• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BITS: an efficient transport solver based on a collocation method with B-spline basis

    2023-03-06 01:48:34XiaotaoXIAO肖小濤ShaojieWANG王少杰LeiYE葉磊ZongliangDAI戴宗良ChengkangPAN潘成康andQilongREN任啟龍
    Plasma Science and Technology 2023年2期

    Xiaotao XIAO (肖小濤),Shaojie WANG (王少杰),Lei YE (葉磊),Zongliang DAI (戴宗良),Chengkang PAN (潘成康) and Qilong REN (任啟龍)

    1 Institute of Plasma Physics,Chinese Academy of Science,Hefei 230031,People's Republic of China

    2 Department of Modern Physics,University of Science and Technology of China,Hefei 230026,People's Republic of China

    Abstract A B-spline Interpolation Transport Solver (BITS) based on a collocation method is developed.It solves transport equations as a generalized interpolation problem,taking the first-order accuracy in time and the second-order accuracy in space along with a predictor-corrector or under-relaxation iteration method.Numerical tests show that BITS can solve one-dimensional transport equations for tokamak plasma more accurately without additional computation cost,compared to the finite difference method transport solver which is widely used in existing tokamak transport codes.

    Keywords: plasma simulation,transport equation,collocation,B-spline,tokamak

    1.Introduction

    The complexity of transport process in tokamak plasma is generally acknowledged due to various kinds of sources and sinks,instabilities,plasma-surface interactions and so on [1-3].Numerical simulation is an essential tool to understand the transport physics of tokamak plasma.Since the magnetic field in a tokamak has a nested structure,the magnetohydrodynamic equation of particle balance,electron and ion energy conservation,Faraday’s law,toroidal momentum can be simplified to a set of one-dimensional (1-D) flux surface averaged transport equations [4,5].A lot of transport codes have been developed by solving these transport equations since around the 1980s,such as ONETWO [6],TRANSP [7,8],ASTRA [9],and ETS[10].These codes are widely used to interpret experiments at modern tokamaks,such as EAST[11]and HL-2A[12],and help to predict transport of future tokamak devices,such as CFETR[13].In order to simulate all phases of a tokamak scenario,the transport codes are integrated with other tokamak-physics codes.A lot of integrated suites of codes have been developed,such as CRONOS [14],JINTRAC [15],OMFIT [16],IMAS [17]and TRIASSIC [18].

    Due to the huge computational resources required by these simulations,it is meaningful to develop an efficient transport solver.Although transport solvers of these codes are firstly and usually developed based on the finite difference method(FDM),different numerical methods continue to be developed to make the transport solver more efficient.For example,the finite element method using a Hermite basis function is applied to solve the current diffusion equation in tokamaks [19].The finite volume method is used in a two-dimensional (2-D) transport solver as it guarantees conservation of the fluxes in both parallel and perpendicular directions [20].Since widely used theorybased transport models such as GLF23[21],MMM95[22]and TGLF [23]have a strong nonlinear dependency on the temperature and density gradients,it is very important to obtain the gradients of physics variables accurately and smoothly.A highorder interpolated differential operation scheme[24]is employed to solve not only the physics variable but also its gradient.It provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.However,this scheme is still under the framework of FDM; the result is improved at the cost of much more computation cost (the gradient of the variable is taken as additional independent variable and a higher-order accuracy formula is used).In this work,a B-spline Interpolation Transport Solver (BITS) is developed to solve the transport equations of tokamak plasma.The computation costs of solving differential equations by FDM and a collocation method are at the same level,while smoother results can be obtained by the collocation method.This helps to reduce the error of numerical results greatly.

    In section 2 the transport equations,numerical scheme of the collocation method and FDM,and iteration method are introduced.The results of a few different cases using FDM and the B-spline collocation method are compared in section 3.A conclusion is given in the final section.

    2.Description of scheme

    The 1-D energy diffusion equation for magnetically confined toroidal plasma in an axisymmetric tokamak can be simplified in cylindrical coordinates as

    Here,nis the particle density,Tis the temperature of the electron or ion species,ρ is the normalized minor radius proportional to the square root of the toroidal flux,χ is the effective thermal diffusivity,andSis the source term that includes ohmic heating,ionization,radiation loss,electronion heat exchange,and external auxiliary heating such as neutral beam injection and radiofrequency heating.For a given sourceS(ρ,t),boundary conditionT′ ∣ρ=0=0,T∣ρ=1=Tb,and initial conditionT(ρ,t=0)=T0(ρ),this equation is well posed.The radial coordinate ρ is uniformly divided into grid points ρ1=0,…,ρi,…,ρN=1 for simplicity,i.e.Δρ = ρi+1-ρi= (ρN-ρ1)/(N-1),i= 1,…,N-1.A non-uniform interval is also applicable.Tat time stepnis marked asTn.

