• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol:A theoretical study

    2023-02-07 08:01:10WANGGuiruZHICuimeiYANGWen
    燃料化學(xué)學(xué)報(bào) 2023年2期

    WANG Gui-ru,ZHI Cui-mei,YANG Wen

    (1.College of Chemical and Biological Engineering, Shanxi Key Laboratory of High Value Utilization of Coal Gangue,Taiyuan University of Science and Technology, Taiyuan 030024, China;2.Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

    Abstract: The structure-sensitive of Cu catalyst for furfural hydrogenation to furfuryl alcohol was explored by employing Cu(111) and Cu(211) model systems.Herein,the adsorption behavior of reactants and intermediates,and the possible reaction mechanism of furfuryl alcohol formation were investigated.For furfuryl alcohol formation,the preferred pathway is F-CHO +2H→F-CH2O+H→F-CH2OH,in which the second H addition is the rate-determining step.Meanwhile,Cu(211) surface exhibits higher activity to furfuryl alcohol formation than that on Cu(111) surface.According to our analysis,the undercoordinated sites on the Cu(211) surface could facilitate H2 dissociation and stabilize the adsorbed furfural,thereby promoting the furfural hydrogenation and the furfuryl alcohol formation.This work provides a feasible approach for regulating the catalytic activity and selectivity in furfural conversion.

    Key words: Cu catalysts;structure-sensitive;furfural hydrogenation;furfuryl alcohol

    The global climate changes and the diminishing reservation of fossil resources have received considerable attention.Biomass are abundant and effective carbon-sustainable sources,and they are also regarded as important alternative energies.Furfural,as one of the promising functionalized biomass-derived molecules,can be obtained from hemicelluloses[1-8].Due to the high reactivity of furfural,it can be used to synthesize a series of chemical intermediates and apply in downstream production[9-10]. Catalytic selective hydrogenation of furfural into furfuryl alcohol has attracted great interest in terms of economics and safety.Conversion of furfural into furfuryl alcohol has generally been performed on metal catalysts,such as noble metal Pd[11],Pt[12],and Ru[13]-based system.Unfortunately,the high cost and poor selectivity of these catalysts preclude them from the industrial application.Cu-Cr catalysts are highly active and selective in industrial furfural hydrogenation,but they can cause environmental pollution because of the toxicity of Cr6+[14,15].To overcome these issues,a great effort has been taken to synthesize environmentally friendly Crfree catalysts for furfuryl alcohol production,involving Cu-Pd,Pt or Ni alloy.It has been found that the catalyst surface structures (terraces,steps,and corners)can impose a key effect on product distribution in Ni[16,17]and Pd[18]systems.For example,Wang et al.[18]believed that the activation of furan ring of furfural and the hydrogenation of C=O group are carried out at terrace and step edge of Pd,respectively.Recently,Zhang’group stated that high coordinated Ni surface is responsible for the formation of tetrahydrofurfuryl alcohol,whereas more 2-methylfuran are generated on low coordinated Ni surface in furfuryl alcohol conversion[17].Up to now,the mechanism for furfuryl alcohol formation from furfural conversion over modifying Cu catalysts is not fully understood.

    This work employs Cu(111) and Cu(211) surfaces to address structure sensitive of Cu catalyst in furfural conversion to furfuryl alcohol.Cu(111) is the most stable surface[19-21],while Cu(211) surface consisting(100)-type step and (111) terrace exhibits higher reactivity[22-26].The adsorption behaviors of reactant of furfural (F-CHO),the main intermediate (F-CH2O,FCHOH) and the goal product of furfuryl alcohol (FCH2OH),and the possible reaction mechanism were systematically investigated by Density Functional Theory (DFT).This study opens up a strategy of modulating the structure of metal surface for the selective hydrogenation of furfural.

