• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鹵代芳香族羧酸與含氮配體合成鑭系配合物的結(jié)構(gòu)、熱化學(xué)和熒光性質(zhì)

    2023-02-17 03:55:28王晨璐宿素玲任寧張建軍
    物理化學(xué)學(xué)報(bào) 2023年1期
    關(guān)鍵詞:鹵代張建軍河北師范大學(xué)

    王晨璐,宿素玲,任寧,張建軍,*

    1河北師范大學(xué)分析測試中心,化學(xué)與材料科學(xué)學(xué)院,石家莊 050024

    2河北省特種設(shè)備監(jiān)督檢驗(yàn)研究院,石家莊 050000

    3邯鄲學(xué)院,化學(xué)化工與材料學(xué)院,河北省雜環(huán)化合物重點(diǎn)實(shí)驗(yàn)室,河北 邯鄲 056005

    1 Introduction

    As an important branch of inorganic chemistry, coordination chemistry1is closely related to chemical fields such as organic chemistry2, analytical chemistry3, biochemistry4, medicinal chemistry5, and the chemical industry6. It has attracted the attention of many chemists. Due to the multiple coordination sites, flexible coordination structures, and unique [Xe]4fn(n =1–14) electron configuration of lanthanide ions7, the structures of complexes using lanthanide ions as central metal ions are very rich, and the chemical properties are very different8,9. This makes lanthanide metal complexes used as photocatalysis10,luminous diode, light-emitting sensors11, fluorescent probes12in optics, anti-tumor drugs, and antidepressants in the field of biomedicine5,13, and magnetic materials in the field9,14of electromagnetism, with a wide range of applications. Many metal complexes, including lanthanide metals, have organic ligands that play an essential role, stemming from their coordination patterns, functional groups, etc. The rich topology of the assembled structures fully demonstrates the charm of the directed assembly15, which can form lanthanide metal complexes with the desired functions and thus obtain various materials with the desired properties16. In recent years, the most studied organic aromatic carboxylic acid ligands17have been used to construct crystal structures because these ligands are usually rigid, thermally stable, and high in dimensionality. There are also various coordination geometric configurations, such as tetragonal antiprism with cap, triangular dodecahedron, doublecap trigonal prism, triangular trigonal prism, etc. In addition, the introduction of nitrogen-containing ligands18involved in the construction of Ln(III) will lead to more novel and large structures of the complexes. Common nitrogen-containing ligands include 2,2′-bipyridine19, 5,5′-dimethyl-2,2′-bipyridine,2,2′:6′2′′-tripyridine, and other pyridyl ligands. As highly conjugated auxiliary ligands, they form complexes with lanthanide ions. The ligands absorb energy, in the ground state,electrons jump into the excited state. Through the inter-system scurry to the excited triplet state, transferring energy to the lanthanide ions, forming the so-called ligand “antenna effect”20.This improves the luminous efficiency of the complex.

    Based on the above investigation, two series of five complexes were synthesized by selecting 2,4-difluorobenzoic acid and 2-chloro-6-fluorobenzoic acid as the main ligands and 1,10-phenanthroline and 2,2′:6′2′′-tripyridine as the auxiliary ligands. The novelty of the five complexes, which have not been synthesized before, lies in the variety of structures and the interesting supramolecular structure. In this study, the crystal structure of the polymer was characterized by single-crystal X-ray diffraction, and the supramolecular structure of the polymer was mapped in 1D and 2D. The thermogravimetric-infrared coupling technique performed a thermochemical analysis of complexes 1–5. The luminescent properties of the complexes were determined, except for complex 3.

    2 Experimental

    2.1 Required reagents and experimental method

    All required reagents are reagent grade and can be used without secondary processing. Described in Supporting Information Table S1 are the reagents that were used in this experiment.

    Weigh a certain mass of halogenated aromatic carboxylic acid and N-containing ligand in a clean small beaker. Dissolve with 95% ethanol and stir by adding a magnet to a magnetic stirrer.Weigh a certain amount of lanthanide nitrate into another small clean beaker and dissolve it with ultrapure water. The molar mass ratio is acidic ligand : neutral ligand : lanthanide nitrate =3 : 1 : 1. Sodium hydroxide solution is added to the ligand solution after the pH has been adjusted to weak acidity. The solution was poured into the salt solution with a glass rod primer and continued to stir for 6 h and then left to stand for 12 h. The filtrate obtained from the filtration was poured into a clean beaker covered with plastic wrap with small holes inserted and then left to incubate the crystal.

    Elemental analysis (%): C66H34F12Sm2N4O12, Calcd.: N, 3.49;C, 49.43; H, 2.14. Found: N, 3.55; C, 49.52; H, 2.12.C66H34F12Eu2N4O12, Calcd.: N, 3.49; C, 49.33; H, 2.13. Found:N, 3.38; C, 49.35; H, 2.18. C66H34F12Er2N4O12, Calcd.: N, 3.42;C, 48.41; H, 2.09. Found: N, 3.38; C, 48.60; H, 2.23.C58H38Cl4F4Tb2N8O16, Calcd.: N, 6.84; C, 42.51; H, 2.34.Found: N, 6.87; C, 42.55; H, 2.51. C58H38Cl4F4Dy2N8O16,Calcd.: N, 6.81; C, 42.33; H, 2.33. Found: N, 6.79; C, 42.41; H,2.55.