    2.1.Collocation method

    Based on collocation,Tis approximated by a linear combination of basis functionBi,k(ρ).Here the second-order accuracy is used,i.e.T(ρ)=ΣiαiBi,3(ρ).The stable evaluation ofB(ρ)and its derivatives are given in the appendix.It can be simply understood as a generalized piecewise polynomial function.It is nonzero only inksuccessive intervals,and it is actually a polynomial function on each interval.Once grid points are given,and a proper knot sequencet1,…,tN+kis generated,thenBi,k(ρ)is totally determined.In this work,the knot sequence is generated as follows:

    in whichMBρis a tridiagonal matrix,with only two additional nonzero elementsm1,3,mN,N-2.Here elementMBρ(i,j) is written asmi,j=Bj(ρi).HereMBρ,MBρ′,MBρ″are all tridiagonal matrices,and only two additional elements are nonzero:the third one in the first row and the third from last one in the last row.Since grid points ρ1,…,ρNand knot sequencet1,…,tN+3remain unchanged after initialization,all the elements of matrixMBρ,MBρ′,MBρ″can be calculated once and used repeatedly.

    For interior pointsi=2,…,N-1,the equation is discretized as

    It is very easy to implement a higher-order accuracy formula for the collocation method.As shown before,when the second-order accuracy formula is used,kis set as 3,the length of the knot sequence isN+3,andMBρ,MBρ′,MBρ″have three nonzero elements in each row.If we want to use the fourth-order accuracy formula,we simply setkas 5,generate a proper knot sequence with a length ofN+5,and matricesMBρ,MBρ′,MBρ″have five nonzero elements in each row,while all other things remain the same.

    2.2.FDM

    Employing the backward Euler scheme for time integration,which is the first-order accurate in time,

    Based on FDM,the diffusion term is discretized by the second-order center difference as

    Inner boundary conditioni=1 is implemented by the second-order forward finite difference formula

    Outer boundary conditioni=N,

    Finally,equations (16)-(18) constitute a matrix equation,

    2.3.Iteration method

    The matrix equation (14) derived by the collocation method and equation (19) by FDM can both be written like this:

    The predictor-corrector method generally suffers from a large numerical oscillation when coupled to theory-based transport models,such as the stiff transport model.The under-relaxation method and regula-falsi method can overcome this difficulty [24].In this work,the under-relaxation method is applied if the predictor-corrector iteration can hardly converge.The diffusion term is calculated using χn+1,llike this:

    in which ? is the under-relaxation factor and superscriptlstands for thel-th iteration at each time step.

    3.Results

    Based on the FDM and collocation method mentioned in the previous section,two solvers(FDMS and BITS)are developed.Their results for different cases are compared in this section.Unless explicitly specified,BITS takes the same second-order accuracy (k=3) in space as FDMS.For the first-order accuracy discretization in time and the second-order accuracy discretization in space,the discretization errors are linear over the time step and quadratic over the space step.Since iteration is usually needed to solve the nonlinear equation (20) for each time step,this brings additional errors.For simplicity,uniform Δρ in the minor radius is used from now on for both solvers;however,a non-uniform interval is also applicable.

    3.1.Steady-state transport equation

    For the sake of simplicity,densitynand conduction coefficient χ are set as constant.In the steady state,the energy transport equation (1) is simplified as:

    whereTi,analyticdenotes the analytic solution ofTat thei-th grid point.

    As the grid points in ρ ∈[0,1]increase from 9 to 17,33,65,129,the results of these two solvers both converge.The calculated errors by these two solvers are plotted in figure 1.As a cross-check,the results by Park(figure 2 of[24])are also plotted,in which the cited second-order FDM result is marked as Park_FDM,and the cited fourth-order Interpolated Differential Operator (IDO) scheme result is marked as Park_IDO.Although the IDO method has a fourth-order accuracy,the highest power of the Hermite interpolation function used in equation (2) of [24]is 5,so we compare it to the BITS result withk=6(the highest power of polynomial is 5).Firstly,the results of FDMS developed in this work are as good as the results of the same method developed by Park.Secondly,the results of the fifth-order BITS (k=6,marked as BITSk6) are as good as the results of the IDO method.Finally,the error of the second-order BITS(k=3,marked as BITSk3)is about 1/4 to 1/5 of the error of the second-order FDMS.

