• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型(4-HBA)SbX5·H2O 類鈣鈦礦單晶及其鹵素結(jié)構(gòu)對發(fā)光特性的調(diào)控

    2023-02-17 03:55:32莊必浩靳子驄田德華朱遂意曾琳茜范建東婁在祝李聞哲
    物理化學學報 2023年1期
    關鍵詞:暨南大學鈣鈦礦研究院

    莊必浩,靳子驄,田德華,朱遂意,曾琳茜,范建東,4,*,婁在祝,*,李聞哲,*

    1暨南大學,信息科學與技術學院電子科學與工程系,新能源技術研究院,廣州 510632

    2暨南大學,新型半導體與器件廣東省高等學校重點實驗室,廣州 510632

    3暨南大學,納米光子學研究院,廣州 511443

    4山東大學,晶體材料國家重點實驗室,濟南 250100

    1 Introduction

    Organic-inorganic hybrid perovskite materials are developing rapidly because of their unique photoelectric conversion properties. Among them, the power conversion efficiency (PCE)of solar cells based on organic-inorganic lead halide perovskite has exceeded 25%1–3. Likewise, the antibonding of lead element special 6s2inert electron pairs coupling to halide p orbitals would lead to the excellent luminescent properties, such as high quantum yield and narrow half peak width of luminescence spectrum4–6. At present, the photoluminescence quantum yield(PLQY) of organic-inorganic hybrid lead halide perovskite has exceeded 98%7–9. Although great progress has been made in the study of organic-inorganic hybrid lead halide perovskite, a series of problems such as thermal stability and lead toxicity also deserve deeply explored10–13.

    The general structural formula of organic-inorganic perovskite is ABX3(A is organic cation, B is metal cation, X is halogen anion)14. For B-site cations, the metal ions with ns2electronic configuration are commonly used to construct perovskite, such as Ge2+, Sn2+, Pb2+and Sb3+15. Compared with other metal ions, Sb5+ion has the advantages of high chemical stability and low chemical toxicity16–19. For example, an orally active composition of meglumine antimonate (MA) and βcyclodextrin (β-CD) is prepared at a molar ratio of antimony(Sb): β-CD of 7 : 1, allow large animals to take large doses of Sb5+20. Antimony-based materials have been extensively studied,such as the antimony-based superconductor CsV3Sb5, where detailed high-voltage transport measurements reveal a more complex relationship between charge-density-wave and superconductivity21. The research on the optical properties of antimony-based perovskite has made a great breakthrough recently, for example, (Ph4P)2SbCl5single crystal shows 87%PLQY broadband red-light emission at 648 nm15and(TMA)2SbCl5·DMF single crystal shows 67% broadband red light emission at 630 nm22.

    For halogen coordination ions, their lone-pair electrons usually hybridize with the empty orbitals in the central ions to form hybrid orbitals, which leads to the interaction between halogen coordination ions and central ions. Among them, the interaction between various halogen coordination ions and central metal ions affects the octahedral distortion, which could furtherly tune the optical properties. For example, Ye et al.regulated the emission wavelength in the range of 580–840 nm by regulating the proportion of halogens in FAPbBrxI3-xSCs23.At present, the structural instability of organic-inorganic lead halide perovskite is due to the widespread use of A-site cations with small radius, such as methyl ammonium, ethyl ammonium,methylamine, etc. High temperature accelerates the A-site cations breaking away from the lattice and perovskite decomposition24.

    In this paper, the 4-HBA (4-hydroxybenzylamine) with benzene derivative is used as A-site to construct a series of novel single crystal (4-HBA)SbX5·H2O by solvothermal method. The insertion of 4-HBA expands the metal octahedral frames so that(4-HBA)SbX5·H2O has a high stable 0D structure. The PLQY of(4-HBA)SbCl5·H2O single crystal is significantly enhanced than that of (4-HBA)SbBr5·H2O single crystal.

