• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-static magnetic compression of fieldreversed configuration plasma: amended scalings and limits from two-dimensional MHD equilibrium

    2023-03-06 01:48:42AbbaAlhajiBALAPingZHU朱平HaolongLI李浩龍YonghuaDING丁永華JiaxingLIU劉家興SuiWAN萬(wàn)遂YingHE何瑩DaLI李達(dá)NengchaoWANG王能超BoRAO饒波andZhijiangWANG王之江
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:之江李達(dá)永華

    Abba Alhaji BALA,Ping ZHU (朱平),Haolong LI (李浩龍),Yonghua DING (丁永華),Jiaxing LIU (劉家興),Sui WAN (萬(wàn)遂),Ying HE (何瑩),Da LI (李達(dá)),Nengchao WANG (王能超),Bo RAO (饒波) and Zhijiang WANG (王之江)

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics,State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    2 School of Physics,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Department of Physics,Federal University Dutse,Jigawa 720101,Nigeria

    4 Department of Engineering Physics,University of Wisconsin-Madison,Madison,Wisconsin WI-53706,United States of America

    5 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration (FRC) plasma (Spencer et al 1983 Phys.Fluids 26 1564) are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad-Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices.

    Keywords: magneto-hydrodynamic equilibrium,Grad-Shafranov equation,field reversed configuration,NIMEQ,magnetic compression

    1.Introduction

    Field-reversed configuration (FRC) is an elongated compact torus plasma sustained solely by a poloidal magnetic field[1].Because the FRC has no or little toroidal magnetic field,it has a very high plasma beta (〈β〉 averaged over the separatrix volume lies in the range of 0.5-1).The magnetic field of FRC is composed of open magnetic field lines,separatrix,and closed magnetic field lines,while the plasma almost entirely exists inside the separatrix with an attractive feature of having no material objects linking the torus.The two FRC regions are referred to as ‘open’ and ‘closed’ respectively [2].

    FRC has been one of the preferred candidate configurations for fusion devices such as compact nuclear fusion reactors and neutron sources,which has received increasing attentions from various countries.Both experimental and theoretical studies have been performed to explore the potentials and challenges associated with such an attractive path towards fusion [3-6].The C-2 experiment in TAE Technology has been able to obtain and maintain an FRC withnreaching3 × 1019m-3,TeandTiaround 1 keV respectively,the energy confinement timeEτabout 1 ms,and theβaround 90 percent [7].The Los Alamos National Laboratory (LANL) and the ALPHA project in the United States successfully increased the temperature and density of an FRC plasma by 1 order of magnitude using staged magnetic compression [6].Japan,Canada,Russia and other countries also have related experimental devices as well [8].In China,the Huazhong field reversed configuration has been designed to explore a novel concept of‘two-staged’magnetic compression of FRC as a path to achieve a compact and economic neutron source and potential fusion reactor [9].

    Magnetic compression of FRC is one of the promising paths to fusion that has been pursued over years.For instance,the Princeton ATC device [10]has increased the plasma density by 5 times with adiabatic compression.The FRX-C/LSM device of LANL also adopted the adiabatic compression method for FRC,and the plasma temperature and density are increased by 10 times and 5 times respectively [11].

    A one-dimensional (1D) model for the adiabatic compression of FRC [12,13]was established.In this theory,the quasi-static approximation is used such that compression process is considered as a series of MHD equilibria with sequentially varying compression ratio.Although the magnetic compression of FRC plasma is a highly nonlinear 3D dynamic process,the quasi-static approximation allows us to establish the scaling laws and to evaluate the upper stable limits achievable for the compression ratio,fusion gain and neutron yields from such an approach.

    However,1D approximations are often made in order to obtain the analytical scaling laws for compression,where the two-dimensional (2D) MHD equilibrium conditions or constraints on the FRC parameters are often not well satisfied.The FRC equilibrium is essentially two-dimensional,and previous theory models for FRC magnetic compression often fail to take into account the 2D spatial and geometric features of FRC equilibrium.More importantly,previous FRC magnetic compression theories have not considered the constraints imposed on the accessible parameter space due to the macroscopic instabilities of FRC plasmas.Therefore,subject to the constraints from the strict FRC 2D equilibrium and the stability criterion,whether the FRC plasma parameters can achieve the fusion ignition conditions through the approach of magnetic compression remains one of the primary problems to address in the design of FRC neutron source and fusion reactor today.