    Figure 1.Error of T by different solvers.For the second-order scheme,FDMS is as good as Park_FDM,and the error of BITS(BITSk3) is about 1/4 to 1/5 that of FDMS.The fifth-order BITS with k=6 (BITSk6) is as good as Park_IDO.

    Since densityn,transport coefficient χ and source termSare independent of time andTin this case,thenMandb→in equation (20) are both independent ofTn+1.This equation is simplified to a linear one,and the error introduced by iteration disappears.There is no time-varying term,so the error introduced by time discretization also disappears.Only the error from space discretization is retained.Hence,this case shows the second-order BITS decrease the error from space discretization to 1/4 to 1/5 that of the same order FDMS.

    3.2.Single-variable transport equation

    Equation (1) is numerically solved by FDMS and BITS for two different χ models.

    The evolution of temperatureT(ρ,t) is calculated by FDMS and BITS.The temperature profiles at the final time step by FDMS and BITS both converge as the number of grid points increases.In order to quantify the error,theN=129 results are taken as standard,and the errors of other cases are calculated.For example,ρiin theN=9 case is the same point ρ(i-1)×16+1in theN=129 case,so the calculated temperature in theN=9 caseTi,9takes the same point result as in theN=129 caseT(i-1)×16+1,129as standard.Then the errors ofN=9 by FDMS and BITS are calculated separately by

    Figure 2. The error by BITS is about 1/4 to 1/5 of the error by FDMS for dt=10-2 as shown in (a).For dt=10-4,the error by BITS is still about 1/4 to 1/5 of the error by FDMS for grid points N=33,65 as shown in (b).

    The errors of other cases are calculated in a similar way.They are plotted at figure 2(a).The error of temperature by BITS is about 1/4-1/5 of that by FDMS.In order to reduce the influence of time discretization,this case is recalculated using a much smaller time step(dt decreases from 10-2to 10-4),the result is plotted at figure 2(b).It is shown that the error by BITS is still about 1/4-1/5 of the error by FDMS for grid pointsN=33,65.

    3.2.2.Stiff model.A stiff transport model is used to compare the performances of FDMS and BITS.

    The evolution of temperatureT(ρ,t) is calculated by FDMS and BITS.The temperature profiles at the final time step by FDMS and BITS both converge as the number of grid points increases.TheN=129 results are taken as standard,and the errors of other cases are calculated as in the previous model.They are plotted in figure 3(a).The profile of χ at the last time step by FDMS and BITS is plotted in figure 3(b).The error by BITS is almost the same as by FDMS.In order to decrease the error from time discretization,the case is recalculated using a much smaller time step (dtdecreases from 10-2to 10-4).As shown in figure 3(c),the error of temperature by BITS decreases to about 1/4 to 1/5 of the error by FDMS for grid pointsN=33,65.

    3.2.3.Collision model.Collisional transport is common in tokamak plasmas.The coefficients of conductivity have been computed for completely ionized gases by [28].The collisional transport coefficient varies asT-1/2.Here the transport coefficient is simplified as below:

    The evolution of temperatureT(ρ,t) is calculated by FDMS and BITS.The temperature profiles at the final time step by FDMS and BITS both converge as the number of grid points increases.TheN=129 results are taken as standard,and the errors of other cases are calculated as in the previous model.They are plotted in figure 4(a).The error by FDMS is a little better than by BITS at about 0.55-0.65 of BITS.In order to decrease the error from time discretization,the case is also recalculated using a much smaller time step(dtdecreases from 10-3to 10-5).As shown in figure 4(b),the error of temperature by BITS is almost the same as the error by FDMS.

    3.3.Multi-variable transport equations

    In this subsection,the one-dimensional diffusion equations of densityn,electron and ion temperatureTeandTi,and the poloidal magnetic fieldBpare solved by these two methods.For simplicity,a low-β circular cross section plasma is considered,which means the geometry factors that appear at the surface average can be set as one.The equations ofn,Te,Ti,andBpare listed below:

    Figure 3.The error by BITS is the same as FDMS for dt=10-2 as shown in (a).The χ at the last time step is shown in (b).For dt=10-4,the error by BITS is about 1/4 to 1/5 of the error by FDMS for grid points N=33,65 as shown in (c).