    2.2 Instruments and test conditions used

    Single crystal X-ray diffraction: Measurement with a Smart-1000 single-crystal X-ray diffractometer from Germany Bruker,incident rays are Mo-Kαand Cu-Kα(λ = 0.71073 ?, 1 ? = 0.1 nm)after graphite monochromatization. Structure data are refined using SHELXS-97.

    Elemental analysis: Using a Germany Elemental vario EL-III cube element analyzer, hydrogen, carbon, and nitrogen were determined in five complexes.

    Infrared spectrum: Measurements were performed on a Bruker Tensor 27 infrared spectrometer from Germany Bruker,in the range of 4000–400 cm-1using the KBr pressed-disk technique.

    Raman spectroscopy: Germany Bruker Vertex-70 FTIRRAMANII spectrometer with 100 scans in the wavelength range 2500–200 cm-1and a resolution of 4 cm-1Nd: YAG laser (λ =1.064 μm) with a laser power of 400 mW and liquid nitrogen cooling device was used.

    PXRD: Scanning was performed in the range of 5°–50° (2θ)using a Germany Bruker D8 advance X-ray diffractometer with a radiation source of copper-potassium radiation (λ = 0. 71073 ?).

    TG-DTG-DSC/FTIR: A Germany Netzsch STA 449 F3 simultaneous thermal analyzer with a Germany Bruker Tensor 27 FTIR spectrometer was used in conjunction with a liquid nitrogen cooling tank. The experimental conditions were simulated with a dynamic air atmosphere, using an ascent rate of 10 K·min-1, heating from 299.25 to 1073.15 K.

    Fluorescence spectroscopy: Solid-state fluorescence was measured using an UK Edinburgh FS5 fluorescence spectrometer with Xe lamp irradiation.

    3 Results and discussion

    3.1 Crystal structure and description

    The complexes 1–5 are all pure single-crystals obtained by volatilization from room temperature solutions. Single crystal X-ray diffraction was used to analyze five complexes, and the SHELXS-97 program21was used for structure resolution. The crystal structures were obtained by full-matrix least-squares on the F2refinement method. As can be seen in Table 1, the refinement parameters are listed. A list of select bond lengths follows in Supporting Information Table S2. The different structures can be divided into three conformations. Both are monoclinic crystal systems, belonging to the P21/n space group unexpectedly. Complexes 1 and 2 are the first type of conformation (I), complex 3 is the second type of confirmation(II), and complexes 4 and 5 are the third type of conformation(III), taking complexes 2, 3, and 5 as examples for a detailed explanation.

    3.1.1 [Ln(2,4-DFBA)3(phen)]2Ln = (Sm 1 and Eu 2)(I)

    To introduce complexes 1 and 2 in detail, complex 2 is used as an example since they are isomorphisms. This symmetrypreserving binuclear molecule consists of six 2,4-DFBA and two phen. The structural unit is shown in Fig. 1a. Each central Eu(III)is coordinated to the carboxyl oxygen atoms in five 2,4-DFBA ligands in three coordination modes, namely double-dentate chelation (O5, O6), bidentate bridging (O3, O4) and ternary bridging (O1, O1#, O2). In addition, coordination with the nitrogen atom (N1, N2) in 1,10-phenanthroline is also carried out. The muffin geometric configuration with coordination number nine was formed after the simulation calculation by the shape22software (Fig. 1b). There is a wide range of bond lengths for Eu―O as shown in Table S2 (in Supporting Information),ranging from 2.870(5)–2.299(5) ?, with an average bond length of 2.458(5) ?. This is similar to the bond length of Ln―O in the oxygen atom contributed by 2,5-bis(4-methylbenzoyl)terephthalic acid in the same type of complexes23. The bond lengths of Eu―N are 2.575(6) and 2.589(6) ?, with an average bond length of 2.582(6) ?. There is a chain-like structure, which can be viewed in Fig. 1c, between adjacent structural units that forms a 1D supramolecular structure along the crystallographic c-axis by C―H···F hydrogen bond. The action distance is 3.127 ?. Based on the 1D chain supramolecular structure, a 2D faceted supramolecular structure (Fig. 1d) along the bc-plane is formed by π–π stacking interaction24in the b-axis direction ofcrystallography. The distance of π–π stacking interaction is 3.414 ?.

    Table 1 Structural refinement parameters of complexes 1-5.

    3.1.2 [Er(2,4-DFBA)3(phen)]2(II)

    Complex 3 has a similar structural general formula to complexes 1 and 2. The only difference is that the central metal ion of complex 3 is coordinated with the oxygen atom in the carboxylic acid root differently. Complex 3 is shown in Fig. 2a as a structural unit. In the halogenated benzoate ligand, the central Er(III) atom is coordinated to the oxygen atom. The coordination is divided into double-dentate chelating (O5, O6)and bidentate bridging (O1, O2, O3, O4). Each central Er(III) is connected to five 2,4-DFBA ligands, equivalent to three complete 2,4-difluorobenzoate ligands when folded. The coordination mode is different from that of complexes 1 and 2,resulting in differences in coordination number and central atomic geometry configuration, presumably due to the lanthanide contraction25. Complex 3 is a double-capped trigonal center geometry configuration (Fig. 2b) with 8 coordination numbers. The geometric configuration is calculated in the same way as above22. The average bond length of Er―O is 2.327(4)?, and the shortest bond length is 2.243(6) ?, which is derived from the Er1―O2 with bidentate bridging coordination. The 1D chain-like supramolecular structure (Fig. 2c) is reflected along the crystallographic a-axis direction. On the crystallographic acplane (Fig. 2d), facets of the supramolecular structure are reflected as 2D surfaces. Both are connected by C―H···F hydrogen bonding in adjacent 2,4-difluorobenzoate ligands in different structural units with an action distance of 3.152 and 3.416 ?, respectively.