    In order to explore this major issue,in this work,we use a series of 2D FRC MHD equilibria from numerically solutions of the Grad-Shafranov (G-S) equation to obtain the amended scaling laws for the key parameters of the FRC plasma during quasi-static magnetic compression including 2D spatial geometric effects,and together with empirical criterion for FRC kinetic MHD stability,to evaluate the fusion ignition conditions and the upper limit of neutron yield that can be achieved through the stable FRC magnetic compression process in the resistive MHD model.

    Figure 1.(a)The numerical error En ofψ as a function of the element polynomial degree for 2 × 2 element mesh () and 8 × 8element mesh () in FRC equilibrium.(b) The numerical error En ofψ as a function of the number of elements for the 2nd order elements ()and the 4th order elements().The black lines stand for the scaling fitted from the decaying numerical errors,where N denotes thenumber of elements.

    The rest of this work is organized as follows.In section 2,the numerical FRC equilibrium solution is determined and checked for convergence.In section 3,the 2D MHD equilibriums during a quasi-static FRC compression process are solved and the numerical solutions are used to obtain the amended scalings for compression.In section 4,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated.Finally,summary and discussion are given in section 5.

    2.The FRC equilibrium

    Figure 2.Contours of equilibrium magnetic flux functions ψ (R ,Z)with initial elongation κ 0= 1and maximum pressure μ 0 Pm i=0.0018,for various radial compression ratios .σ The black dash line denotes the separatrix.The units of R and Z are m.

    In this work,we solve for the 2D MHD equilibrium of FRC that are consistent with the analytical scaling law for the maximum pressure in radial profile during the magnetic compression based on a 1D approximation.The 2D MHD equilibrium of FRC can be obtained from solving the G-S equation.Besides the limited analytical G-S solutions of FRC equilibria[14-17],numerical methods have been applied to solving the G-S equation using 2D spectral element [18],method of fundamental solutions,finite difference method,boundary element method,conformal mapping and Green’s function.Correspondingly,numerical toroidal equilibrium codes have been developed,such as EFIT,CHEASE,ESC,and NIMEQ[15].In this study,we use the G-S equilibrium solver NIMEQ which is based on the spectral element expansions in two dimensions.The NIMEQ solutions for the 2D FRC equilibriums with different compression ratios are then used to obtain the compression scaling laws,which are compared with the Spencer theory based on 1D approximation.

    From the force balance equation,the magnetic divergence constraint,and Ampere’s law,we obtain the G-S equation for the MHD equilibria of an axisymmetric toroidal system.The FRC is characterized by a zero toroidal field,thus the G-S equation for the FRC equilibrium takes the form as

    wheretψis the flux inside the separatrix,P0andP2are constants,equation (1) is reduced to the following linear equation forψ

    Figure 3.Contours of equilibrium magnetic flux functions ψ (R ,Z)with initial elongation κ 0= 5and maximum pressure μ 0 Pm i=0.0018,for various radial compression ratios σ .The black dash line denotes the separatrix.The units of R and Z are m.

    We look for solutions in the cylindrical coordinatesRandZthat are symmetric with respect to the middle planeZ= 0.With boundary conditionsψ(R,Z)= 0atR=aandZ= ±b,whereh= 2b,andaandhare the radius and the length of the cylinder containing the FRC plasma respectively,we obtain

    For a more general pressure profileP(ψ) ,we numerically solve the G-S equation (1) using the NIMEQ code,which is a G-S equilibrium solver developed within the framework of NIMROD for the more realistic geometry [18].The finite element method is used to solve the G-S equation and the Picard scheme is used to advance the iteration.To demonstrate the numerical accuracy and convergence of the NIMEQ code,the numerical and analytical solutions of equation (1) are compared for the special case of pressure profile in equation(2)in terms of the numerical error defined by

    whereψNis the numerical solution from NIMEQ andψAis the analytic solution from equation (4),and the summation is performed over all of the finite-element nodes.

    Two methods are applied to examine the convergence of the NIMEQ solution,namely,the h-refinement and p-refinement.In the p-refinement method,the polynomial degree is increased as the number of elements is kept constant.In contrast,in the h-refinement method,the polynomial degree is fixed while the number of elements is varied.Both methods of comparisons show numerical convergence of the NIMEQ solutions (figure 1).