    1 Calculation details

    As shown in Figure 1,5 × 5 Cu(111) and 2 × 4 Cu(211) surfaces were constructed to represent the Cu catalysts with different structures.Cu(111) surface consists of four atom layers;the bottom two layers were frozen,whereas the remaining atoms and reacting molecules were allowed to relax.For the stepped Cu(211) surface,eight atom layers were modeled,and the top four layers and the adsorbates were allowed to relax,while the rest atoms were fixed.A vacuum of 15 ? was imposed to avoid the interaction between the adjacent slabs.2 × 2 × 1 Monkhorst-Pack mesh was used for the Brillouin-zone integrations in the calculation.

    Figure 1 Possible adsorption sites on Cu(111) and Cu(211)surface from top and side view

    All periodic DFT calculations were implemented in the Vienna Ab initio Simulation Package (VASP)software[27].The Perdew,Burke,and Ernzerhof (PBE)functional was utilized to compute the exchangecorrelation energy[28].To address the van der Waals(vdW) interactions between the adsorbate and the surface,the semiempirical Grimme’s D3 correction[29,30]was adopted.A plane-wave basis set with a cutoff of 400 eV in combination with the projected augmented wave (PAW) method was used[31,32].The geometry optimization was performed with force threshold of 0.05 eV/? and the energy threshold of 10-5eV.The transition states were searched by the climbing image nudged elastic band (CI-NEB) method[33],and they were further optimized by the dimer method[34,35].Stable reactants,transition states and products configurations were verified by vibrational frequencies.

    The adsorption energyEadsis calculated by eq.(1):

    whereEmol/surfis the total electronic energy of adsorbate adsorbed on the surface,Emol/surfandEmolare the total electronic energies of the pure Cu surface and molecule in the gas phase,respectively.The more negative valueEadsis,the more the stable adsorbate structure is.

    The activation barrier (Ea) is defined as the energy differences between the transition state (TS) and initial state (IS),whereas for the reaction energy (ΔEr),it is the difference between the final state (FS) and initial state (IS) energies,calculating by eq.(2) and (3):

    Thed-band center (εd) is usually used to predict the interaction of adsorbate and metal surface,which is calculated by eq.(4):

    whereEis the energy of Fermi level,and ρdrefers to the projected state density (PDOS) of the atomd-band of catalyst surface.

    2 Results and discussion

    2.1 Adsorption of intermediates

    2.1.1 Cu(111) surface

    The adsorption sites (e.g.top,bridge,fcc,and hcp site)[36]on Cu(111) surface and the stable adsorption configurations of intermediates as well as the key geometric parameters were shown Figures 1 and 2,and Table 1,respectively. Furfural is favorable for adsorption in a flat configuration with the O7atom of CHO group binding with the Cu atom,according to previous reports[36-38].The calculated adsorption energy is -0.70 eV. Besides,the adsorption of the intermediates involving in furfuryl alcohol formation was also taken into account.

    Table 1 Adsorption energies and key geometrical parameters of various intermediates on Cu(111) and Cu(211) surface

    Figure 2 Intermediates involved in furfuryl alcohol formation via furfural hydrogenation on Cu(111) and Cu(211) surface

    Furfuryl alcohol tends to adopt a flat configuration,similar as that of furfural.The O7-Cu distance is 2.344 ? and the corresponding adsorption energy for furfural alcohol is -1.17 eV. The intermediates of F-CH2O and F-CHOH favor adsorbing at the fcc and top site via O7atom and C6atoms,with the adsorption energies of -3.39 and -1.81 eV,respectively.H atom can be adsorbed either hcp(-2.65 eV) or fcc site (-2.66 eV),and the calculated results are in line with previous reported value (-2.54 and -2.55 eV)[36].