    Figure 4.The error by FDMS is about 0.55-0.65 of BITS for dt=10-3 as shown in (a).For dt=10-5,the error by BITS is almost the same as the error by FDMS as shown in (b).

    in whichMDBρis obtained by expanding all the elements ofMBρin equation (3) to a 4×4 diagonal matrix,

    is obtained by expanding all the elements ofin equation (3) to a vector,

    The derivative of variables is handled in a similar way.Then these four transport equations can be discretized into sparse linear systems and solved efficiently,just as we have done for the single transport equation case in the previous subsection.

    The initial density,electron and ion temperature,and flux averaged toroidal current are set as below:

    The initial poloidal magnetic fieldBpcan be integrated from the flux averaged toroidal current as below:

    Then these four equation are solved by FDMS and BITS,using the predictor-corrector iteration with dt=0.001 s,100 steps.The magnetic equilibrium is fixed for simplicity.The error tolerance in iteration control is set roughly as 10-2,and only one corrector sub-step is needed for both FDMS and BITS.

    TheN=129 results are taken as standard,and the errors of densityn,electron temperatureTe,ion temperatureTi,multiplication of minor radius and poloidal magnetic field ρBpare calculated as for the previous model.They are plotted in figure 5.The error of density by FDMS is about 0.6 of BITS for theN=9 case.However,the performance of BITS is improved faster as the grid points increase.The error of density by BITS is about 1/2 that of FDMS forN=65 case.The errors ofTeandTiby BITS are slightly smaller than the FDMS results for theN=9 case.The performance of BITS is improved much faster than that of FDMS as the grid points increase.The error of temperature by BITS is about 1/5 that of FDMS for theN=33 case and about 1/10 that of FDMS for theN=65 case.This means the improvement of results in FDMS by increasing the grid points is deteriorated due to the coupling of transport equations.The density equation is weakly coupled to theTeequation,and the error of density by FDMS is slightly deteriorated.TeandTihave much strong coupling with each other,and the errors ofTeandTiby FDMS are heavily deteriorated.The improvement of results in BITS by increasing grid points is still as good as in the single transport equation case (the slope ofTe,Tiby BITS is as steep as the slope of density by FDMS).The diffusion coefficient of ρBpis set as independent of others,and much smaller than the density and thermal diffusion coefficients,so ρBpvaries much more slowly.The error of ρBpby FDMS and BITS is very close for all the different grid points.

    Figure 5.Error of n, Te, Ti,ρBp at the final time step by FDMS and BITS.

    4.Summary

    BITS is developed to solve 1-D diffusion equations for tokamak plasma based on the B-spline collocation method.It takes the same level of computation cost compared to the FDM which is widely used in existing tokamak transport codes.

    The numerical results of a few cases are compared with the same order accuracy FDMS.The error of temperature by BITS is about 1/4 to 1/5 that of FDMS for the steady-state temperature transport equation case,in which no time discretization error or iteration error appears.For the singlevariable transport equation,three different transport models are used.For the simple transport model (constant χ),the error by BITS is also about 1/4 to 1/5 that of FDMS.For the stiff and collision models,the performance of BITS becomes the same or even a little worse than that of FDMS.By using a smaller time step,the error by BITS decreases to 1/4 to 1/5 that of FDMS in the stiff case or about the same in the collision case.For coupled multi-variable transport equations(collisional transport coefficients are used),the error of variables by BITS is about the same as that of FDMS,if the variable (such as density or poloidal magnetic field) is not closely coupled with other unknown variables,while the error of variables by BITS is much smaller than FDMS,if the variables (such as electron and ion temperature) are strongly coupled with each other.The improvement in FDMS results by increasing grid points is deteriorated if they are strongly coupled with each other.The improvements in BITS results by increasing grid points are still as good as in the single transport equation case.Taking the coupled 1-D tokamak plasmas transport equations as an example,the maximum errors ofn,Te,Ti,and ρBpby BITS usingN=33 are still about half of the maximum ones by FDMS usingN=65.This means BITS can reduce the computation cost by half(the computation cost of band diagonal linear equations is proportional to the number of grid pointsN),double the calculation speed and get more accurate results than FDMS.Since large computational resources are demanded when the theory-based turbulent transport model for tokamak plasmas is coupled to the 1-D transport solver to predict the time evolution of tokamak plasmas or its steady-state solution,the transport solver presented here can speed up the numerical analysis greatly.

    Acknowledgments

    This work was supported by the National MCF Energy R&D Program of China (No.2019YFE03040004),the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228),and the National MCF Energy R&D Program of China (No.2019YFE03060000).