    3.FRC equilibrium during quasi-static magnetic compression

    The pressure profile inside the separatrix of an FRC plasma during compression can be modelled as

    For any specific radial compression ratio,the 2D FRC equilibrium equation(8)is numerically solved using NIMEQ.The external coils are applied to ensure that the NIMEQ radial compression ratioRs/RwatZ= 0matches that of the pressure profile (figures 2 and 3).For both small and large initial elongations,the last closed flux surface as well as the separatrix of FRC shrinks quickly along the axial direction(i.e.Z-direction) as the FRC is compressed radially to each value ofσ.The FRC lengthlscan be measured from the intersection between the separatrix and theZ-axis atR=0,the elongationκ=ls/2Rs,and the magnetic field at the wallBware compared between the measured values from the 2D MHD equilibrium solutions and the following Spencer scaling law (equations (9)-(11)) for various radial compression ratios (figure 4)

    whereRs0=Rw,and the magnetic field magnitudeBwat wall is measured from the equilibrium solution at(Rw,0) .

    Figure 4.(a) Elongation κ ,(b) wall magnetic field B w ,and (c) FRC separatrix length ls as functions of the radial compression ratioσ from 1D scaling law and 2D MHD equilibrium with various initial elongations.Here the initial separatrix length l s0 = 2.5 m,3.75 m,5.0 m,6.25 m,and 12.5 m for various initial elongations κ0 respectively,and the initial magnetic field strength at wall B0 = 0.06 T which is same in all other figures.

    Figure 5.The μ (? )profiles evaluated from 2D MHD equilibrium with various initial elongations for μ 0 Pm i=0.0018.

    Where as the comparisons show overall quantitative agreement,the degree of quantitative agreement depends on the FRC equilibrium elongation,which is defined as the ratio of the FRC lengthlsover radiusRsat separatrix for the initial elongationκ0= 1.5,the agreement on thelsandκscalings are the best for the smaller initial elongation,the FRC shape measured from 2D equilibrium shrinks slower than the 1D Spencer scaling law.As the initial elongation increases,the shrinking of FRC during compression becomes faster from 2D equilibrium calculations than 1D Spencer scaling law,as indicated in figures 4(a) and (c).This finding may appear surprising,since the Spencer scaling law is expected to apply best when FRC is highly elongated and hence the 1D approximation is more valid.However,the 2D equilibrium calculations show that,even for the FRC with large initial elongation (e.g.κ0≥5),once the magnetic compression process begins,the FRC elongation itself quickly drops out of the regime where the 1D approximation is valid.

    For the entropy per unit flux

    its 1D approximation for the elongated FRC is based on[12]

    where l(ψ) is the half circumference of the flux surface labelled withψin the poloidal plane,and may be approximated aslsin the 1D model for the elongated FRC.Comparisons of the μ(ψ) profiles calculated from the 2D MHD equilibrium using equation (12) with various initial elongations and radial compression ratios(figure 5)suggest that the adiabatic condition underlying the Spencer scaling law is less satisfied in the quasi-static magnetic compression process modelled by the series of 2D MHD equilibriums.This may also contribute to the differences between compression scalings measured from the 2D equilibrium and calculated from the 1D Spencer scaling laws.

    4.Stable limits of FRC compression

    4.1.FRC stability criterion

    Based on experimental data,an empirical stability criterion of FRC can be written as [19-21]

    Using the analytical scaling law for the adiabatic compression of an elongated FRC [12]

    Figure 6. The S /κ stability criterion calculated from (a) 1D scaling laws and (b) 2D MHD equilibrium for different radial compression ratiosσ and magnetic field strengths at the wall B w,with various initial elongations, n i0 =3.0 × 101 9 m -3 ,γ =5/ 3,and ? = -1/ 4.

    wherels0andni0are the scale length of the separatrix and number density for the initial equilibrium,respectively,we obtain an estimate of the ratio /S κfor a given radial compression ratioσas

    The FRC compression results in a reduction in the separatrix radiusRs,but also an even more rapid reduction in the separatrix elongationκ.As a consequence,the more the FRC is compressed,the faster it reaches the stability boundaryS/κ< 3.5and goes unstable,as indicated in fgiure 6.Moreover,the figure further indicates that when the initial elongation increases,the stability window of the compression process becomes broader.The stability boundary crossing range ofσreduces from ~[0.63,0.88]in the 1D model to ~[0.65,0.77]in the 2D results.The fact that the stability boundary crossing values ofσmostly differs for the small initial elongation cases,suggests the dominant stability contribution from the 2D geometrical effects to the FRC compression.