    2 Experimental

    2.1 Preparation method

    (4-HBA)SbBr5·H2O: 0.075 g 4-HBA and 0.189 g SbBr3were placed in a glass vial of 5 mL. 750 μL of acetonitrile, 500 μL of hydrobromic acid (48% (w, mass fraction) in water) and 300 μL of deionized water were added into the glass vial to prepare the precursor solution. The precursor solution was placed on hot plate and heated to 140 °C for 600 min. The temperature decreased from 140 to 100 °C at the rate of 0.6 °C·h-1. And then the precursor cooled from 100 to 60 °C at the rate of 0.9 °C·h-1.During this process, the critical crystal nucleus extends in the direction of the three directions. After 5 h the precursor is reduced to room temperature, the surface impurities are washed with hydrobromic acid, and finally (4-HBA)SbBr5·H2O single crystal is obtained.

    (4-HBA)SbBr3Cl2·H2O: 0.075 g of 4-HBA, 0.040 g of SbCl3and 0.096 g of SbBr3, 750 μL of acetonitrile, 100 μL of hydrobromic acid, 400 μL of hydrochloric acid (37% (w) in water) and 270 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above.

    (4-HBA)SbCl5·H2O: 0.075 g of 4-HBA and 0.12 g of SbCl3,750 μL acetonitrile, 500 μL of hydrochloric acid and 300 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above25,26.

    2.2 Characterization method

    The determination of unit-cell parameters and data collections were performed on XtaLAB Synergy-i using the scan technique with Mo Kαradiation (λ = 0.71073 ? (1 ? = 0.1 nm)), for data collection at a temperature of 295(1) K. The single crystal structure was resolved and refined by SHELXT and OLEX227–29.All H atoms were placed in geometrically calculated positions and refined using a riding model with C―H = 0.97 ? (methylene)and 0.96 ? (methyl), with Uiso(H) = 1.2 Ueq (C) or 1.5 Ueq(methyl C). The visual structure of Fig. 1 can be obtained by importing the obtained single crystal data into VESTA software,and the simulated X-ray diffraction pattern can be obtained by using the powder diffraction pattern calculation function in VESTA. X-ray photoelectron spectroscopy (XPS) was measured with Thermo K-Alpha+. All XPS spectra were shifted to account for sample charging using inorganic carbon at 284.80 eV as a reference. Three kinds of single crystals were crushed and ground into powders, and then characterized by Cu Kαradiation under 40 kV and 40 mA by Bruker D8 Advantage X-ray diffractometer (XRD). The step and the time are set to 0.01° and 0.2 s respectively. The UV-Vis NIR spectra measurement of the single crystals was carried out by placing a single crystal in a double-beam spectrophotometer equipped with an integrating sphere (Japan-Shimadzu-UV-3600 plus). The PL images and spectra of the samples were recorded with the XPQY-EQE-Adv fluorescence quantum efficiency measurement system under the treatment of the integrating sphere. The PLE spectrum was obtained by the test of Edinburgh-steady-State/Transient Fluorescence Spectrometer FLS1000. The samples were excited through an oilimmersion objective lens (Olympus,UplanSApochromat, 100×, 1.4 NA) and a circular-polarized 405 nm Plus wave laser controlled by a PDL-800B driver(PicoQuant). The lifetime distribution is directly obtained from the FLIM equipment system.

    Fig. 1 Structure of the crystal lattice of (4-HBA)SbX5·H2O and arrangement along the (010) crystallographic orientation.

    3 Results and discussion

    3.1 Structure

    As shown in Fig. 1, five halogen atoms and one oxygen atom from 4-HBA surround antimony ion and form a pseudooctahedral structure with the [SbBr5O]2-framework. The organic 4-HBA is embedded in the gap to form a (4-HBA)SbBr5·H2O single crystal with space group P-1. With the substitution of Cl-ions, the unit cell volume decreases from 821.8974 to 741.2648 ?3. The specific crystallographic parameters are shown in Table 1.

    Table 1 Details of X-ray crystallographic parameters of (4-HBA)SbX5·H2O single crystals and their corresponding photophysical characteristics.

    In order to further verify the structure, the powder X-ray diffraction test was carried out, and the results are shown in Fig.2. The X-ray diffraction pattern of the experimental powder is almost consistent with the X-ray diffraction pattern simulated from the single crystal data, which indicates that the crystal composition is mainly (4-HBA)SbX5·H2O single crystal. We also notice that the experimental powder X-ray diffraction pattern a) and b) have miscellaneous peaks in the range of 20°–22°, which is due to the residual part of SbBr3in the single crystal.