    Fig. 1 Structural unit (a) and central Eu(III) geometrical configuration (b) of complex 2,1D chain-like supramolecular structure (c) of complex 2, 2D faceted supramolecular structure (d) of complex 2.

    Fig. 2 Structural unit (a) and central Er(III) geometrical configuration (b) of complex 3,1D chain-like supramolecular structure (c) of complex 3, 2D faceted supramolecular structure (d) of complex 3.

    Fig. 3 Structural unit (a) and central Tb(III) geometrical configuration (b) of complex 4,1D chain-like supramolecular structure (c) of complex 4, 2D faceted supramolecular structure (d) of complex 4.

    3.1.3 [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2Ln = (Tb 4 and Dy 5) (III)

    The structure of the third category is clearly distinguished from the first two categories and is elaborated in detail using complex 4 as an example. The binuclear structural unit (Fig. 3a)consists of two Tb(III) as the central ion, with four 2-chloro-6-fluorobenzoate ligands, two 2,2′:6′2′′-tripyridine ligands, two nitrate ions, and two coordination water molecules involved in coordination. Due to the symmetry of the structural unit, the environment around Tb1 is introduced as an example. There are three types of coordination between oxygen atoms and central metal ions, namely bidentate bridging (provided by carboxyl oxygen atoms O1, O2 in 2-chloro-6-fluorobenzoate ligand),double-dentate chelating (provided by oxygen atoms O5, O6 in nitrate) and single-dentate chelating coordination (provided by oxygen atom O3 in 2-chloro-6-fluorobenzoate and oxygen atom O8 in ligand water molecule). The N atoms (N1, N2, N3) in the 2,2′:6′2′′-tripyridine are also involved in the coordination. A bond length of 2.406(1) ? is the average for Tb―O, which ranges from 2.303(4) to 2.527(4) ?. The bond lengths of Dy―N range from 2.512(5)–2.567(5) ?. This is similar to the previously reported bond length26of Ln―N in the same neutral ligand 2,2′:6′2′′-tripyridine. A muffin-type coordination environment(Fig. 3b) with a coordination number of 9 was calculated by shape22software simulation. The adjacent structural units form a 1D chain-like supramolecular structure (Fig. 3c) along the crystallographic a-axis with a hydrogen-bonding distance of 3.396 ? under the C―H···F hydrogen bonding. Based on the 1D chain structure, a 2D faceted supramolecular structure (Fig. 3d)along the ac-plane is formed along the crystallographic c-axis,which is achieved by a weak π-π stacking interaction24at an action distance of 3.574 ?.

    3.2 Infrared and Raman spectroscopy

    For determining the structure of ligands and complexes, IR and Raman spectra were analyzed, as shown in Fig. 4. Both of them reflect the structural information of the complexes and are complementary27. In Table S3 (in Supporting Information), the IR spectra of the four ligands and complexes 1–5 are listed, and the Raman spectra are shown in Table S4 (in Supporting Information). After complex formation, the νC=Oin 2,4-difluorobenzoic acid ligands (IR: 1691 cm-1, R: 1634 cm-1) and 2-chloro-6-fluorobenzoic acid ligands (IR: 1703 cm-1, R: 1652 cm-1) disappeared. Instead, symmetric and antisymmetric stretching vibrations28of the carboxylate were observed,suggesting that it is the carboxylate group in the acidic ligand involved in the coordination with Ln(III) coordination. In addition to this, the vibration of νLn―O29was also observed,which corroborates the above point. Putting the focus on the two auxiliary ligands, we observed a significant displacement of the stretching vibration of the C=N bond after the complex formation. Since the Raman spectrum covers a wider range than the IR spectrum, νLn―N(R: 213–246 cm-1) was also observable in the spectrum of the Raman, which provides strong evidence for the involvement of nitrogen-containing ligands in the coordination formation of Ln―N bonds30.

    3.3 Powder X-ray diffraction test

    According to the results of single-crystal X-ray diffraction, it can be classified into three types according to the type of structure, complexes 1 and 2 (I), complex 3 (II), and complexes 4 and 5 (III). To obtain PXRD spectra, representative singlecrystal CIF data for complexes 2–4 were fitted and compared with experimentally measured PXRD (Fig. 5). The measured peak pattern was in good agreement with the simulated peak pattern, indicating that the target complexes were synthesized with high purity31. Besides, the positions and peak shapes of the diffraction peaks of the same type of complex powder are the same, confirming that they have the same structure32. As a final note, the ligand powder peaks showed significant differences with respect to the complexes, indicating the formation of a new phase, not the result of mechanical summation of the ligand powders31,32.

    Fig. 4 (a-d) IR and Raman spectra. a: IR spectra of ligands and complexes 2-4; b: IR spectra of complexes 1-5;c: Raman spectra of ligands and complexes 2-4; d: Raman spectra of complexes 1-5.