    4.2.Stable ignition regime

    The stability criterion /S3.5κ> sets another boundary for the ignition parameter regime through the magnetic compression of an FRC plasma.One such example is demonstrated in figure 7,where the Lawson criterions [22,23]

    Figure 7.Contours of the fusion triple products nT Eτ as functions of the initial maximum temperature Tmi and the radial compression ratioσ or equivalently the compression magnetic field strength at wall Bw from 1D scaling laws for(a)D-D reaction,(b)D-T reaction,and from 2D MHD equilibrium for (c) D-D reaction,(d) D-T reaction with ls 0 = 2.5 m,n i0 = 3.0 × 101 9 m- 3,and Rw = 0.25 m.The black dash line denotes the /S κ stability criterion boundary and the black solid curve the lowest ignition contour line.The stable ignition regimes are shown as the red line-shaded upper triangular areas.

    4.3.Limits of D-T and D-D neutron yield rates

    We further estimate the upper limits on the neutron yield rates from D-T and D-D fusion reactions through FRC compression imposed by the empirical stability criterion.The neutron yield rate used herein is estimated using [25]

    whereniis the ion number density,σν〈 〉is the reaction rate in cm s .3 1- For D-D reactions,the reaction rate is

    whereTiis in keV.For D-T reactions,

    Using the scalings forniandlsamended by the MHD equilibrium,we compare the neutron yield rates for different compression ratios and magnetic field strengths at the wall in the MHD stable regimes between D-D and D-T reactions(figure 8).The neutron irradiation power can be calculated

    Figure 8. Contours of the neutron yield rates as functions of the initial maximum temperature Tmi and the radial compression ratioσ or equivalently the compression magnetic field strength at wall Bw from 1D scaling laws for (a) D-D reaction,(b) D-T reaction,and from 2D MHD equilibrium for (c) D-D reaction,(d) D-T reaction with ls 0 = 2.5 m,n i0 = 3.0 × 101 9 m- 3,and Rw = 0.25 m.The black dash line denotes the /S κ stability criterion boundary.

    5.Summary and discussion

    In summary,the scaling laws for the adiabatic compression of FRC based on 1D analytical theory have been amended using results from 2D MHD equilibrium calculations.In particular,the FRC elongation has been self-consistently determined from the G-S equation solution for any given radial compression ratio.The amended scaling for FRC elongation during magnetic compression is applied to the estimate of the upper limits for the radial compression ratio along with the empirical stability criterion for FRC.The stability regimes for fusion ignition and neutron yield rates from the approach of FRC compression are also evaluated.Under the combined constraints from FRC 2D MHD equilibrium force balance and empirical kinetic MHD stability conditions,along with the assumption that the magnetic confinement time is governed by the resistive magnetic diffusion,it is found that the FRC plasma can access the fusion ignition parameter regime through a stable quasi-static magnetic compression process,which demonstrates the physical feasibility of quasi-static magnetic compression of FRC plasma as a potential path to achieving fusion ignition conditions.These calculations may help the design of future fusion experiments and devices based on the magnetic compression of FRC plasma.

    The 2D MHD equilibrium calculation for FRC during compression in this work adopts the scaling law for the maximum pressure previously derived from 1D analytical theory.We plan to develop a more self-consistent scaling law for the maximum pressure of FRC plasma during the magnetic compression entirely from the 2D MHD equilibrium and geometry of FRC in future study.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Program of China (No.2017YFE0301805),National Natural Science Foundation of China (No.51821005),the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193),and the U.S.Department of Energy (Nos.DE-FG02-86ER53218 and DE-SC0018001).The authors are grateful for the supports from the NIMROD team.The author Abba Alhaji Bala acknowledges the support from the Chinese Government Scholarship.