    In order to determine the element composition and valence state of (4-HBA)SbX5·H2O single crystal, we also characterized it by X-ray photoelectron spectroscopy (XPS). As expected, the peaks of C 1s, N 1s, O 1s, Cl 2p, Sb 3p and Br 3d can be clearly detected in the full spectrum scan. For the valence state analysis of Sb element, because the peaks of Sb 3d5/2and O 1s overlap,we use the peak position of Sb 3d3/2to analyze, we can see that the binding energy of Sb 3d3/2were 540.19, 540.23, 540.28 eV,indicating that the Sb element in (4-HBA)SbX5·H2O single crystal is Sb5+30. In addition, the binding energy of Cl is much larger than that of Br, which indicates that the interaction between Cl-and Sb5+is stronger than that between Br-and Sb5+,as shown in the Fig. 3.

    3.2 Optical properties

    As shown in Fig. 4a–d, the absorption edge of (4-HBA)SbBr5·H2O single crystal is 450 nm. With the substitution of Cl-, the absorption edge blue-shifts toward 400 nm. For the fluorescence excitation spectra (PLE), we can see a strong peak at 350 nm and a shoulder peak at 332 nm. The excitationwavelengths of 332 and 350 nm of (4-HBA)SbX5·H2O single crystals correspond to interband absorption and exciton absorption, respectively, which come from the high energy transition of electrons in organic matter and the exciton transition of metal octahedron, respectively, which is similar to TpyInCl5perovskite24.

    Fig. 2 Powder and single crystal XRD patterns of (4-HBA)SbBr5·H2O, (4-HBA)SbBr3Cl2·H2O, (4-HBA)SbCl5·H2O compounds..

    Fig. 3 XPS spectra of (4-HBA)SbX5·H2O single crystals.

    Fig. 4 UV-Vis and PL spectra of (4-HBA)SbX5·H2O single crystal, the inset shows the excitation spectra of the single crystals.

    Among them, we can see that the excitation spectra of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O are similar, but there is a difference in UV-Vis. This is because the exciton of(4-HBA)SbBr3Cl2·H2O relaxes from high energy level to LUMO energy level, and then recombines to HOMO energy level,emitting long wavelength fluorescence. In the case of (4-HBA)SbCl5·H2O, the exciton relaxes directly from LUMO to HOMO energy level directly. In addition, the photoluminescence spectra (PL) show that the emission peak of(4HBA)SbBr3Cl2·H2O blue-shifts from 618 to 595 nm following the Br-completely replaced by Cl-, which is due to the increase of band gap caused by chloride ion substitution. It is worth noting that the large Stokes shift between the exciton absorption and emission peaks of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O (268 and 245 nm) and the broadband emission peak (FWHM of 162 and 139 nm) are typical characteristics of STE emission31. To further verify the luminescence mechanism of the single crystal, we characterized the time-resolved decay curves of (4-HBA)SbCl5·H2O, as shown in Fig. 4d. It can be seen that the average lifetime of the carriers is 3.82 ns, which is similar to the (TPA)2SbCl5single crystal which is also the STE luminescence mechanism32. In addition, we characterize the PL of (4-HBA)SbCl5·H2O single crystal at different excitation wavelengths as shown in Fig. 4e. The results show that the PL peak wavelength excited by different wavelength of 365 nm and 385 nm are at the same position, which can be attributed to the fact that after being trapped by the defect level, excitons excited by different wavelengths have the same relaxation process to the ground state. So they have the same emission spectrum, and thus STE can be further verified. The principle is shown in Fig. 4f.

