(2020年8期)2020-06-11 06:10:02
    能在线免费观看的黄片| 国产精品麻豆人妻色哟哟久久 | 国产精品福利在线免费观看| 亚洲av福利一区| 国模一区二区三区四区视频| 中文字幕免费在线视频6| 人妻一区二区av| 大话2 男鬼变身卡| 亚洲自偷自拍三级| 国产亚洲av嫩草精品影院| 久久久久久久大尺度免费视频| 日韩成人伦理影院| freevideosex欧美| 亚洲精品国产成人久久av| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 国产有黄有色有爽视频| 我的女老师完整版在线观看| 久久久久九九精品影院| 最近最新中文字幕大全电影3| 一个人看的www免费观看视频| 欧美一区二区亚洲| 国产麻豆成人av免费视频| 真实男女啪啪啪动态图| 亚洲成人av在线免费| 成人国产麻豆网| 两个人视频免费观看高清| 成年免费大片在线观看| 色5月婷婷丁香| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 尤物成人国产欧美一区二区三区| 精品熟女少妇av免费看| 一级片'在线观看视频| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 国产精品.久久久| av国产免费在线观看| 偷拍熟女少妇极品色| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 国产永久视频网站| 深爱激情五月婷婷| 亚洲精品国产av蜜桃| 国内精品一区二区在线观看| 美女国产视频在线观看| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 中文天堂在线官网| 国产高清国产精品国产三级 | 午夜老司机福利剧场| 午夜福利成人在线免费观看| 免费无遮挡裸体视频| 欧美日韩精品成人综合77777| 观看美女的网站| 国产69精品久久久久777片| 亚洲精品一二三| 亚洲av国产av综合av卡| 校园人妻丝袜中文字幕| 亚洲精品乱码久久久v下载方式| 岛国毛片在线播放| 成人国产麻豆网| 大片免费播放器 马上看| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频 | 成人二区视频| 少妇高潮的动态图| 亚洲自偷自拍三级| 99热6这里只有精品| 97超碰精品成人国产| freevideosex欧美| 亚洲国产精品成人综合色| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| videossex国产| 日日啪夜夜爽| 91久久精品电影网| 视频中文字幕在线观看| 99久久人妻综合| 老司机影院毛片| 久久久久久伊人网av| 插阴视频在线观看视频| 午夜免费观看性视频| 亚洲精品自拍成人| 91久久精品国产一区二区成人| 内地一区二区视频在线| 全区人妻精品视频| 777米奇影视久久| 乱系列少妇在线播放| 久久这里有精品视频免费| 日韩av在线免费看完整版不卡| 国产视频首页在线观看| 成人亚洲精品av一区二区| 成年版毛片免费区| 777米奇影视久久| 日韩 亚洲 欧美在线| av专区在线播放| 亚洲精品日韩在线中文字幕| 欧美一区二区亚洲| 午夜福利视频1000在线观看| 97热精品久久久久久| 午夜老司机福利剧场| 久久久久久久大尺度免费视频| 久久久久九九精品影院| 男插女下体视频免费在线播放| 亚洲国产欧美人成| 一二三四中文在线观看免费高清| 亚洲久久久久久中文字幕| 大陆偷拍与自拍| xxx大片免费视频| 精品人妻熟女av久视频| 人妻一区二区av| 黄片wwwwww| 欧美日韩国产mv在线观看视频 | 麻豆精品久久久久久蜜桃| 精品久久久久久久人妻蜜臀av| 国产极品天堂在线| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 亚洲精品久久午夜乱码| 老女人水多毛片| 边亲边吃奶的免费视频| 青青草视频在线视频观看| 18禁动态无遮挡网站| 大陆偷拍与自拍| 麻豆国产97在线/欧美| 日韩一区二区三区影片| 国产成人精品福利久久| 久久人人爽人人爽人人片va| 久久草成人影院| 夫妻性生交免费视频一级片| 噜噜噜噜噜久久久久久91| 免费看日本二区| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜爱爱视频在线播放| 白带黄色成豆腐渣| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 全区人妻精品视频| 国国产精品蜜臀av免费| 高清毛片免费看| 你懂的网址亚洲精品在线观看| 男女边吃奶边做爰视频| 99久久人妻综合| 两个人的视频大全免费| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 欧美日韩国产mv在线观看视频 | 亚洲av成人av| 99热这里只有是精品在线观看| 日本一本二区三区精品| 日韩一本色道免费dvd| 国产黄色小视频在线观看| 亚洲av在线观看美女高潮| 国内精品美女久久久久久| 淫秽高清视频在线观看| 中文字幕亚洲精品专区| 天堂中文最新版在线下载 | 国产av国产精品国产| 高清在线视频一区二区三区| 在线观看av片永久免费下载| 一区二区三区四区激情视频| 成人欧美大片| 精品一区二区免费观看| 色视频www国产| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 青春草国产在线视频| 三级男女做爰猛烈吃奶摸视频| 国产成人福利小说| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 午夜亚洲福利在线播放| 亚洲欧美清纯卡通| 永久网站在线| 在线播放无遮挡| 搡老妇女老女人老熟妇| 免费观看的影片在线观看| 亚洲国产精品成人综合色| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 日本免费a在线| 在线观看人妻少妇| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 国产一区二区三区综合在线观看 | 99视频精品全部免费 在线| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | av黄色大香蕉| 亚洲成人中文字幕在线播放| 精品人妻熟女av久视频| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产色爽女视频免费观看| 2021天堂中文幕一二区在线观| 亚洲国产最新在线播放| 欧美人与善性xxx| 亚州av有码| 青春草国产在线视频| 人体艺术视频欧美日本| 欧美zozozo另类| 日韩欧美一区视频在线观看 | 真实男女啪啪啪动态图| 美女大奶头视频| 国产亚洲av嫩草精品影院| 欧美+日韩+精品| 亚洲精品色激情综合| 国产69精品久久久久777片| 亚洲电影在线观看av| 一个人免费在线观看电影| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 白带黄色成豆腐渣| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 精品一区二区免费观看| 韩国高清视频一区二区三区| 一区二区三区高清视频在线| 美女cb高潮喷水在线观看| 国产精品99久久久久久久久| 97在线视频观看| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 白带黄色成豆腐渣| 亚洲精品久久午夜乱码| kizo精华| 精品久久久久久久久av| 99热这里只有是精品50| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| 只有这里有精品99| 亚洲人成网站在线观看播放| 国产单亲对白刺激| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 欧美zozozo另类| 精品久久久精品久久久| 久久久久久久国产电影| 免费av观看视频| 人妻夜夜爽99麻豆av| 精品久久久久久久久av| 少妇熟女欧美另类| 一个人看视频在线观看www免费| 26uuu在线亚洲综合色| 嫩草影院入口| av黄色大香蕉| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区 | 免费观看a级毛片全部| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 国产精品.久久久| 亚洲精品色激情综合| 在线免费观看不下载黄p国产| 麻豆成人av视频| 久久这里只有精品中国| 欧美日韩国产mv在线观看视频 | 亚洲va在线va天堂va国产| 精品99又大又爽又粗少妇毛片| 国产有黄有色有爽视频| 九色成人免费人妻av| 一级毛片我不卡| 国产午夜精品一二区理论片| 日韩精品青青久久久久久| 69av精品久久久久久| 亚洲av不卡在线观看| 久久久久久久久久人人人人人人| 又大又黄又爽视频免费| 午夜免费激情av| 综合色丁香网| 99热全是精品| 亚洲色图av天堂| 91久久精品国产一区二区三区| 成人二区视频| 欧美xxⅹ黑人| 99九九线精品视频在线观看视频| 亚洲av电影不卡..