    Appendix

    The B-spline basis function can be stably calculated by the following recurrence relation.

    The first and second derivatives are listed below fork=3,tl≤x<tl+1:

    Figure A1.B(x).

    In order to give a vivid picture of the basis functionB(x),let us specify a knot sequence ast1=1,…,ti=i,…,tn=n.Then for a givenxwhich falls into the intervalti≤x<ti+1,the relevantk≤3 order basis function will take the form as below.

    Bi,1,Bi-1,2,Bi,2,Bi-2,3,Bi-1,3,Bi,3have nonzero values in the interval [ti,ti+1),which are plotted in figure A1.

    欧美激情极品国产一区二区三区| 午夜两性在线视频| 国产精品98久久久久久宅男小说| 脱女人内裤的视频| 国产亚洲欧美98| 欧美激情极品国产一区二区三区| 国产一区二区激情短视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区在线观看成人免费| 精品一区二区三区av网在线观看| 男人操女人黄网站| 国产成人影院久久av| 欧美一区二区精品小视频在线| 真人一进一出gif抽搐免费| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 美国免费a级毛片| av中文乱码字幕在线| 色婷婷久久久亚洲欧美| 女警被强在线播放| 亚洲成人国产一区在线观看| 伊人久久大香线蕉亚洲五| 一级毛片精品| 久久香蕉激情| 精品国产超薄肉色丝袜足j| 大香蕉久久成人网| 精品电影一区二区在线| 脱女人内裤的视频| av超薄肉色丝袜交足视频| 午夜免费成人在线视频| 久久久久久久久免费视频了| 人人妻人人澡人人看| 制服丝袜大香蕉在线| 一级黄色大片毛片| 亚洲成人免费电影在线观看| 又黄又粗又硬又大视频| 久久 成人 亚洲| 日韩有码中文字幕| 午夜a级毛片| 老汉色∧v一级毛片| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 国产精品久久久久久亚洲av鲁大| 亚洲精品av麻豆狂野| 亚洲精品国产精品久久久不卡| 人人妻人人澡欧美一区二区 | 69精品国产乱码久久久| 天天躁狠狠躁夜夜躁狠狠躁| 给我免费播放毛片高清在线观看| 久久国产精品人妻蜜桃| 国产色视频综合| 国产午夜精品久久久久久| 露出奶头的视频| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| 亚洲av成人一区二区三| 国产成人影院久久av| 日韩欧美三级三区| 波多野结衣巨乳人妻| www.精华液| 亚洲成av人片免费观看| 国产精品久久视频播放| 国产1区2区3区精品| 久久亚洲真实| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 别揉我奶头~嗯~啊~动态视频| 亚洲人成伊人成综合网2020| 亚洲美女黄片视频| 亚洲欧美日韩无卡精品| 亚洲成人久久性| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 欧美在线黄色| 色婷婷久久久亚洲欧美| 男女下面插进去视频免费观看| 中文字幕色久视频| 狂野欧美激情性xxxx| 亚洲五月婷婷丁香| 久久中文字幕一级| 夜夜爽天天搞| 亚洲五月婷婷丁香| 免费观看人在逋| 欧美色视频一区免费| 久久精品国产99精品国产亚洲性色 | 国产成+人综合+亚洲专区| 在线观看午夜福利视频| 亚洲av熟女| 国产av精品麻豆| 变态另类丝袜制服| 99热只有精品国产| 身体一侧抽搐| 禁无遮挡网站| 国产一区在线观看成人免费| 亚洲国产精品999在线| 国产乱人伦免费视频| 99精品在免费线老司机午夜| 亚洲第一电影网av| 黄色丝袜av网址大全| 自拍欧美九色日韩亚洲蝌蚪91| 99久久国产精品久久久| 最近最新免费中文字幕在线| 国产精品自产拍在线观看55亚洲| 99在线人妻在线中文字幕| 国产精品香港三级国产av潘金莲| 亚洲 国产 在线| 每晚都被弄得嗷嗷叫到高潮| 色婷婷久久久亚洲欧美| 欧美日本视频| 啦啦啦观看免费观看视频高清 | 波多野结衣av一区二区av| 亚洲欧美日韩另类电影网站| 777久久人妻少妇嫩草av网站| 亚洲男人的天堂狠狠| 成熟少妇高潮喷水视频| 性欧美人与动物交配| 可以免费在线观看a视频的电影网站| 可以免费在线观看a视频的电影网站| 亚洲成国产人片在线观看| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 欧美精品啪啪一区二区三区| 亚洲精品中文字幕在线视频| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 国产精华一区二区三区| 国产精品 欧美亚洲| 