    Fig. 5 (a, b) PXRD diffraction peaks of ligands and complexes 1-5. a: PXRD diffraction peaks of ligands and complexes 1-3; b: PXRD diffraction peaks of ligands and complexes 4 and 5.

    3.4 Thermal decomposition process and analysis of escaping gases

    The TG-DTG-DSC/FTIR analysis33,34of complexes 1–5 was carried out under a simulated dynamic atmosphere (N2: 20 mL·min-1, O2: 10 mL·min-1, protective gas of N2: 30 mL·min-1),and the corresponding thermal decomposition data (Table 2), as well as the thermogravimetric curve (Fig. S1), 3D-IR fugitive gas data were obtained (Fig. S2 for the 3D-IR stacking diagram and IR spectral data are shown in Fig. S3). Thermogravimetric and 3D-IR coupling techniques can better analyze the thermal decomposition process of the complexes, and the two are complementary to each other. Let’s take complexes 2–4 as an example to introduce. Firstly, for complex 2, two parts of significant weight loss can be seen in the thermogravimetric curve (Fig. S1b), corroborating the two downward peaks in the DTG curve and the two stacking peaks in the 3D fugitive gas stacking diagram. The first decomposition step occurred in the temperature range of 466.15–693.15 K with a weight loss of 57.61%, corresponding to the loss of two phen and part 2,4-DFBA. Infrared spectral data of the strongest peak of the solved signal at a temperature of 619.15 K, where small fragments of organic molecules from the decomposition of 1,10-phenanthroline were observed (νC=N: 1608 cm-1, νC―N: 1232,1254 cm-1, νC―H: 3088–3167 cm-1, and γC―H: 765, 1047, 1128 cm-1). In addition, there is a vibrational peak of carbon dioxide(669, 2361 cm-1), which is attributed to the partial loss of 2,4-difluorobenzoate. There was a range of 693.15–1016.15 K in the second decomposition step. The actual weight loss was 19.29%,corresponding to the loss of the remaining 2,4-difluorobenzoate.754.15 K corresponds to the strongest peak of the second-stage 3D-IR signal, and only the vibrational peak of CO2was observed in the spectrum, which indicates that only the 2,4-difluorobenzoate ligand was lost in the second step. In summary,the thermogravimetric curves of each decomposition stage corresponded to the 3D-IR, confirming the correctness of the speculation. The structural formula of complex 3 is similar to that of complex 2. The difference only lies in the way of coordination, which is not explained in detail by thermogravimetry, but only the difference. The thermal decomposition process of complex 3 in three steps differs from that of complex 2. Some of the acidic ligands are lost in multiple stages, presumably due to the contraction of the lanthanide system25. The thermogravimetric curve of complex 4 is shown in Fig. S1d, where four distinct downward peaks of the DTG curve are observed, indicating a four-step decomposition. There are four stacking peaks in the 3D-IR stacking diagram (Fig.S2d), confirming the correctness of the decomposition phase.The first decomposition step is at 424.15–489.15 K. The weight loss is 2.38% (theoretical value 2.20%), which corresponds to the decomposition of two ligand water molecules. The strongest signal peak of the 3D-IR was solved at 432.15 K, corresponding to the vibrational peak of H2O (stretching vibration: 3198–3639 cm-1, bending vibration: 1566 cm-1). The temperature interval of the second decomposition step was 489.15–627.15 K, with a weight loss of 36.34%, corresponding to the loss of two 2,2′:6′2′′-tripyridine ligands and two nitrate ions (theoretical value 36.04%). The strongest peak of the IR signal was observed at 599.15 K, with the escape of NO2(1427, 1472, 1599 cm-1) and the decomposition of 2,2′:6′2′′-tripyridine resulting in partial fragmentation of small organic molecules (νC=C, νC=N, νC―N,δC―H, γC―H). The decomposition types of the third and fourth steps are the same: the decomposition of 2-chloro-6-fluorobenzoate (temperature interval 627.15–996.15 K). The total weight loss for these two decomposition steps was 37.55%,similar to the theoretical value (38.95%). The strongest signal peaks appeared at 764.15 K and 817.15 K. The escape signal of carbon dioxide gas (669, 2363 cm-1) due to the decomposition of aromatic carboxylic acids was observed in the 3D spectrum.The inference was confirmed to be correct. The products corresponding to each decomposition step are [Tb(2-Cl-6-FBA)2(terpy)(NO3)]2→ [Tb(2-Cl-6-FBA)2]2→ Tb2(2-Cl-6-FBA)4-x→ Tb4O7, and the final product is a metal oxide35,36.

    Fig. 6 Fluorescence spectrum of complex 1.

    Fig. 7 Fluorescence spectrum of complex 2.

    Table 2 Thermal decomposition values for complexes 1-5 at various stages.

    3.5 Fluorescent properties

    As a result of having unique fluorescent properties, lanthanide metal complexes are commonly used in producing various luminescent materials11. The solid-state fluorescence of complexes 1, 2, 4 and 5 were measured at room temperature.Different characteristic leap peaks were observed for different central metal ions. The similarity lies in the apparent broadband absorption of the excitation spectrum caused by the π-π* electron leap of the organic ligand37. The best excitation wavelengths(Sm: 362 nm, Eu: 353 nm, Tb: 354 nm, Dy: 353 nm) were chosen to obtain the corresponding emission spectra, and all the four complexes showed obvious characteristics of jump peaks (Figs.6–9).