    We performed fluorescence lifetime imaging (FLIM) of (4-HBA)SbX5·H2O to characterize the optical properties. As shown in Fig. 5a–c, the average fluorescence lifetime of (4-HBA)SbBr5·H2O single crystal is about 12 ns. After the introducing of Cl-, the fluorescence lifetime is significantly increased to 22 ns. It should be noted that the lifetime distribution of (4-HBA)SbCl5·H2O single crystal is wider than that of both (4-HBA)SbBr5·H2O and (4-HBA)SbBr3Cl2·H2O single crystals. Besides, the improvement of PLQY likely benefit from the fact that the substitution of Br-by Cl-shrinks the size of the Sb-octahedron, which results in a limitation of the 4-HBA spatial vibration33. Furtherly, the exciton shielding is reduced,then the exciton absorption would be enhanced34. In addition,the chromaticity coordinate gamut diagram shows that the substitution of Cl-increases the color temperature from 2616 to 3106 K, and confirms the emission conversion from orange light to yellow light. Among them, the chromaticity diagram result of(4-HBA)SbBr5·H2O single crystal comes from the color of the single crystal itself, as shown in Fig. 5d–f.

    3.3 Band Structure and Spin–Orbit Coupling

    To explore the intrinsic relationship between the electronic structure and properties of (4-HBA)SbX5·H2O single crystals,we used density functional theory (DFT) calculation to obtain the band structure, total and orbital-resolved projected density of states. The band structure plots calculated by the generalized gradient approximation (GGA) exchange-correlation functional are displayed at the top panel of Fig. 6a–c. Note that the calculation was implemented under spin degenerate condition,and the spin–orbit coupling (SOC) effect was not involved in the calculation. We can see that when (4-HBA)SbBr5·H2O is doped by Cl-, the band gap width increases from 2.99 to 3.58 eV, which is consistent with the rules of UV-Vis absorption spectrum analysis, as shown in Table 1. The (4-HBA)SbBr5·H2O single crystal has a direct band gap, and when doped with Cl-,(4HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O have an indirect band gap, which needs the assistance of phonon for the electron transition from valence band maximum (VBM) to conduction band minimum (CBM). In addition, we further exhibit the density of states in Fig. 6d–f. The results show that the VBM of(4-HBA) SbX5·H2O single crystal is mainly contributed by the P electron orbital of both halogen group element (Cl-, Br-) and O element, while the CBM of single crystal is mainly contributed by the P electron orbital of Sb element. It is worth noting that the VBM contributed by halogen element in (4-HBA)SbCl5·H2O is much larger than that of (4-HBA)SbBr5·H2O and(4HBA)SbBr3Cl2·H2O, which can be attributed to the fact that the charge combination from Sb to halogen is much more efficient than that to oxygen, which is why the PLQY of (4-HBA)SbCl5·H2O is higher than others..

    Fig 5 FLIM spectra and 1931 color space chromaticity diagram.

    Fig. 6 Calculated band structure by the GGA-PBE exchange-correlation functional of (a) (4-HBA)SbBr5·H2O,(b) (4-HBA)SbBr3Cl2·H2O, and (c) (4-HBA)SbCl5·H2O. Total density of states (TDOS) and projected density of states (PDOS) of (d) (4-HBA)SbBr5·H2O, (e) (4-HBA)SbBr3Cl2·H2O, and (f) (4-HBA)SbCl5·H2O.

    4 Conclusions

    We have fabricated the emerging lead-free perovskite-like (4-HBA)SbX5·H2O single crystal. The emission of the PL spectra of (4-HBA)SbX5·H2O single crystal come from the STE of octahedron. Through the regulation of Sb-octahedral structure,the luminous color changes from orange to yellow, and the average fluorescence lifetime is extended from 12 to 22 ns. In addition, the PLQY of single crystals increase nearly 40 times from 0.2% to 7.9%. The current study provides the potential applications through octahedral structure regulation to assemble novel types of hybrid single crystals.

    Acknowledgment: The authors thank the Guangdong Engineering Research Center of Thin-Film Photovoltaic Technology and Equipment and Key Laboratory of New Semiconductors and Devices of Universities in Guangdong Province.