正在播放国产对白刺激| 亚洲 欧美 日韩 在线 免费| 757午夜福利合集在线观看| 国产野战对白在线观看| АⅤ资源中文在线天堂| 国产精品久久久久久人妻精品电影| 女警被强在线播放| 美女扒开内裤让男人捅视频| 国产成人av教育| 国产高清有码在线观看视频 | 国产精品香港三级国产av潘金莲| 久热爱精品视频在线9| 亚洲少妇的诱惑av| 国产精品99久久99久久久不卡| 一区二区三区高清视频在线| 在线视频色国产色| 在线视频色国产色| 91字幕亚洲| 国产精品综合久久久久久久免费 | 美女扒开内裤让男人捅视频| 人成视频在线观看免费观看| 免费观看人在逋| 高清黄色对白视频在线免费看| 女生性感内裤真人,穿戴方法视频| 黄片小视频在线播放| 亚洲第一青青草原| 18美女黄网站色大片免费观看| 制服诱惑二区| 亚洲精品美女久久久久99蜜臀| 宅男免费午夜| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| 国产免费av片在线观看野外av| 美女免费视频网站| 日韩精品免费视频一区二区三区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| 久久精品影院6| 亚洲人成电影观看| 国产成人欧美在线观看| 国产色视频综合| 欧美黑人欧美精品刺激| 99热只有精品国产| 亚洲av成人av| а√天堂www在线а√下载| 大陆偷拍与自拍| 色综合亚洲欧美另类图片| 99精品欧美一区二区三区四区| 黑丝袜美女国产一区| 99riav亚洲国产免费| 久99久视频精品免费| 自拍欧美九色日韩亚洲蝌蚪91| 多毛熟女@视频| 色精品久久人妻99蜜桃| 亚洲视频免费观看视频| 无遮挡黄片免费观看| 男女下面进入的视频免费午夜 | av片东京热男人的天堂| 亚洲无线在线观看| 国产三级在线视频| 在线天堂中文资源库| 久久久久久久精品吃奶| 51午夜福利影视在线观看| 亚洲五月天丁香| 18禁观看日本| 国产91精品成人一区二区三区| 亚洲午夜理论影院| 色综合欧美亚洲国产小说| 久久香蕉激情| 男人操女人黄网站| 首页视频小说图片口味搜索| 久久人妻av系列| 香蕉久久夜色| 黄色a级毛片大全视频| 免费一级毛片在线播放高清视频 | 亚洲国产欧美网| 亚洲专区字幕在线| 老熟妇乱子伦视频在线观看| 国产99白浆流出| 精品国产一区二区三区四区第35| 国产真人三级小视频在线观看| 午夜福利免费观看在线| 亚洲人成伊人成综合网2020| 成人手机av| 日本一区二区免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本三级黄在线观看| 法律面前人人平等表现在哪些方面| 日韩欧美国产在线观看| 欧洲精品卡2卡3卡4卡5卡区| 最新在线观看一区二区三区| 亚洲色图综合在线观看| 国产成人啪精品午夜网站| 村上凉子中文字幕在线| 少妇粗大呻吟视频| 精品国产亚洲在线| 国产亚洲精品一区二区www| 无限看片的www在线观看| 999久久久精品免费观看国产| 搡老岳熟女国产| 不卡一级毛片| 国产亚洲av嫩草精品影院| 亚洲精品久久国产高清桃花| 国产精品秋霞免费鲁丝片| 国产av又大| 嫩草影院精品99| 午夜福利视频1000在线观看 | 十分钟在线观看高清视频www| 视频在线观看一区二区三区| 日本免费a在线| 中文字幕人妻丝袜一区二区| 国产精品自产拍在线观看55亚洲| 黄色视频,在线免费观看| 免费观看人在逋| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| av电影中文网址| 久热爱精品视频在线9| 婷婷丁香在线五月| 精品无人区乱码1区二区| 久久久久九九精品影院| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区视频了| www.自偷自拍.com| 岛国视频午夜一区免费看| 久久久水蜜桃国产精品网| 久久久久久久精品吃奶| 欧美色欧美亚洲另类二区 | 国产一区二区在线av高清观看| 99riav亚洲国产免费| 日本在线视频免费播放| 午夜免费鲁丝| 午夜福利影视在线免费观看| 亚洲国产看品久久| 色综合亚洲欧美另类图片| 99在线人妻在线中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲精华国产精华精| www日本在线高清视频| 欧美国产精品va在线观看不卡| 在线国产一区二区在线| 精品欧美国产一区二区三| 欧美日韩福利视频一区二区| 久久久国产精品麻豆| 日日干狠狠操夜夜爽| 嫁个100分男人电影在线观看| 性欧美人与动物交配| 亚洲一码二码三码区别大吗| 亚洲精华国产精华精| 一级片免费观看大全| 久久久久国内视频| 精品久久久久久久人妻蜜臀av | 免费在线观看完整版高清| 黄片大片在线免费观看| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| 又黄又粗又硬又大视频| 亚洲全国av大片| av在线播放免费不卡| 99riav亚洲国产免费| √禁漫天堂资源中文www| 国产成+人综合+亚洲专区| 久久精品国产清高在天天线| 欧美在线一区亚洲| 国产精品永久免费网站| 国产99白浆流出| 在线视频色国产色| 亚洲av成人av| 在线观看免费午夜福利视频| 脱女人内裤的视频| 国产午夜福利久久久久久| 久久天堂一区二区三区四区| 又大又爽又粗| 