    2.1.2 Cu(211) surface

    In order to understand the influence of surface structure on the adsorption,the adsorption behavior of reactant and intermediates was further investigated on Cu(211) surface.On Cu(211) surface,top,bri,hcp and fcc at the step edge,and hollow site at the (100) step were considered.Furfural tends to use O7atom to adsorb at the step edge of the Cu top site,along with the binding of C3,C4and C5atoms of furanic ring with the Cu surface.The O7-Cu,C3-Cu,C4-Cu and C5-Cu bond lengths are 1.997,2.245,2.261 and 2.209 ?,respectively.The O7-Cu distance (dO7-Cu) is obviously decreased from 1.997 ? on Cu(211) surface to 2.105 ? on Cu(111) surface,thereby making the adsorption energy become higher on Cu(211) (-1.43 eV) than on Cu(111) surface (-0.70 eV).

    For F-CH2O,it is adsorbed at the step Cu siteviaO7of CH2O group and the C3,C4and C5atoms of furanic ring,with the distance of O7-Cu,C3-Cu,C4-Cu and C5distances of 1.881,2.300,2.220 and 2.366 ?,respectively.The corresponding adsorption energy is -3.60 eV.The F-CHOH favors to adsorb at the Cu step edge via C6atom of CHO group,and the C2,C3and C5atoms of furanic ring.The C6-Cu bond length and the calculated adsorption energy are 2.247 ? and -1.97 eV,respectively.Furfuryl alcohol (FCH2OH) is adsorbed at the step edge of Cu atom with the adsorption energy of -1.50 eV,which is stronger than that on Cu(111) surface.The adsorption of H atom at hcp and fcc site shows similar energy to that adsorption on Cu(111) surface.

    Based on the above results,it could be found that the intermediates in the formation of furfuryl alcohol are inclined to adsorbing at the step edge of Cu(211)surface.The different adsorption energy and adsorption configurations of these intermediates on Cu(211)surface and Cu(111) surface indicate that geometric and electronic properties of various Cu surfaces can affect the production distribution.Thus,the mechanism for furfural conversion to furfuryl alcohol on Cu(111)and Cu(211) surface was further explored in the following section.

    2.2 H2 dissociation and diffusion

    Since H2activation is indispensable in the process of furfural conversion to furfuryl alcohol,H2dissociation and diffusion were investigated (Figure 3).The adsorption of H2on Cu(111) is weak with the adsorption energy of only -0.10 eV,being in line with the previous reported results ((-0.08)-(-0.07) eV[36,39]).The step edge of Cu(211) surface effectively promotes the adsorption of H2with the adsorption energy increasing to -0.23 eV.Meanwhile,the H-H bond length of adsorbed H2on Cu(211) surface (0.803 ?) is larger than on Cu(111) (0.753 ?),although both of them are higher than that of the gas H2molecule (dH-H=0.750 ?[40]).The activation energy of H2dissociation on Cu(111) surface is 0.54 eV,which is consistent with the theoretical value reported in the previous work[36,39].However,it is decreased to 0.46 eV on Cu(211)surface,with the reaction energy of -0.50 eV.Thus,H2is preferentially dissociated into two H atoms on Cu(211) surface than on Cu(111) surface.After H2dissociation,the diffusion of the generated H atom on Cu(111) and Cu(211) surface was further illustrated.The migration of H atom from the hcp site to the fcc site of Cu(111) surface or of Cu(211) surface requires a low energy barrier of 0.14 and 0.17 eV,respectively,indicating that H atom diffusion is quite facile on both surfaces.As a result,the low dissociation and diffusion energy barrier could promote the subsequent hydrogenation and hydrogenolysis reaction[41].

    Figure 3 Reaction pathway for H2 dissociation and diffusion on Cu(111) surface and Cu(211) surface

    2.3 Mechanism of furfural conversion to furfuryl alcohol

    With the acquisition of the stable adsorption configuration,the possible reaction mechanism of furfuryl alcohol formation over Cu(111) surface and Cu(211) surface was then unraveled. The corresponding activation barriers and reaction energies were displayed in Table 2.

    Table 2 Activation barriers and reaction energies of various elementary reactions involving in furfural alcohol formation on Cu(111) and Cu(211) surface

    2.3.1 Mechanism on Cu(111) surface

    Two possible pathways have been proposed for furfural hydrogenation to furfuryl alcohol,as shown in Figure 4.