    ORCID iDs

    猜你喜歡
    之江李達(dá)永華
    川之江造機(jī)株式會(huì)社
    在武漢大學(xué)拜謁李達(dá)塑像
    李達(dá)與黨的基礎(chǔ)理論建設(shè)
    How To Get Along With Your Friends Better
    李達(dá):為武大建設(shè)殫精竭慮
    李達(dá)與毛澤東哲學(xué)思想的體系化闡釋
    Club Recruitment
    脾踩踏板有利于學(xué)習(xí)
    聚集十九大:之江大地寫(xiě)鴻篇
    《之江新語(yǔ)》讀后感悟
    欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 18禁动态无遮挡网站| 精品久久久久久电影网| 久久久色成人| 欧美3d第一页| 中国美白少妇内射xxxbb| 免费久久久久久久精品成人欧美视频 | 少妇裸体淫交视频免费看高清| 国产精品一区二区在线观看99| 天天躁日日操中文字幕| 少妇丰满av| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| av一本久久久久| 亚洲国产成人一精品久久久| 欧美日韩精品成人综合77777| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 精品久久久久久电影网| 精品一区二区三区视频在线| 一区二区av电影网| 观看免费一级毛片| 色哟哟·www| 国产一区二区三区av在线| 亚洲精品一区蜜桃| 国产精品国产三级国产av玫瑰| 国产伦在线观看视频一区| 亚洲不卡免费看| 这个男人来自地球电影免费观看 | 夜夜骑夜夜射夜夜干| 亚洲av男天堂| 国产伦理片在线播放av一区| 国产亚洲一区二区精品| 七月丁香在线播放| 亚洲国产精品国产精品| 国产国拍精品亚洲av在线观看| 午夜日本视频在线| 一级爰片在线观看| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 国语对白做爰xxxⅹ性视频网站| 国产乱人视频| tube8黄色片| 校园人妻丝袜中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 久久久久人妻精品一区果冻| 婷婷色综合www| 久久久久久久久大av| 国产爱豆传媒在线观看| a级毛色黄片| 国产成人91sexporn| 午夜免费男女啪啪视频观看| 人妻系列 视频| 美女福利国产在线 | 制服丝袜香蕉在线| 最近的中文字幕免费完整| 中文天堂在线官网| 国产色爽女视频免费观看| 国产亚洲91精品色在线| 免费看不卡的av| 国产av一区二区精品久久 | 午夜日本视频在线| 成人一区二区视频在线观看| av国产久精品久网站免费入址| 哪个播放器可以免费观看大片| 黄色一级大片看看| 亚洲精品456在线播放app| 天天躁日日操中文字幕| 日韩精品有码人妻一区| 日本黄大片高清| 亚洲av成人精品一区久久| 51国产日韩欧美| 国产av国产精品国产| 日韩精品有码人妻一区| 最近的中文字幕免费完整| 精品久久久久久久久亚洲| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 亚洲精品乱码久久久v下载方式| 国精品久久久久久国模美| 身体一侧抽搐| 新久久久久国产一级毛片| 欧美另类一区| 高清毛片免费看| 寂寞人妻少妇视频99o| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 成人美女网站在线观看视频| 美女cb高潮喷水在线观看| av在线观看视频网站免费| 久久人人爽人人片av| 亚洲欧美日韩东京热| 狂野欧美激情性xxxx在线观看| 亚洲精品久久午夜乱码| av网站免费在线观看视频| 国产深夜福利视频在线观看| 少妇的逼好多水| 联通29元200g的流量卡| 插阴视频在线观看视频| 各种免费的搞黄视频| 久久久久久久久久人人人人人人| 中文乱码字字幕精品一区二区三区| 天美传媒精品一区二区| 亚州av有码| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 亚洲精品一区蜜桃| 日本欧美视频一区| 极品教师在线视频| 精品一区二区三区视频在线| 久久97久久精品| 我要看日韩黄色一级片| 黄片wwwwww| www.