在线观看| 在线a可以看的网站| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 尾随美女入室| 亚洲18禁久久av| 尤物成人国产欧美一区二区三区| 久久99热这里只有精品18| 超碰97精品在线观看| 国产精品综合久久久久久久免费| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜 | 欧美一级a爱片免费观看看| 99久久精品热视频| 熟妇人妻不卡中文字幕| 又大又黄又爽视频免费| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 免费看a级黄色片| 国产黄色视频一区二区在线观看| 天天躁夜夜躁狠狠久久av| 国产精品熟女久久久久浪| 欧美区成人在线视频| 男女视频在线观看网站免费| 黄色日韩在线| 国产精品久久久久久av不卡| 亚洲成色77777| 成人午夜高清在线视频| 久久鲁丝午夜福利片| 99九九线精品视频在线观看视频| 久久久久免费精品人妻一区二区| 舔av片在线| 小蜜桃在线观看免费完整版高清| 精品一区在线观看国产| 97超碰精品成人国产| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 99热这里只有是精品50| 国产成人精品婷婷| 国产欧美日韩精品一区二区| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 午夜激情久久久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 亚洲国产精品国产精品| 色综合亚洲欧美另类图片| 免费黄网站久久成人精品| 91av网一区二区| 亚洲一区高清亚洲精品| 国产精品无大码| 日韩一区二区三区影片| 街头女战士在线观看网站| 韩国av在线不卡| 日韩精品青青久久久久久| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 免费黄色在线免费观看| 亚洲精品,欧美精品| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 成年人午夜在线观看视频 | 欧美成人一区二区免费高清观看| av天堂中文字幕网| 国语对白做爰xxxⅹ性视频网站| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 日韩欧美精品免费久久| 国产熟女欧美一区二区| 在线 av 中文字幕| 精品人妻偷拍中文字幕| 三级国产精品片| 人人妻人人澡欧美一区二区| 久热久热在线精品观看| 久久国产乱子免费精品| 熟妇人妻不卡中文字幕| 草草在线视频免费看| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 乱码一卡2卡4卡精品| 一级毛片 在线播放| 观看免费一级毛片| 中文精品一卡2卡3卡4更新| 国产探花在线观看一区二区| 亚洲国产欧美人成| 国产伦理片在线播放av一区| 两个人视频免费观看高清| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 亚洲av日韩在线播放| 亚洲国产精品成人久久小说| av在线蜜桃| 乱系列少妇在线播放| 亚洲精品乱码久久久久久按摩| 久久精品夜色国产| 国产 一区精品| 特大巨黑吊av在线直播| 久久久成人免费电影| 最近最新中文字幕大全电影3| 国产欧美另类精品又又久久亚洲欧美| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 欧美日本视频| 日本免费a在线| 看免费成人av毛片| 亚洲国产精品成人综合色| 免费av不卡在线播放| 插阴视频在线观看视频| 亚洲欧美精品自产自拍| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 日本黄色片子视频| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| a级毛片免费高清观看在线播放| 成人午夜精彩视频在线观看| 在线免费观看的www视频| 久久精品久久精品一区二区三区| 一个人观看的视频www高清免费观看| 国产淫语在线视频| 亚洲av男天堂| 最近2019中文字幕mv第一页| 亚洲最大成人中文| or卡值多少钱| 国产色爽女视频免费观看| 精品一区二区免费观看| 国产麻豆成人av免费视频| h日本视频在线播放| 国产精品精品国产色婷婷| 精品一区二区三卡| 26uuu在线亚洲综合色| 蜜桃久久精品国产亚洲av| av免费在线看不卡| 美女被艹到高潮喷水动态| 中国国产av一级| 久久久久国产网址| 高清欧美精品videossex| 国产高潮美女av| 秋霞在线观看毛片| 国产精品无大码| 丝瓜视频免费看黄片| 亚洲自偷自拍三级| 中国美白少妇内射xxxbb| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 国产av不卡久久| 欧美日本视频| 六月丁香七月| 我的老师免费观看完整版| 久久人人爽人人片av| 国产 一区精品| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 久久久久久久久中文| 久久99热这里只频精品6学生| 