    Figure 4 Reaction potential energy profile of furfuryl alcohol formation on Cu(111) surface

    Figure 5 Energy profile of furfural conversion to furfuryl alcohol on Cu(211) surface

    Furfural can be hydrogenated by C6or O7to generate alkoxide intermediate (F-CH2O) or hydroxyalkyl (F-CHOH). The first hydrogenation mode occurs at the C6atom of C=O group,which requires the energy barrier and the reaction energy of 0.54 and -0.54 eV,respectively.In TS3,C6-H distance is decreased to 1.451 ?.For the formation of F-CHOH,the hydrogen atom will firstly attack to O7atom,and this process is endothermic by 0.20 eV,with a barrier of 0.81 eV.In the TS4,H is located at the top site of Cu with the O7-H bond length of 1.353 ?.The calculated results suggest that F-CH2O formation is favorable in both kinetics and thermodynamics,which is consistent with the previous report[36].Except for hydrogenation,the CHO group may also undergo the C-O bond scission (R5).However,this process should be insignificant,as it needs to overcome energy barrier as high as 1.77 eV,with reaction energy of 0.53 eV.In TS5,the C-O bond is increased to 2.105 ?.

    Further hydrogenation of F-CH2O to form FCH2OH requires an energy barrier of 1.12 eV.In addition,the F-CH2OH can be also fabricated through hydrogenation of F-CHOH,with the energy barrier of 0.35 eV.In TS6 and TS7,the O7-H and C6-H bond lengths are decreased to 1.575 and 1.924 ?,respectively.Based on the above calculated results,furfuryl alcohol is more favorable to be produced through the F-CH2O intermediate (black line) via the route of F-CHO+2H→F-CH2O+H→F-CH2OH with the highest energy surface of 0.58 eV,rather than through F-CHOH intermediate (red line).In the favorable pathway,F-CH2O+H→F-CH2OH is the ratelimiting step,requiring the activation energy of 1.12 eV.

    2.3.2 Mechanism on Cu(211) surface

    The energy profiles and the optimized structure for the furfuryl alcohol formation on the Cu(211)surface were provided in Figure 5.

    The F-CHO+H was adopted as the initial state,and the hydrogenation of C6and O7of F-CHO to form F-CH2O and F-CHOH were then considered,respectively.The activation energy barriers and corresponding reaction energies of these two steps are 0.52 and -0.15 eV,and 1.08 and 0.49 eV,respectively.In TS3*,H is adsorbed on the top site of Cu atom,with the H-C6bond length of 1.679 ?.In TS4*,the H-O7bond length is shortened from 3.753 ? of the initial state to 1.372 ? of optimized state.Similar to the results on Cu(111) surface,the detachment of O atom from CHO group of F-CHO is impossible,as the energy barrier reaches 1.75 eV,with reaction energy of 0.98 eV.In TS5*,the C-O bond length is 1.950 ?.When the F-CH2O+H and FCHOH+H were used as the initial states,the formation of furfuryl alcohol requires activation energies of 0.78 and 0.48 eV,with the reaction energies of -0.09 and -0.73 eV,respectively.In TS6*and TS7*,the O7-H and C6-H bond lengths are shortened from the initial 3.663 and 3.346 ? to 1.501 and 1.869 ?,respectively.Therefore,F-CHO +2H→F-CH2O+H→F-CH2OH is also the dominant pathway for furfuryl alcohol formation on Cu(211)surface,and the highest energy surface of the whole reaction is 0.63 eV.Meanwhile,F-CH2O+H→FCH2OH is the rate-limiting step,requiring the activation barrier of 0.78 eV.