    猜你喜歡
    暨南大學鈣鈦礦研究院
    北京食品科學研究院
    肉類研究(2022年5期)2022-06-16 05:53:24
    工程技術研究院簡介
    從心所欲不逾矩——為中國戲曲研究院成立70周年作
    戲曲研究(2021年3期)2021-06-05 07:06:46
    不是我!是他搗亂!
    “派系撕裂校園”:暨南大學驅(qū)長風潮研究(1933—1934)
    近代史學刊(2017年2期)2017-06-06 02:25:25
    當鈣鈦礦八面體成為孤寡老人
    物理學進展(2017年1期)2017-02-23 01:35:44
    2016年中國新聞史學會學術年會在暨南大學成功舉辦
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    久久久久久久国产电影| 亚洲欧美中文字幕日韩二区| 免费日韩欧美在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产成人av激情在线播放| 这个男人来自地球电影免费观看 | 欧美3d第一页| 久久久久国产精品人妻一区二区| 国产精品国产三级国产专区5o| √禁漫天堂资源中文www| 日韩不卡一区二区三区视频在线| 亚洲美女视频黄频| 国产亚洲午夜精品一区二区久久| 久久人人爽av亚洲精品天堂| 久久精品久久精品一区二区三区| 国产日韩一区二区三区精品不卡| 在线观看国产h片| av免费在线看不卡| 大码成人一级视频| 搡老乐熟女国产| 国产免费视频播放在线视频| 久久午夜福利片| 男男h啪啪无遮挡| 午夜激情久久久久久久| 亚洲欧洲国产日韩| 日本色播在线视频| 亚洲色图 男人天堂 中文字幕 | 精品一区二区免费观看| 亚洲精品久久久久久婷婷小说| 日韩欧美一区视频在线观看| 韩国av在线不卡| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 精品人妻在线不人妻| 熟妇人妻不卡中文字幕| 男女午夜视频在线观看 | 人体艺术视频欧美日本| www.av在线官网国产| 亚洲人成77777在线视频| 亚洲成色77777| 免费在线观看完整版高清| 亚洲国产欧美日韩在线播放| 侵犯人妻中文字幕一二三四区| 亚洲精品久久午夜乱码| 丰满乱子伦码专区| 精品第一国产精品| 精品卡一卡二卡四卡免费| 国产成人免费观看mmmm| 波多野结衣一区麻豆| 国产精品欧美亚洲77777| 国产av国产精品国产| 少妇 在线观看| 三上悠亚av全集在线观看| 不卡视频在线观看欧美| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 激情五月婷婷亚洲| 最近最新中文字幕免费大全7| 亚洲精品国产色婷婷电影| 亚洲欧美日韩卡通动漫| 人妻少妇偷人精品九色| 热99国产精品久久久久久7| 下体分泌物呈黄色| 一区二区三区乱码不卡18| 黄色怎么调成土黄色| 亚洲内射少妇av| 亚洲综合色网址| 26uuu在线亚洲综合色| 国产精品无大码| 欧美日韩成人在线一区二区| 国产成人精品无人区| 宅男免费午夜| 亚洲丝袜综合中文字幕| 欧美精品高潮呻吟av久久| 亚洲精华国产精华液的使用体验| 欧美日韩一区二区视频在线观看视频在线| 午夜福利乱码中文字幕| 国产精品蜜桃在线观看| 狠狠精品人妻久久久久久综合| 中文乱码字字幕精品一区二区三区| 咕卡用的链子| 欧美日韩国产mv在线观看视频| 国产视频首页在线观看| 国产精品三级大全| 777米奇影视久久| 国产成人91sexporn| 91aial.com中文字幕在线观看| 国产黄频视频在线观看| freevideosex欧美| 2022亚洲国产成人精品| 久久热在线av| 亚洲欧洲国产日韩| 久久精品国产自在天天线| 91午夜精品亚洲一区二区三区| 国产黄频视频在线观看| 亚洲内射少妇av| 精品国产一区二区久久| 国产高清三级在线| av有码第一页| 国产精品 国内视频| 在线观看免费日韩欧美大片| 亚洲国产欧美在线一区| 亚洲成人手机| 蜜桃国产av成人99| 男人爽女人下面视频在线观看| 性色avwww在线观看| 亚洲,一卡二卡三卡| videosex国产| 在线观看www视频免费| 亚洲精品日本国产第一区| 欧美 亚洲 国产 日韩一| 丰满迷人的少妇在线观看| 婷婷色综合www| 51国产日韩欧美| 亚洲国产欧美日韩在线播放| 午夜免费男女啪啪视频观看| videosex国产| 国产精品成人在线| 男女国产视频网站| 婷婷色综合www| 婷婷成人精品国产| 久久这里有精品视频免费| www.av在线官网国产| 精品国产一区二区三区久久久樱花| 国产精品国产三级专区第一集| 日本vs欧美在线观看视频| 波多野结衣一区麻豆| 777米奇影视久久| 9色porny在线观看| 啦啦啦中文免费视频观看日本| 夜夜骑夜夜射夜夜干| 亚洲av综合色区一区| 午夜福利视频在线观看免费| 18禁国产床啪视频网站| 精品国产一区二区三区久久久樱花| 国产精品无大码| 久久精品久久久久久噜噜老黄| 久久久久精品久久久久真实原创| 美女主播在线视频| 美女主播在线视频| 亚洲国产欧美在线一区| 