    Complex 1:4G5/2→6H5/2,4G5/2→6H7/2, and4G5/2→6H9/238,39,located at 563 nm, 598 nm, and 645 nm, respectively, where4G5/2→6H7/2is the strongest jump peak, which is the main reason for the orange-red fluorescence of Sm(III).

    Complex 2:5D0→7F0,5D0→7F1,5D0→7F2,5D0→7F3,5D0→7F438, located at 579 nm, 593 nm, 615 nm, 651 nm, 700 nm, respectively. Since5D0→7F0and5D0→7F3are forbidden40, resulting in a low and negligible jump peak.According to this observation, there is little symmetry in Eu(III)in the complex36. The strongest jump peak of5D0→7F2at 615 nm is the main cause of the red glow41of Eu(III) complexes.Due to the strong fluorescence nature of Eu(III), the fluorescence lifetime was investigated and the fluorescence decay curve was obtained (Fig. 10a). The fluorescence lifetime is 1.288 ms calculated by the formula (i), which is expected to become a novel red fluorescent material.

    Fig. 8 Fluorescence spectrum of complex 4.

    Fig. 9 Fluorescence spectrum of complex 5.

    Complex 4:5D4→7F6,5D4→7F5,5D4→7F4,5D4→7F338at 491 nm, 545 nm, 585 nm, 623 nm, respectively. Among them,5D4→7F5at 545 nm is the strongest jump peak, which is the main reason for the green fluorescence42of Tb(III). The fluorescence decay curve is shown in Fig. 10b. The fluorescence lifetime calculated by the above equation (i) is 0.648 ms.

    Fig. 10 Fluorescence lifetime decay curves of complexes 4 (a) and 5 (b).

    Fig. 11 Color coordinates of complexes 1, 2, 4 and 5.

    Complex 5:4F9/2→6H15/2and4F9/2→6H13/238, located at 481 nm and 573 nm, respectively. The strongest jump peak of4F9/2→6H13/2at 573 nm is the main reason for the yellow43fluorescence of Dy(III).

    To corroborate the correctness of the luminescent colors, the emission spectra of complexes 1, 2, 4, and 5 were substituted into the CIE color coordinate, which showed the color regions(Fig. 11) of orange-red (0.5930, 0.4059), red (0.6670, 0.3328),green (0.3719, 0.5570), and yellow (0.3992, 0.4311),respectively. The correctness of the above analysis was confirmed.

    4 Conclusion

    In summary, the ambient solution volatilization method successfully synthesized five novel complexes: [Ln(2,4-DFBA)3(phen)]2(Ln = Sm 1, Eu 2, Er 3, 2,4-DFBA = 2,4-difluorobenzoate, phen = 1,10-phenanthroline), [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2(Ln = Tb 4, Dy 5, 2-Cl-6-FBA = 2-chloro-6-fluorobenzoate, terpy = 2,2′:6′2′′-tripyridine). They belong to the monoclinic crystal system with space group P21/n.The difference is that the five complexes are divided into three different structures, mainly reflected in the different coordination modes and the different forces of the twodimensional faceted supramolecular structures. The thermal decomposition of the complexes was investigated using an IR-thermogravimetric linkage technique. In each decomposition stage, intermediate complexes are identified, and metal oxides are the final products. Finally, the solid-state fluorescence of complexes 1, 2, 4 and 5 were investigated, all exhibiting distinctive characteristic ion emission peaks. The fluorescence lifetimes of complexes 2 and 4 were calculated to be 1.288 and 0.648 ms, which is expected to become a novel type of luminescent material.

    Supplementary data: Crystallographic data for the structure reported in this paper are deposited in the Cambridge Crystallographic Data Center (CCDC 2181666(1); CCDC 2181664(2); CCDC 2181662(3); CCDC 2181670(4); CCDC 2181668(5).)

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Declaration of Competing Interest: The authors declare that they do not have any known financial interests or relationships that might have influenced their work.