    2.3.3 Comparison of mechanism between Cu(111)and Cu(211) surface

    In order to evaluate effect of Cu catalyst structure on the kinetics in furfuryl alcohol formation,the optimal pathway (e.g.F-CHO+2H→F-CH2O +H→F-CH2OH) on these two surfaces were compared,as depicted in Figure 6.On Cu(111) surface,the first and second hydrogenations of F-CHO to form furfuryl alcohol need to overcome energy barriers of 0.54 and 1.12 eV on Cu(111) surface (black line),being higher than those on Cu(211) surface (0.52 and 0.78 eV) (red line).This confirms that Cu(211) surface should have higher reactivity to furfuryl alcohol formation.

    2.4 Effect of Cu catalyst structure for furfuryl alcohol formation

    To get further insight into the effect of electronic structure of Cu(111) and Cu(211) surface,the charge density difference of furfural adsorption was calculated.As shown in Figure 7(a),the charge density accumulation suggests that furfural mainly interacts with Cu(111) surface via O7atom of aldehyde group (CHO),due to low affinity between C and Cu atoms,whereas for Cu(211) surface,the atom of O7of CHO group and the C3,C4and C5atoms of the furanic ring can interact with the step edge of Cu(Figure 7(b)).It is worthy to note that the electron density accumulation and consumption on Cu(211)surface are larger than that on Cu(111) surface.To better understand the charge transfer from F-CHO to Cu(111) surface or Cu(211) surface,the Bader charge population analysis was further carried out and it gave the similar results as that of charge density difference analysis.In addition,thedproject density of states of Cu(111) and Cu(211) surface was calculated,to reveal the interaction between the adsorbates and the surface metald-band[22,42].As shown in Figure 7(c) and 7(d),thed-band centers of Cu(111) and Cu(211) are -2.40 and -2.24 eV,respectively.This also demonstrates the stronger interaction between the adsorbate and the Cu(211)surface,as thed-band center of Cu(211) surface is closer to Fermi level[43,44].On the other hand,the geometric effect may play a key role in furfural adsorption on Cu(111) and Cu(211) surface.The bond length between O7and Cu on Cu(211) surface(dO7-Cu=1.997 ?) is shorter than that on Cu(111)surface (dO7-Cu=2.105 ?).Both the electronic and geometric effects result in the stronger adsorption of F-CHO on Cu(211) (Eads=-1.43 eV) than that on Cu(111) surface (Eads=-0.70 eV). Therefore,introduction of step active sites into Cu catalyst promotes the conversion of furfural to furfuryl alcohol.

    Figure 6 Most favorable pathway for furfuryl alcohol formation on Cu(111) surface and Cu(211) surface

    Figure 7 Differential charge diagram (a) and Bader charge (b) of furfural adsorption on Cu(111) and Cu(211) surface;d-projected density of states (PDOS) of the Cu atoms on Cu(111) (c) and Cu(211) (d) surfaces

    3 Conclusions

    In summary,hydrogenation of furfural into furfuryl alcohol on Cu(111) surface and Cu(211)surface was investigated by DFT calculations,to unravel the structure sensitivity of Cu catalyst for furfural conversion.The calculated results indicate that F-CH2O is the dominant intermediate for furfuryl alcohol formation on Cu(111) and Cu(211) surfaces,along with the F-CH2O+H→F-CH2OH serving as the rate-limiting step.Stepped Cu(211) surface is predicted to have a higher reactivity than Cu(111) surface.This is because of: (i) the promotion of the dissociation of H2;(ii) the enhancement of the adsorption of furfural,which is confirmed by the results of charge density difference andd-band center.Therefore,controlling the catalyst structure can effectively improve the catalytic performance of furfural hydrogenation.The insight shown in this work provides a new horizon for practical catalytic processes involved in the refining of biomass-derived oils.