网址你懂的国产日韩在线| 春色校园在线视频观看| 婷婷色麻豆天堂久久| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄| 午夜精品一区二区三区免费看| or卡值多少钱| 亚洲av二区三区四区| 亚洲精品日本国产第一区| 久久99精品国语久久久| 色尼玛亚洲综合影院| 天堂√8在线中文| 亚洲精品一二三| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 亚洲成人久久爱视频| 国产成人精品久久久久久| 最后的刺客免费高清国语| 22中文网久久字幕| 欧美3d第一页| 久久国产乱子免费精品| 99久国产av精品| 久久久久久久久大av| 久久久精品免费免费高清| 国产黄片视频在线免费观看| 精品国产露脸久久av麻豆 | 日韩在线高清观看一区二区三区| 免费大片18禁| 国产av码专区亚洲av| 在线 av 中文字幕| 亚洲国产精品sss在线观看| 天堂影院成人在线观看| 国产亚洲最大av| 三级经典国产精品| 男人爽女人下面视频在线观看| 欧美日韩在线观看h| 亚洲天堂国产精品一区在线| 高清av免费在线| 一个人看视频在线观看www免费| 一本久久精品| 亚洲av国产av综合av卡| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 欧美不卡视频在线免费观看| 在现免费观看毛片| 深夜a级毛片| 十八禁国产超污无遮挡网站| 成人漫画全彩无遮挡| 亚洲经典国产精华液单| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 久久这里有精品视频免费| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 国产精品伦人一区二区| 亚洲一级一片aⅴ在线观看| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 亚洲内射少妇av| www.av在线官网国产| 午夜精品在线福利| 国产真实伦视频高清在线观看| 真实男女啪啪啪动态图| 观看美女的网站| 国产午夜福利久久久久久| 啦啦啦啦在线视频资源| 黑人高潮一二区| 特级一级黄色大片| 男人和女人高潮做爰伦理| 深夜a级毛片| 亚洲在线自拍视频| 久久精品久久精品一区二区三区| 我的老师免费观看完整版| 国产v大片淫在线免费观看| xxx大片免费视频| 亚洲最大成人中文| av女优亚洲男人天堂| 26uuu在线亚洲综合色| av专区在线播放| av卡一久久| 亚洲精品自拍成人| 亚洲天堂国产精品一区在线| 偷拍熟女少妇极品色| 免费观看av网站的网址| 国产一级毛片在线| 高清av免费在线| 国产精品.久久久| 国产麻豆成人av免费视频| 九九久久精品国产亚洲av麻豆| 免费看不卡的av| 一本久久精品| 国产真实伦视频高清在线观看| 国产成人精品一,二区| 日本免费a在线| 我的老师免费观看完整版| 亚洲精品国产av蜜桃| 国国产精品蜜臀av免费| 欧美最新免费一区二区三区| 秋霞在线观看毛片| 丰满人妻一区二区三区视频av| 久久久久免费精品人妻一区二区| 毛片女人毛片| 国产不卡一卡二| 可以在线观看毛片的网站| 男女视频在线观看网站免费| 午夜福利在线在线| 亚洲人成网站高清观看| 欧美激情在线99| 亚洲精品亚洲一区二区| 亚洲天堂国产精品一区在线| 观看美女的网站| 国产高潮美女av| av线在线观看网站| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 欧美 日韩 精品 国产| 男女边吃奶边做爰视频| 精品不卡国产一区二区三区| 建设人人有责人人尽责人人享有的 | videos熟女内射| 一级毛片久久久久久久久女| 成人毛片60女人毛片免费| 亚洲美女搞黄在线观看| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在| 亚洲国产成人一精品久久久| 国产亚洲最大av| 免费观看在线日韩| 欧美 日韩 精品 国产| 久久久精品94久久精品| 国产老妇女一区| 干丝袜人妻中文字幕| 床上黄色一级片| 精品不卡国产一区二区三区| 嘟嘟电影网在线观看| 国产精品日韩av在线免费观看| 高清午夜精品一区二区三区| 18禁动态无遮挡网站| 淫秽高清视频在线观看| 天堂中文最新版在线下载 | 美女被艹到高潮喷水动态| 免费观看性生交大片5| 夜夜看夜夜爽夜夜摸| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 欧美3d第一页| 亚洲最大成人中文| 亚洲综合精品二区| 国产午夜精品一二区理论片| 午夜福利视频精品| 国产老妇女一区| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 亚洲av在线观看美女高潮| 麻豆国产97在线/欧美|