    猜你喜歡
    鹵代張建軍河北師范大學(xué)
    賀河北師范大學(xué)百廿校慶
    電化學(xué)氧化還原法降解鹵代有機(jī)污染物的研究進(jìn)展
    云南化工(2021年11期)2022-01-12 06:06:10
    河北師范大學(xué)美術(shù)與設(shè)計(jì)學(xué)院油畫作品選登
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    巧用反例在概率論教學(xué)中的作用
    高等學(xué)校書法創(chuàng)作教學(xué)摭談——以河北師范大學(xué)為例
    二鹵代熒光素衍生物的熒光性能調(diào)控
    紅球菌-R04生物降解多鹵代聯(lián)苯的影響因素研究
    18+在线观看网站| 在线观看66精品国产| 精品久久久久久久久久久久久| 俺也久久电影网| 男插女下体视频免费在线播放| a在线观看视频网站| 男人的好看免费观看在线视频| 有码 亚洲区| 亚洲欧美日韩东京热| 淫妇啪啪啪对白视频| 男女那种视频在线观看| 亚洲在线自拍视频| 干丝袜人妻中文字幕| 熟女电影av网| 1024手机看黄色片| 国产精品久久久久久精品电影| 国产精品福利在线免费观看| 成人三级黄色视频| 久久这里只有精品中国| 国产一区二区在线观看日韩| 亚洲综合色惰| 久久精品影院6| 精品午夜福利在线看| 亚洲av日韩精品久久久久久密| a级毛片免费高清观看在线播放| 听说在线观看完整版免费高清| 超碰av人人做人人爽久久| 欧美黑人巨大hd| 别揉我奶头~嗯~啊~动态视频| 日本撒尿小便嘘嘘汇集6| 日本三级黄在线观看| 日韩,欧美,国产一区二区三区 | АⅤ资源中文在线天堂| 午夜精品久久久久久毛片777| 又黄又爽又刺激的免费视频.| 亚洲精品一卡2卡三卡4卡5卡| 日本色播在线视频| 男女之事视频高清在线观看| 男人狂女人下面高潮的视频| 伦精品一区二区三区| 此物有八面人人有两片| 美女xxoo啪啪120秒动态图| 国产欧美日韩一区二区精品| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 99热网站在线观看| 亚洲最大成人手机在线| 亚洲在线自拍视频| ponron亚洲| 国产亚洲91精品色在线| 久久久国产成人免费| 日韩欧美在线二视频| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 能在线免费观看的黄片| 成人综合一区亚洲| 国产高潮美女av| 精品午夜福利在线看| 亚洲最大成人手机在线| 免费在线观看日本一区| av在线蜜桃| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 九九爱精品视频在线观看| 亚洲国产欧美人成| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满 | 日本在线视频免费播放| 黄色视频,在线免费观看| 少妇裸体淫交视频免费看高清| 日本a在线网址| 男女视频在线观看网站免费| 午夜精品久久久久久毛片777| 91精品国产九色| 乱码一卡2卡4卡精品| 欧美日韩国产亚洲二区| 国产免费男女视频| 久久精品91蜜桃| 2021天堂中文幕一二区在线观| 男人舔女人下体高潮全视频| 中文字幕免费在线视频6| 国产精品一区二区性色av| 欧美中文日本在线观看视频| 精品人妻1区二区| 中文字幕人妻熟人妻熟丝袜美| 免费av毛片视频| 亚洲经典国产精华液单| 国产毛片a区久久久久| 麻豆国产av国片精品| 午夜精品在线福利| 最近视频中文字幕2019在线8| 亚洲av成人av| 99久久中文字幕三级久久日本| 国产真实伦视频高清在线观看 | 久久精品久久久久久噜噜老黄 | 露出奶头的视频| 天天躁日日操中文字幕| 天美传媒精品一区二区| 高清毛片免费观看视频网站| 色精品久久人妻99蜜桃| 在线看三级毛片| 最近最新中文字幕大全电影3| 日本在线视频免费播放| 午夜爱爱视频在线播放| 国模一区二区三区四区视频| 男女啪啪激烈高潮av片| 悠悠久久av| 赤兔流量卡办理| 窝窝影院91人妻| 人妻丰满熟妇av一区二区三区| 色尼玛亚洲综合影院| 亚洲三级黄色毛片| 看片在线看免费视频| 狂野欧美白嫩少妇大欣赏| 长腿黑丝高跟| 久久人人爽人人爽人人片va| 亚洲精品成人久久久久久| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区 | 人妻久久中文字幕网| 国产精品嫩草影院av在线观看 | 国产日本99.免费观看| 欧美一区二区亚洲| 国产三级中文精品| 看黄色毛片网站| 日韩大尺度精品在线看网址| 精品久久久久久久人妻蜜臀av| 国产色爽女视频免费观看| 色视频www国产| 欧美性感艳星| 亚洲熟妇中文字幕五十中出| 亚洲av美国av| 国产成年人精品一区二区| 在线观看66精品国产| 精品一区二区三区视频在线观看免费| 日韩欧美精品v在线| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 免费看光身美女| 亚洲天堂国产精品一区在线| 国产精华一区二区三区| 亚洲精品久久国产高清桃花| 亚洲av免费高清在线观看| 日韩欧美免费精品| 亚洲av成人av| 免费av毛片视频| 99国产极品粉嫩在线观看| 动漫黄色视频在线观看| 国产精品人妻久久久久久| 国产精品人妻久久久久久| 婷婷精品国产亚洲av| 91久久精品电影网| 亚洲av二区三区四区| 亚洲第一区二区三区不卡| 成年女人看的毛片在线观看| 国产免费男女视频| 亚洲欧美日韩东京热| 国产精品1区2区在线观看.| 白带黄色成豆腐渣| 一进一出抽搐gif免费好疼| 12—13女人毛片做爰片一| 久久久午夜欧美精品| av国产免费在线观看| 免费高清视频大片| 俄罗斯特黄特色一大片| 成年版毛片免费区| 黄色日韩在线| 久久精品人妻少妇| 欧美zozozo另类| 九九爱精品视频在线观看| 国产毛片a区久久久久| 日韩欧美三级三区| 欧美xxxx性猛交bbbb| 精品久久久久久久久久久久久| 亚洲,欧美,日韩| 欧美3d第一页| a级毛片a级免费在线| 亚洲av第一区精品v没综合| 国产精品一区www在线观看 | 免费人成在线观看视频色| 欧美高清成人免费视频www| 亚洲性久久影院| 国产乱人伦免费视频| 99热这里只有是精品50| 日韩亚洲欧美综合| 欧美中文日本在线观看视频| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 欧美不卡视频在线免费观看| 久久久久久九九精品二区国产| 国产欧美日韩一区二区精品| 国产亚洲av嫩草精品影院| 露出奶头的视频| 日本免费a在线| 国产亚洲av嫩草精品影院| 91精品国产九色| 亚洲在线自拍视频| 