亚洲第一电影网av| 久久国产亚洲av麻豆专区| 成人国产综合亚洲| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 中国美女看黄片| av视频在线观看入口| 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 婷婷精品国产亚洲av在线| 亚洲熟妇中文字幕五十中出| 天天添夜夜摸| 麻豆av在线久日| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品19| 最近最新中文字幕大全电影3 | 中国美女看黄片| 女人精品久久久久毛片| 日韩国内少妇激情av| 久久婷婷成人综合色麻豆| 变态另类丝袜制服| 精品无人区乱码1区二区| 精品国产乱子伦一区二区三区| 看免费av毛片| 神马国产精品三级电影在线观看 | bbb黄色大片| 欧美中文综合在线视频| 国产精品乱码一区二三区的特点 | 亚洲人成电影免费在线| 丝袜美足系列| 精品人妻在线不人妻| 欧美色欧美亚洲另类二区 | 免费高清在线观看日韩| aaaaa片日本免费| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 色精品久久人妻99蜜桃| 久久影院123| 麻豆久久精品国产亚洲av| 一进一出好大好爽视频| 十八禁人妻一区二区| 一级毛片高清免费大全| 女人高潮潮喷娇喘18禁视频| av视频免费观看在线观看| 美女午夜性视频免费| 黄色视频,在线免费观看| 国产国语露脸激情在线看| 老熟妇乱子伦视频在线观看| 久久精品亚洲熟妇少妇任你| 神马国产精品三级电影在线观看 | 亚洲无线在线观看| 国产亚洲精品久久久久5区| 亚洲天堂国产精品一区在线| 97碰自拍视频| 夜夜爽天天搞| 国产1区2区3区精品| 一区福利在线观看| 欧美日韩福利视频一区二区| 少妇熟女aⅴ在线视频| 亚洲视频免费观看视频| 国产成人av教育| 国产精品99久久99久久久不卡| 十八禁网站免费在线| 十分钟在线观看高清视频www| 变态另类成人亚洲欧美熟女 | www.熟女人妻精品国产| 精品福利观看| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 欧美久久黑人一区二区| 99国产精品一区二区三区| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 国产色视频综合| 亚洲精品av麻豆狂野| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 69精品国产乱码久久久| 精品国产乱子伦一区二区三区| 好男人电影高清在线观看| 丰满的人妻完整版| 男人操女人黄网站| 亚洲欧美日韩高清在线视频| 精品一区二区三区视频在线观看免费| 深夜精品福利| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 深夜精品福利| 国产成人av教育| 亚洲一区二区三区不卡视频| 1024香蕉在线观看| 久久人妻福利社区极品人妻图片| 桃色一区二区三区在线观看| 国产精品国产高清国产av| 久久久久久国产a免费观看| 免费久久久久久久精品成人欧美视频| e午夜精品久久久久久久| 午夜福利影视在线免费观看| www.自偷自拍.com| 国产亚洲欧美在线一区二区| av福利片在线| 老熟妇乱子伦视频在线观看| www.999成人在线观看| 久久草成人影院| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 精品国产国语对白av| 亚洲 国产 在线| 久久精品91无色码中文字幕| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 久久人妻熟女aⅴ| 久久久久久久久免费视频了| 国产男靠女视频免费网站| av超薄肉色丝袜交足视频| 黄色毛片三级朝国网站| 美女大奶头视频| 日本 欧美在线| 成人欧美大片| 999精品在线视频| 淫秽高清视频在线观看| 色综合欧美亚洲国产小说| 99久久久亚洲精品蜜臀av| 在线永久观看黄色视频| 男人操女人黄网站| 不卡av一区二区三区| 国产精品免费一区二区三区在线| www国产在线视频色| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 久久这里只有精品19| 欧美日韩瑟瑟在线播放| 欧美日本中文国产一区发布| 国产区一区二久久| 操美女的视频在线观看| 在线观看www视频免费| 成在线人永久免费视频| 日韩欧美在线二视频| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 亚洲午夜理论影院| 91九色精品人成在线观看| 一边摸一边做爽爽视频免费| 91成人精品电影| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频 | 两个人视频免费观看高清| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 精品无人区乱码1区二区| 黄色 视频免费看| 国产精品久久视频播放| 怎么达到女性高潮| 午夜福利欧美成人| 日本a在线网址| 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 