十分钟在线观看高清视频www| 国产成人91sexporn| 中文字幕人妻熟女乱码| 又大又黄又爽视频免费| 视频区图区小说| 亚洲国产av影院在线观看| 国产一区二区在线观看av| av播播在线观看一区| av线在线观看网站| 91久久精品国产一区二区三区| 少妇人妻久久综合中文| 日韩精品有码人妻一区| 日本wwww免费看| 少妇人妻久久综合中文| 爱豆传媒免费全集在线观看| 亚洲av男天堂| 国产成人免费观看mmmm| 日韩三级伦理在线观看| 国产片内射在线| 大片电影免费在线观看免费| 久久久久人妻精品一区果冻| 在线观看国产h片| 国产亚洲欧美精品永久| 免费久久久久久久精品成人欧美视频 | 免费大片18禁| 看免费av毛片| 多毛熟女@视频| 纵有疾风起免费观看全集完整版| 婷婷色麻豆天堂久久| 男人操女人黄网站| 亚洲av成人精品一二三区| 少妇的丰满在线观看| 一级毛片电影观看| 91在线精品国自产拍蜜月| 嫩草影院入口| a级毛片黄视频| 国产日韩欧美视频二区| 一级黄片播放器| 亚洲成人一二三区av| 国产在线一区二区三区精| 免费黄频网站在线观看国产| 男人添女人高潮全过程视频| 国产精品国产av在线观看| 免费看光身美女| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区在线观看99| 人人妻人人澡人人爽人人夜夜| 人体艺术视频欧美日本| 母亲3免费完整高清在线观看 | 精品亚洲成a人片在线观看| 国产又爽黄色视频| 国产高清三级在线| 热99久久久久精品小说推荐| 亚洲精品久久成人aⅴ小说| 日韩成人伦理影院| 亚洲成av片中文字幕在线观看 | 999精品在线视频| 亚洲美女搞黄在线观看| 国产精品久久久av美女十八| 午夜福利视频在线观看免费| 一区二区日韩欧美中文字幕 | 国产白丝娇喘喷水9色精品| av.在线天堂| 日产精品乱码卡一卡2卡三| 最黄视频免费看| 久久久国产一区二区| av片东京热男人的天堂| 日韩中字成人| 欧美精品国产亚洲| 日本与韩国留学比较| 哪个播放器可以免费观看大片| 精品国产乱码久久久久久小说| 久久久久久伊人网av| 欧美另类一区| 国产免费视频播放在线视频| 在现免费观看毛片| 日韩免费高清中文字幕av| a级毛片黄视频| 国产xxxxx性猛交| 男女边摸边吃奶| 最黄视频免费看| 久久 成人 亚洲| 一级黄片播放器| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 久久精品国产亚洲av天美| 乱码一卡2卡4卡精品| 黄色一级大片看看| 高清黄色对白视频在线免费看| av播播在线观看一区| 日韩制服骚丝袜av| 天美传媒精品一区二区| 国产 精品1| 日韩欧美一区视频在线观看| 永久免费av网站大全| 国产极品粉嫩免费观看在线| 侵犯人妻中文字幕一二三四区| kizo精华| 欧美日韩视频精品一区| 一级毛片电影观看| 欧美成人午夜精品| 国产毛片在线视频| 久久这里只有精品19| 在线观看免费高清a一片| av在线app专区| 交换朋友夫妻互换小说| 成年美女黄网站色视频大全免费| 精品久久蜜臀av无| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 成人手机av| 日本爱情动作片www.在线观看| 久热久热在线精品观看| 五月开心婷婷网| av免费在线看不卡| 中文字幕精品免费在线观看视频 | 国产女主播在线喷水免费视频网站| 啦啦啦在线观看免费高清www| 大片免费播放器 马上看| 亚洲国产精品国产精品| 边亲边吃奶的免费视频| 亚洲av男天堂| av在线播放精品| 建设人人有责人人尽责人人享有的| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 国产亚洲一区二区精品| 在线天堂最新版资源| 男女国产视频网站| 18禁观看日本| 满18在线观看网站| 日韩制服骚丝袜av| 下体分泌物呈黄色| h视频一区二区三区| 人成视频在线观看免费观看| 九色成人免费人妻av| 99久久综合免费| 国产成人91sexporn| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 国产成人av激情在线播放| 一本大道久久a久久精品| 免费黄网站久久成人精品| 尾随美女入室| 久久久久久久久久久久大奶| 日本vs欧美在线观看视频| 黄色怎么调成土黄色| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 国产一区二区三区av在线| 美女内射精品一级片tv| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀 | 久久免费观看电影| 中文字幕人妻熟女乱码| 久久热在线av| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| 日韩一本色道免费dvd| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 欧美精品一区二区免费开放| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区国产| 午夜视频国产福利| 波多野结衣一区麻豆| 最后的刺客免费高清国语| 国产亚洲精品第一综合不卡 | 9191精品国产免费久久| 91成人精品电影| 亚洲欧美精品自产自拍| 亚洲欧洲精品一区二区精品久久久 | av女优亚洲男人天堂| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 黑人高潮一二区| 大片免费播放器 马上看| 亚洲第一av免费看| 男女免费视频国产| 国产精品三级大全| 美女视频免费永久观看网站| 亚洲在久久综合| 色吧在线观看| 亚洲国产最新在线播放| 热99久久久久精品小说推荐| av福利片在线| 成年人午夜在线观看视频| 蜜桃在线观看..