色视频.com| 日韩av免费高清视频| 日韩强制内射视频| 国产精品免费大片| 免费久久久久久久精品成人欧美视频 | 最近的中文字幕免费完整| 日日摸夜夜添夜夜爱| 久久久久精品久久久久真实原创| 久久av网站| av黄色大香蕉| 国产亚洲精品久久久com| 18禁在线播放成人免费| 亚洲av男天堂| 黄色欧美视频在线观看| 女性被躁到高潮视频| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 夫妻性生交免费视频一级片| 80岁老熟妇乱子伦牲交| 蜜桃久久精品国产亚洲av| 亚洲精品久久午夜乱码| 亚洲内射少妇av| 国产成人91sexporn| 亚洲中文av在线| 极品教师在线视频| 久久韩国三级中文字幕| 日日撸夜夜添| 久久人妻熟女aⅴ| 国产淫语在线视频| 国产精品国产三级国产专区5o| 亚洲精品久久午夜乱码| 亚洲欧美成人综合另类久久久| 亚洲成人av在线免费| 夜夜爽夜夜爽视频| 国产淫片久久久久久久久| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 亚洲国产毛片av蜜桃av| 免费黄色在线免费观看| 久久久久视频综合| 在线精品无人区一区二区三 | 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 亚洲精品国产av成人精品| 国产男女内射视频| 日韩中文字幕视频在线看片 | 欧美少妇被猛烈插入视频| 日日啪夜夜撸| 日本免费在线观看一区| .国产精品久久| 亚洲精品一二三| 国产精品久久久久成人av| av免费在线看不卡| 不卡视频在线观看欧美| 精品亚洲成a人片在线观看 | 成年人午夜在线观看视频| 色哟哟·www| 身体一侧抽搐| 国产成人freesex在线| 在线观看一区二区三区激情| 亚洲图色成人| 建设人人有责人人尽责人人享有的 | 青青草视频在线视频观看| 成人国产麻豆网| 人妻夜夜爽99麻豆av| 国产日韩欧美亚洲二区| av又黄又爽大尺度在线免费看| 在线天堂最新版资源| 男女边吃奶边做爰视频| 亚洲成色77777| 99久久人妻综合| 在线观看美女被高潮喷水网站| kizo精华| 极品少妇高潮喷水抽搐| 亚洲av综合色区一区| 一本久久精品| 国产视频首页在线观看| 国产 一区精品| 大香蕉久久网| 国产精品久久久久久久久免| av一本久久久久| 中文天堂在线官网| 亚洲经典国产精华液单| 亚洲人成网站在线观看播放| 国产一级毛片在线| 乱系列少妇在线播放| 在线观看美女被高潮喷水网站| 久久午夜福利片| 一级a做视频免费观看| 国产视频首页在线观看| 久久青草综合色| 97热精品久久久久久| 五月天丁香电影| 51国产日韩欧美| 丝瓜视频免费看黄片| 涩涩av久久男人的天堂| 高清视频免费观看一区二区| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| av福利片在线观看| 身体一侧抽搐| 国产极品天堂在线| 又大又黄又爽视频免费| 男女国产视频网站| 夜夜骑夜夜射夜夜干| 成人二区视频| 国产爽快片一区二区三区| 国产欧美日韩精品一区二区| 国产在线免费精品| 只有这里有精品99| 麻豆国产97在线/欧美| 天堂8中文在线网| 亚洲精品国产成人久久av| 亚洲国产精品一区三区| 一区二区三区免费毛片| 黄色视频在线播放观看不卡| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放| 国产精品久久久久久久电影| 国产高潮美女av| freevideosex欧美| 日日撸夜夜添| 一级毛片电影观看| 国产一区二区在线观看日韩| 日韩三级伦理在线观看| 嫩草影院入口| 女的被弄到高潮叫床怎么办| av专区在线播放| 精品酒店卫生间| 国产精品一区二区三区四区免费观看| 亚洲一区二区三区欧美精品| av国产免费在线观看| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久av不卡| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 日韩成人伦理影院| kizo精华| 黑丝袜美女国产一区| 国产乱人视频| 黑人高潮一二区| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 国产黄色视频一区二区在线观看| 亚洲不卡免费看| 国产又色又爽无遮挡免| 老司机影院毛片| 2022亚洲国产成人精品| 久久久久视频综合| 欧美zozozo另类| 欧美xxxx性猛交bbbb| av黄色大香蕉| 国产伦理片在线播放av一区| 夜夜看夜夜爽夜夜摸| 日本wwww免费看| 97在线视频观看| 青青草视频在线视频观看| 久久国内精品自在自线图片| 建设人人有责人人尽责人人享有的 | 亚洲电影在线观看av| 亚洲精品久久久久久婷婷小说| 日韩中字成人| 一边亲一边摸免费视频| 在线观看免费高清a一片| 性色av一级| av在线老鸭窝| 亚洲最大成人中文| 午夜日本视频在线| 国产亚洲最大av| 狂野欧美激情性bbbbbb| 在线免费十八禁| 国产一级毛片在线| 久久久a久久爽久久v久久| 少妇高潮的动态图| 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 建设人人有责人人尽责人人享有的 | 亚洲欧美清纯卡通| 青春草国产在线视频| 97超碰精品成人国产| 午夜日本视频在线| 欧美另类一区| 高清欧美精品videossex| 最近2019中文字幕mv第一页| 亚洲精品中文字幕在线视频 | 国语对白做爰xxxⅹ性视频网站| 午夜精品国产一区二区电影| 