最近最新中文字幕大全电影3 | 久久精品亚洲精品国产色婷小说| 日韩三级视频一区二区三区| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 黑丝袜美女国产一区| 成人18禁在线播放| 日韩免费av在线播放| 色播亚洲综合网| 两个人看的免费小视频| 国产欧美日韩一区二区三| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 日韩视频一区二区在线观看| 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| 欧美成狂野欧美在线观看| 欧美激情久久久久久爽电影 | 真人做人爱边吃奶动态| 久久中文看片网| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品第一综合不卡| 久久午夜亚洲精品久久| 天天一区二区日本电影三级 | 一卡2卡三卡四卡精品乱码亚洲| 午夜视频精品福利| 色精品久久人妻99蜜桃| 美国免费a级毛片| 国产黄a三级三级三级人| 亚洲精品国产一区二区精华液| 午夜福利高清视频| 日本a在线网址| 99国产精品99久久久久| 亚洲视频免费观看视频| 99久久国产精品久久久| 手机成人av网站| 女性生殖器流出的白浆| 亚洲成a人片在线一区二区| 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器 | 午夜精品久久久久久毛片777| 在线观看www视频免费| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区mp4| 一级片免费观看大全| 欧美日韩精品网址| a级毛片在线看网站| 在线观看66精品国产| 中国美女看黄片| 欧美国产精品va在线观看不卡| 男女床上黄色一级片免费看| 一卡2卡三卡四卡精品乱码亚洲| 纯流量卡能插随身wifi吗| 高清毛片免费观看视频网站| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 桃红色精品国产亚洲av| 日本黄色视频三级网站网址| 在线观看午夜福利视频| 777久久人妻少妇嫩草av网站| 人成视频在线观看免费观看| 老司机深夜福利视频在线观看| 久久久久久久午夜电影| 黑人欧美特级aaaaaa片| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 亚洲av熟女| 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 国产成人免费无遮挡视频| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频 | 午夜久久久在线观看| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 午夜影院日韩av| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 欧洲精品卡2卡3卡4卡5卡区| 少妇被粗大的猛进出69影院| av天堂久久9| 国产成年人精品一区二区| 日日夜夜操网爽| av在线天堂中文字幕| 色老头精品视频在线观看| 日本 欧美在线| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 亚洲精品中文字幕在线视频| 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 大码成人一级视频| 日韩精品免费视频一区二区三区| 色av中文字幕| 国产av一区二区精品久久| 中文字幕最新亚洲高清| 国产精品一区二区三区四区久久 | 热99re8久久精品国产| 国产男靠女视频免费网站| 久久久国产成人精品二区| 男女下面进入的视频免费午夜 | 欧美在线一区亚洲| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 久99久视频精品免费| 18禁观看日本| 18美女黄网站色大片免费观看| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 精品久久久久久,| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 国产精品一区二区免费欧美| 老汉色av国产亚洲站长工具| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 国产亚洲精品综合一区在线观看 | 在线观看www视频免费| 男人操女人黄网站| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 在线观看一区二区三区| 久久人妻av系列| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| 少妇裸体淫交视频免费看高清 | 国产又色又爽无遮挡免费看| 亚洲av电影不卡..在线观看| 国产又爽黄色视频| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 欧美丝袜亚洲另类 | 成年女人毛片免费观看观看9| 成人三级黄色视频| 多毛熟女@视频| 日韩欧美三级三区| 免费一级毛片在线播放高清视频 | 成人三级做爰电影| 他把我摸到了高潮在线观看|