国语自产精品视频在线第100页| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站| 色精品久久人妻99蜜桃| 久久久久久久久久成人| 亚洲综合色惰| 美女高潮的动态| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 久久久久久久亚洲中文字幕| 97人妻精品一区二区三区麻豆| 成人无遮挡网站| 成人欧美大片| 亚洲成人中文字幕在线播放| 狂野欧美白嫩少妇大欣赏| 成人永久免费在线观看视频| 一进一出好大好爽视频| 能在线免费观看的黄片| 日本成人三级电影网站| 久久精品影院6| 麻豆av噜噜一区二区三区| 婷婷亚洲欧美| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| av天堂中文字幕网| 深爱激情五月婷婷| 久久久久精品国产欧美久久久| 99视频精品全部免费 在线| 亚洲狠狠婷婷综合久久图片| 久久精品国产鲁丝片午夜精品 | 亚洲熟妇熟女久久| 在线看三级毛片| 在线观看免费视频日本深夜| 国产成年人精品一区二区| 亚洲人与动物交配视频| 国产亚洲精品久久久久久毛片| 国产成人福利小说| 国内久久婷婷六月综合欲色啪| 国产午夜福利久久久久久| 校园人妻丝袜中文字幕| 亚洲欧美日韩高清在线视频| 日本五十路高清| 少妇猛男粗大的猛烈进出视频 | 99国产精品一区二区蜜桃av| 在线国产一区二区在线| 成人国产麻豆网| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 哪里可以看免费的av片| 色av中文字幕| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 午夜日韩欧美国产| 国产高清激情床上av| 国产亚洲精品久久久com| 99精品在免费线老司机午夜| 国产极品精品免费视频能看的| 99久久九九国产精品国产免费| 精品国内亚洲2022精品成人| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线| 日本a在线网址| 国产真实乱freesex| 性欧美人与动物交配| 麻豆一二三区av精品| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 国产一区二区激情短视频| 国产真实乱freesex| 国产探花极品一区二区| 久久久久久久久大av| 干丝袜人妻中文字幕| 内射极品少妇av片p| 天堂√8在线中文| 极品教师在线视频| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 国产一区二区在线观看日韩| 国产精品一区www在线观看 | 一本久久中文字幕| 成人欧美大片| 男女做爰动态图高潮gif福利片| 日本黄色片子视频| 国产高清视频在线播放一区| 啦啦啦观看免费观看视频高清| 精品久久久久久,| 99riav亚洲国产免费| 日韩国内少妇激情av| 亚洲无线在线观看| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 欧美日韩综合久久久久久 | 久久九九热精品免费| 尤物成人国产欧美一区二区三区| 国产午夜福利久久久久久| 十八禁网站免费在线| 亚洲四区av| 亚洲欧美精品综合久久99| 亚洲成av人片在线播放无| 亚洲美女黄片视频| 成年女人永久免费观看视频| 99热这里只有精品一区| 91狼人影院| 自拍偷自拍亚洲精品老妇| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 九九在线视频观看精品| 丰满的人妻完整版| 欧美黑人巨大hd| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 国产精品久久久久久亚洲av鲁大| 露出奶头的视频| 最新在线观看一区二区三区| 婷婷精品国产亚洲av| 在线免费观看的www视频| www.www免费av| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 国产高清视频在线观看网站| 亚洲欧美激情综合另类| 91狼人影院| 亚洲自偷自拍三级| 精品久久久噜噜| 久久精品久久久久久噜噜老黄 | 成人永久免费在线观看视频| 欧美性感艳星| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 干丝袜人妻中文字幕| 国产三级中文精品| 99在线视频只有这里精品首页| 在线a可以看的网站| a级毛片a级免费在线| 可以在线观看毛片的网站| 99久久精品热视频| 亚洲男人的天堂狠狠| 亚洲av中文av极速乱 | 日本-黄色视频高清免费观看| 性插视频无遮挡在线免费观看| 人人妻人人看人人澡| 国产成人福利小说| 国产成人a区在线观看| 在线免费观看的www视频| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 一本一本综合久久| 国产午夜福利久久久久久| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 舔av片在线| 成人精品一区二区免费| 国产黄a三级三级三级人| 亚洲在线自拍视频| 国产精品国产三级国产av玫瑰| 一本精品99久久精品77| 国产不卡一卡二| 久久草成人影院| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 亚洲av中文字字幕乱码综合| 乱人视频在线观看| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 免费av毛片视频| 成年女人毛片免费观看观看9| 日韩欧美精品v在线| 久99久视频精品免费| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 国产黄片美女视频| 国产高清有码在线观看视频| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 老司机深夜福利视频在线观看| 色哟哟·www| 国产激情偷乱视频一区二区| 精品午夜福利在线看| 99热这里只有是精品50| 久久中文看片网| 国产aⅴ精品一区二区三区波| 在线观看一区二区三区| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 我要看日韩黄色一级片| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| 又爽又黄a免费视频| 亚洲一级一片aⅴ在线观看| 久久久久久久久久久丰满 | 日本欧美国产在线视频| 免费在线观看影片大全网站| 国产精华一区二区三区| 国产高清视频在线播放一区| 在线免费十八禁| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 