国产精品不卡视频一区二区| 2022亚洲国产成人精品| 国产亚洲91精品色在线| 偷拍熟女少妇极品色| 在线免费十八禁| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 十分钟在线观看高清视频www | 久久久久视频综合| 亚洲精品国产成人久久av| 免费黄色在线免费观看| 亚洲人成网站在线观看播放| 国产高清不卡午夜福利| 亚洲天堂av无毛| 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 乱码一卡2卡4卡精品| 久久鲁丝午夜福利片| 国产精品无大码| 色网站视频免费| 日日啪夜夜撸| 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 国产一区有黄有色的免费视频| 蜜桃在线观看..| 久久久久久九九精品二区国产| 黑人高潮一二区| 性色avwww在线观看| 国产高清三级在线| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 精品一品国产午夜福利视频| 国产精品一区二区性色av| 黑人高潮一二区| 国产亚洲精品久久久com| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花 | 亚洲色图av天堂| 亚洲一级一片aⅴ在线观看| 六月丁香七月| 亚洲国产精品成人久久小说| av线在线观看网站| av黄色大香蕉| 18+在线观看网站| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版| 亚洲精品乱久久久久久| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 伊人久久精品亚洲午夜| 一区二区三区精品91| 日韩强制内射视频| 少妇人妻精品综合一区二区| 成人午夜精彩视频在线观看| 全区人妻精品视频| 国产极品天堂在线| 伦理电影免费视频| 水蜜桃什么品种好| 联通29元200g的流量卡| 欧美精品人与动牲交sv欧美| 亚洲自偷自拍三级| 一区二区三区免费毛片| 久久精品国产鲁丝片午夜精品| 黄色日韩在线| 亚洲av.av天堂| 国产免费一区二区三区四区乱码| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 精华霜和精华液先用哪个| 日本av手机在线免费观看| 久久久久久久久久久丰满| 亚洲av二区三区四区| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产色片| 国产高清三级在线| 人体艺术视频欧美日本| 日韩三级伦理在线观看| 久久精品国产亚洲网站| 精品酒店卫生间| 国产亚洲91精品色在线| 人妻系列 视频| 国产又色又爽无遮挡免| 亚洲在久久综合| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 亚洲精品一二三| 亚洲欧洲国产日韩| 国产片特级美女逼逼视频| 欧美高清成人免费视频www| 精品人妻视频免费看| 18禁在线播放成人免费| 亚洲av不卡在线观看| 色综合色国产| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 欧美+日韩+精品| 亚洲av男天堂| 亚洲精品第二区| 国产黄片美女视频| 亚洲怡红院男人天堂| 一级毛片我不卡| 97超碰精品成人国产| 少妇丰满av| 在线 av 中文字幕| 欧美老熟妇乱子伦牲交| 少妇人妻 视频| 精品一区二区三区视频在线| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品第二区| 亚洲欧美日韩东京热| 日韩不卡一区二区三区视频在线| 我要看黄色一级片免费的| 久久婷婷青草| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 简卡轻食公司| 国产毛片在线视频| 最新中文字幕久久久久| 99久久精品国产国产毛片| 免费人成在线观看视频色| 欧美日韩在线观看h| 美女福利国产在线 | 欧美激情极品国产一区二区三区 | 各种免费的搞黄视频| 国产精品一二三区在线看| 欧美区成人在线视频| 久久综合国产亚洲精品| 国产成人a区在线观看| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 国产在线一区二区三区精| 全区人妻精品视频| 欧美少妇被猛烈插入视频| 久热久热在线精品观看| 一个人看的www免费观看视频| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 成人免费观看视频高清| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 欧美日韩国产mv在线观看视频 | 日本av免费视频播放| 亚洲成人手机| 黄色欧美视频在线观看| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 