    两个人免费观看高清视频| 欧美日韩av久久| 在线观看舔阴道视频| 亚洲av成人一区二区三| 99国产精品99久久久久| 9191精品国产免费久久| 国产成人精品久久二区二区免费| 操出白浆在线播放| 成年人午夜在线观看视频| 国产欧美日韩一区二区三区在线| 久久亚洲精品不卡| 亚洲久久久国产精品| 午夜福利乱码中文字幕| 久久精品国产亚洲av高清一级| av有码第一页| www.999成人在线观看| 伊人亚洲综合成人网| 少妇人妻久久综合中文| 色婷婷av一区二区三区视频| 亚洲综合色网址| 欧美精品av麻豆av| 久久精品国产综合久久久| 亚洲专区国产一区二区| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 蜜桃在线观看..| 欧美日韩亚洲综合一区二区三区_| videosex国产| 另类亚洲欧美激情| 在线精品无人区一区二区三| 狠狠狠狠99中文字幕| 亚洲一区二区三区欧美精品| 久久性视频一级片| 久久精品国产亚洲av高清一级| 中文字幕人妻丝袜制服| 精品福利观看| 狠狠精品人妻久久久久久综合| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 国产不卡av网站在线观看| 精品少妇黑人巨大在线播放| 日韩欧美免费精品| 亚洲av欧美aⅴ国产| videosex国产| 伊人亚洲综合成人网| 国产麻豆69| 欧美精品人与动牲交sv欧美| 亚洲伊人色综图| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 日本黄色日本黄色录像| 十八禁网站网址无遮挡| 久久国产精品大桥未久av| 大陆偷拍与自拍| 免费观看人在逋| 啪啪无遮挡十八禁网站| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| h视频一区二区三区| 满18在线观看网站| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 午夜福利,免费看| 亚洲五月婷婷丁香| av国产精品久久久久影院| 欧美黑人精品巨大| 国产精品二区激情视频| 精品一区二区三区四区五区乱码| 黄色毛片三级朝国网站| 久久久久久人人人人人| 啦啦啦 在线观看视频| 69精品国产乱码久久久| 91九色精品人成在线观看| av在线app专区| 国产av精品麻豆| 亚洲av男天堂| 下体分泌物呈黄色| 日本精品一区二区三区蜜桃| 性少妇av在线| 手机成人av网站| 80岁老熟妇乱子伦牲交| tocl精华| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 免费高清在线观看日韩| 夜夜夜夜夜久久久久| 国产精品久久久久成人av| 亚洲国产毛片av蜜桃av| 亚洲一区二区三区欧美精品| 9色porny在线观看| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 国产一区二区 视频在线| 秋霞在线观看毛片| 99国产精品一区二区三区| 精品免费久久久久久久清纯 | 日韩制服骚丝袜av| 黄色视频,在线免费观看| 亚洲中文av在线| 国产欧美亚洲国产| 久久中文字幕一级| 国产成人影院久久av| 久久精品久久久久久噜噜老黄| av天堂久久9| 国产成人精品久久二区二区免费| av欧美777| 精品福利永久在线观看| av在线播放精品| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 成人18禁高潮啪啪吃奶动态图| 婷婷成人精品国产| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 亚洲久久久国产精品| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 在线观看舔阴道视频| 国产又爽黄色视频| 超色免费av| 脱女人内裤的视频| 丁香六月天网| 国产成人影院久久av| 看免费av毛片| 久久国产精品男人的天堂亚洲| 电影成人av| av天堂久久9| 亚洲国产欧美日韩在线播放| 亚洲欧美精品自产自拍| 亚洲国产欧美一区二区综合| 午夜精品久久久久久毛片777| av又黄又爽大尺度在线免费看| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 久久精品熟女亚洲av麻豆精品| 大型av网站在线播放| 日韩一卡2卡3卡4卡2021年| 中文字幕av电影在线播放| 一边摸一边做爽爽视频免费| 女人被躁到高潮嗷嗷叫费观| 波多野结衣av一区二区av| 午夜日韩欧美国产| 天堂俺去俺来也www色官网| 国产日韩欧美亚洲二区| 国产主播在线观看一区二区| 99国产精品一区二区蜜桃av | 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 精品人妻一区二区三区麻豆| 亚洲av国产av综合av卡| 少妇猛男粗大的猛烈进出视频| 丁香六月天网| 男人操女人黄网站| 在线观看舔阴道视频| 国产精品香港三级国产av潘金莲| 亚洲欧美成人综合另类久久久| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 午夜精品久久久久久毛片777| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 99久久国产精品久久久| 亚洲欧美日韩另类电影网站| 亚洲av日韩精品久久久久久密| e午夜精品久久久久久久| 