此物有八面人人有两片| 能在线免费观看的黄片| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 免费看a级黄色片| 免费观看的影片在线观看| 亚洲色图av天堂| АⅤ资源中文在线天堂| 99热6这里只有精品| 欧美区成人在线视频| 久久久久久久午夜电影| 免费观看的影片在线观看| 国产精品一区二区免费欧美| 在线a可以看的网站| 国产高清视频在线观看网站| 国产精品久久久久久av不卡| 听说在线观看完整版免费高清| 99在线人妻在线中文字幕| 欧美zozozo另类| 国产综合懂色| 欧美又色又爽又黄视频| 久久久国产成人免费| 欧美绝顶高潮抽搐喷水| 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 在线国产一区二区在线| 香蕉av资源在线| 一本一本综合久久| 熟女电影av网| 久久亚洲真实| 男人狂女人下面高潮的视频| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 精品久久久久久久久av| 欧美日本亚洲视频在线播放| 亚洲最大成人av| 无人区码免费观看不卡| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 床上黄色一级片| 精品久久久久久成人av| av.在线天堂| 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 国产一区二区亚洲精品在线观看| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久久久久| 他把我摸到了高潮在线观看| 亚洲图色成人| АⅤ资源中文在线天堂| 国产高清三级在线| 露出奶头的视频| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 成人欧美大片| 狂野欧美激情性xxxx在线观看| 日韩,欧美,国产一区二区三区 | 一区二区三区四区激情视频 | 国内精品宾馆在线| 国产极品精品免费视频能看的| 成年人黄色毛片网站| 麻豆成人av在线观看| 两个人视频免费观看高清| 国产精品国产高清国产av| 男插女下体视频免费在线播放| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 欧美潮喷喷水| 精品久久久久久久久亚洲 | av在线老鸭窝| 成人国产麻豆网| 少妇人妻精品综合一区二区 | 无人区码免费观看不卡| 国产探花极品一区二区| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| 日本五十路高清| 一本一本综合久久| 日本黄色视频三级网站网址| 狂野欧美激情性xxxx在线观看| 十八禁国产超污无遮挡网站| 最新中文字幕久久久久| 无人区码免费观看不卡| 熟女电影av网| 中亚洲国语对白在线视频| 尾随美女入室| 美女高潮喷水抽搐中文字幕| 别揉我奶头 嗯啊视频| 亚洲av中文av极速乱 | 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 黄色女人牲交| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 国产精品久久视频播放| 不卡一级毛片| 国产成人aa在线观看| 日韩中字成人| 国产精品永久免费网站| 久久久久久国产a免费观看| 韩国av一区二区三区四区| videossex国产| av.在线天堂| 成年免费大片在线观看| avwww免费| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 日韩,欧美,国产一区二区三区 | 桃色一区二区三区在线观看| 中文字幕av成人在线电影| 精品人妻熟女av久视频| 国产三级中文精品| 午夜福利在线观看吧| 亚洲性久久影院| 国产一区二区亚洲精品在线观看| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品| 97碰自拍视频| 欧美成人一区二区免费高清观看| .国产精品久久| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 丰满人妻一区二区三区视频av| 99久久中文字幕三级久久日本| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 欧美中文日本在线观看视频| 亚洲美女黄片视频| 国产单亲对白刺激| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 他把我摸到了高潮在线观看| 亚洲第一电影网av| 欧美bdsm另类| 内地一区二区视频在线| 一进一出好大好爽视频| 亚洲人成网站高清观看| 国国产精品蜜臀av免费| 在线观看舔阴道视频| 啪啪无遮挡十八禁网站| 国产老妇女一区| 色精品久久人妻99蜜桃| 色哟哟哟哟哟哟| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 精品无人区乱码1区二区| 国产精品福利在线免费观看| 欧美丝袜亚洲另类 | 国产精品精品国产色婷婷| 91在线观看av| 一级毛片久久久久久久久女| 欧美+日韩+精品| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 免费观看人在逋| 欧美高清成人免费视频www| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| h日本视频在线播放| 男女之事视频高清在线观看| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 免费人成在线观看视频色| 久久久久久大精品| 美女被艹到高潮喷水动态| or卡值多少钱| 麻豆一二三区av精品| 精品久久国产蜜桃| 亚洲国产日韩欧美精品在线观看| 九色成人免费人妻av| 中文字幕av在线有码专区| 一个人免费在线观看电影| 国产精品一区二区性色av| 成年免费大片在线观看| 国产欧美日韩精品亚洲av| 欧美日韩国产亚洲二区| 一本一本综合久久| 亚洲精品亚洲一区二区| 真实男女啪啪啪动态图| 亚洲av一区综合| 日本黄色视频三级网站网址| 婷婷丁香在线五月| 亚洲av美国av| 婷婷亚洲欧美| 久久久久性生活片| 亚洲美女视频黄频| 国产伦在线观看视频一区| 高清毛片免费观看视频网站| 婷婷色综合大香蕉| 少妇的逼水好多| 精品久久久久久久末码| 亚洲乱码一区二区免费版| 亚洲不卡免费看| av在线天堂中文字幕| 不卡视频在线观看欧美| 禁无遮挡网站| 精品国产三级普通话版| 在线播放国产精品三级| 免费观看人在逋| 91午夜精品亚洲一区二区三区 |