国产欧美日韩精品一区二区| 日本色播在线视频| 欧美日韩国产mv在线观看视频 | 亚洲一级一片aⅴ在线观看| 亚洲精品第二区| 欧美三级亚洲精品| 深爱激情五月婷婷| 久久婷婷青草| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 国产有黄有色有爽视频| 午夜免费鲁丝| 联通29元200g的流量卡| 中文欧美无线码| 午夜老司机福利剧场| 在线亚洲精品国产二区图片欧美 | 毛片女人毛片| 小蜜桃在线观看免费完整版高清| 中国三级夫妇交换| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站| 大片电影免费在线观看免费| av国产免费在线观看| 国产一区亚洲一区在线观看| 妹子高潮喷水视频| 亚洲第一区二区三区不卡| 视频中文字幕在线观看| 中文在线观看免费www的网站| 亚洲国产精品999| 一边亲一边摸免费视频| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 国产 精品1| 国产成人精品一,二区| 午夜福利网站1000一区二区三区| 这个男人来自地球电影免费观看 | 免费大片18禁| 三级国产精品片| 1000部很黄的大片| 美女内射精品一级片tv| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 身体一侧抽搐| 欧美成人a在线观看| 亚洲国产精品999| 亚洲内射少妇av| 精品亚洲成国产av| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 美女主播在线视频| 高清欧美精品videossex| 三级经典国产精品| 免费观看性生交大片5| 国产毛片在线视频| 亚洲国产av新网站| 欧美3d第一页| 久久久久久久久久人人人人人人| 美女xxoo啪啪120秒动态图| 久久国产精品男人的天堂亚洲 | 国产亚洲5aaaaa淫片| 老司机影院成人| .国产精品久久| 日本av手机在线免费观看| 少妇的逼水好多| 国产黄频视频在线观看| 在线免费十八禁| 大话2 男鬼变身卡| 亚洲va在线va天堂va国产| 欧美激情极品国产一区二区三区 | 一个人看视频在线观看www免费| 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| av女优亚洲男人天堂| 插逼视频在线观看| 大片免费播放器 马上看| 十八禁网站网址无遮挡 | 日韩不卡一区二区三区视频在线| 色视频www国产| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 中文天堂在线官网| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 丰满迷人的少妇在线观看| 成年女人在线观看亚洲视频| 五月伊人婷婷丁香| 久久久久性生活片| 精品人妻偷拍中文字幕| 国产精品99久久99久久久不卡 | 日本wwww免费看| 久久久久久久国产电影| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 国产av码专区亚洲av| 嫩草影院入口| 亚洲经典国产精华液单| 欧美zozozo另类| 岛国毛片在线播放| 大码成人一级视频| 亚洲av在线观看美女高潮| 色婷婷av一区二区三区视频| 极品少妇高潮喷水抽搐| 美女国产视频在线观看| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 老师上课跳d突然被开到最大视频| 精品久久久久久电影网| 老师上课跳d突然被开到最大视频| 精品久久久久久电影网| 国产乱人偷精品视频| 99久久精品热视频| 成年av动漫网址| 精品久久久久久电影网| 又爽又黄a免费视频| 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 99久久精品热视频| videos熟女内射| 97超视频在线观看视频| 亚洲人成网站高清观看| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 日韩强制内射视频| 欧美人与善性xxx| 国产高清有码在线观看视频| 亚洲国产日韩一区二区| 一区二区三区四区激情视频| h日本视频在线播放| 国产免费一区二区三区四区乱码| 人人妻人人澡人人爽人人夜夜| av卡一久久| 插逼视频在线观看| 中文字幕精品免费在线观看视频 | 尾随美女入室| 激情 狠狠 欧美| 久久久久久久久久成人| 啦啦啦中文免费视频观看日本| 少妇高潮的动态图| 欧美成人a在线观看| 成人亚洲欧美一区二区av| 亚洲va在线va天堂va国产| 成年美女黄网站色视频大全免费 | 男女免费视频国产| 精品人妻熟女av久视频| 午夜福利网站1000一区二区三区| 欧美精品亚洲一区二区| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 日本av免费视频播放|