| 最黄视频免费看| 热99国产精品久久久久久7| 18禁国产床啪视频网站| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| 高清毛片免费看| 五月开心婷婷网| 一区二区三区精品91| 午夜久久久在线观看| 亚洲精品日本国产第一区| 97在线人人人人妻| 十八禁网站网址无遮挡| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 成人无遮挡网站| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 丁香六月天网| 国产精品.久久久| 亚洲综合色惰| 国内精品宾馆在线| 日本91视频免费播放| 午夜福利网站1000一区二区三区| 草草在线视频免费看| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 少妇的逼水好多| 伊人亚洲综合成人网| 777米奇影视久久| 水蜜桃什么品种好| 国产乱人偷精品视频| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 好男人视频免费观看在线| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| 极品人妻少妇av视频| 一区二区三区四区激情视频| 国产高清三级在线| 91午夜精品亚洲一区二区三区| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 国产成人精品无人区| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频 | 久久免费观看电影| 成人影院久久| 婷婷成人精品国产| 国产一区二区三区综合在线观看 | 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| 亚洲国产看品久久| 人人妻人人澡人人看| 青春草国产在线视频| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 国产探花极品一区二区| 精品午夜福利在线看| 丝袜喷水一区| 日韩精品有码人妻一区| av电影中文网址| 成人亚洲精品一区在线观看| 午夜av观看不卡| 9色porny在线观看| 国产精品99久久99久久久不卡 | 精品久久久久久电影网| av国产精品久久久久影院| 中文字幕免费在线视频6| 五月开心婷婷网| 极品人妻少妇av视频| 春色校园在线视频观看| 在线观看一区二区三区激情| 亚洲精品aⅴ在线观看| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| kizo精华| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 国产一级毛片在线| 老司机影院毛片| 亚洲国产精品专区欧美| 好男人视频免费观看在线| 久久精品国产a三级三级三级| 久久国产精品大桥未久av| 亚洲av.av天堂| 2021少妇久久久久久久久久久| 日韩电影二区| 国产女主播在线喷水免费视频网站| 亚洲欧洲日产国产| 国产精品一二三区在线看| 伦精品一区二区三区| 看非洲黑人一级黄片| 咕卡用的链子| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| av一本久久久久| 韩国高清视频一区二区三区| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| 伊人久久国产一区二区| 成年美女黄网站色视频大全免费| 一级片'在线观看视频| 99久久精品国产国产毛片| 国产淫语在线视频| 大香蕉久久成人网| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| 国产成人精品无人区| √禁漫天堂资源中文www| 人妻系列 视频| 日韩在线高清观看一区二区三区| av免费观看日本| 咕卡用的链子| 久久婷婷青草| 亚洲精品,欧美精品| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 免费看不卡的av| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 中文欧美无线码| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 日韩av在线免费看完整版不卡| 免费观看性生交大片5| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 99热全是精品| 欧美xxⅹ黑人| 视频中文字幕在线观看| 国产免费又黄又爽又色| 亚洲av成人精品一二三区| 久久精品久久久久久久性| av.在线天堂| 高清不卡的av网站| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩亚洲高清精品| 18在线观看网站| 一本大道久久a久久精品| 日韩,欧美,国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 黄色 视频免费看| 天天躁夜夜躁狠狠久久av| 亚洲高清免费不卡视频| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 男人舔女人的私密视频| 最新的欧美精品一区二区| 免费日韩欧美在线观看| 国产精品.久久久| 日韩成人av中文字幕在线观看| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 巨乳人妻的诱惑在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av蜜桃| 女人久久www免费人成看片| 亚洲国产精品一区三区| tube8黄色片| 国产国语露脸激情在线看| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 国产精品久久久久久av不卡| 亚洲,欧美精品.| 日韩三级伦理在线观看| 亚洲美女搞黄在线观看| 美女主播在线视频| 亚洲国产欧美日韩在线播放| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃| 久久午夜福利片| 免费在线观看完整版高清| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| 少妇精品久久久久久久| 搡女人真爽免费视频火全软件| 熟妇人妻不卡中文字幕| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 精品一区在线观看国产| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 亚洲欧美色中文字幕在线| 亚洲综合色惰| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 国产日韩欧美视频二区| 男的添女的下面高潮视频| 99久久精品国产国产毛片| 波野结衣二区三区在线| 精品第一国产精品| 少妇的逼水好多| 国产男女内射视频| 亚洲第一av免费看| 中国三级夫妇交换| 亚洲美女搞黄在线观看| av免费观看日本| 性色av一级| 久久鲁丝午夜福利片| 国产成人av激情在线播放| 97超碰精品成人国产| 97在线视频观看| 久久精品熟女亚洲av麻豆精品| 日韩三级伦理在线观看| 亚洲少妇的诱惑av| 久久这里只有精品19| 男人舔女人的私密视频| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 免费黄色在线免费观看| 制服丝袜香蕉在线| 一本大道久久a久久精品| 大陆偷拍与自拍| 久久精品国产综合久久久 | 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 国产亚洲欧美精品永久| 日本欧美视频一区| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| 一级毛片 在线播放| 亚洲伊人色综图| 亚洲国产精品专区欧美| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 18在线观看网站| 99热这里只有是精品在线观看| 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 日韩精品有码人妻一区| 国产精品麻豆人妻色哟哟久久| 久久久精品94久久精品| 色5月婷婷丁香| 久久综合国产亚洲精品| 久久av网站| 午夜免费鲁丝| 十八禁网站网址无遮挡| av在线播放精品| 看十八女毛片水多多多| 9191精品国产免费久久| 99国产综合亚洲精品| 高清欧美精品videossex| 90打野战视频偷拍视频| 午夜91福利影院| 大陆偷拍与自拍| 99久久精品国产国产毛片| 最近最新中文字幕大全免费视频 | 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 一二三四在线观看免费中文在 | 高清av免费在线| 国产午夜精品一二区理论片| 青春草亚洲视频在线观看| 赤兔流量卡办理| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 美女内射精品一级片tv| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看|