欧美日韩av久久| 老汉色av国产亚洲站长工具| 大码成人一级视频| 黄色 视频免费看| 成在线人永久免费视频| 老司机午夜福利在线观看视频 | 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 欧美+亚洲+日韩+国产| 满18在线观看网站| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 日韩三级视频一区二区三区| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美| 交换朋友夫妻互换小说| 在线观看舔阴道视频| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 亚洲欧美清纯卡通| 十八禁网站网址无遮挡| 午夜成年电影在线免费观看| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| 9191精品国产免费久久| 蜜桃在线观看..| 视频区图区小说| 免费在线观看视频国产中文字幕亚洲 | 男女边摸边吃奶| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 操出白浆在线播放| 建设人人有责人人尽责人人享有的| 黑丝袜美女国产一区| 搡老乐熟女国产| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 久久女婷五月综合色啪小说| 国产人伦9x9x在线观看| 精品一区二区三卡| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 久久国产精品大桥未久av| 丰满人妻熟妇乱又伦精品不卡| 韩国高清视频一区二区三区| 久久久久久久久久久久大奶| 日韩免费高清中文字幕av| av欧美777| 18在线观看网站| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 在线亚洲精品国产二区图片欧美| 深夜精品福利| 视频在线观看一区二区三区| 一区在线观看完整版| 大码成人一级视频| 亚洲色图综合在线观看| 国产精品一二三区在线看| 欧美在线黄色| 日韩欧美免费精品| 国产97色在线日韩免费| netflix在线观看网站| 女人被躁到高潮嗷嗷叫费观| 80岁老熟妇乱子伦牲交| 男女下面插进去视频免费观看| 99热网站在线观看| 91精品国产国语对白视频| 18禁观看日本| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| av一本久久久久| 日韩中文字幕欧美一区二区| 永久免费av网站大全| 亚洲精品av麻豆狂野| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 12—13女人毛片做爰片一| 69av精品久久久久久 | 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 久久人人爽av亚洲精品天堂| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 久久久久久久国产电影| 久久性视频一级片| 秋霞在线观看毛片| 亚洲精华国产精华精| 午夜福利影视在线免费观看| 视频区欧美日本亚洲| 亚洲国产精品一区三区| 精品一区二区三卡| 精品久久蜜臀av无| 老熟女久久久| 日韩有码中文字幕| 另类精品久久| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级做爰电影| 涩涩av久久男人的天堂| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 国产av又大| 国产精品久久久久久精品电影小说| 久久精品人人爽人人爽视色| 青春草亚洲视频在线观看| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 欧美xxⅹ黑人| 一本久久精品| 最近中文字幕2019免费版| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 少妇的丰满在线观看| 日韩一区二区三区影片| 最近最新免费中文字幕在线| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 精品国产乱子伦一区二区三区 | av国产精品久久久久影院| 日韩欧美一区二区三区在线观看 | 99国产精品一区二区蜜桃av | 啦啦啦在线免费观看视频4| 蜜桃在线观看..| 2018国产大陆天天弄谢| 亚洲成人免费av在线播放| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 在线看a的网站| 99九九在线精品视频| 国产欧美亚洲国产| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 午夜成年电影在线免费观看| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 国产精品成人在线| 另类精品久久| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 青草久久国产| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 永久免费av网站大全| 免费在线观看视频国产中文字幕亚洲 | 青春草亚洲视频在线观看| 久久亚洲精品不卡| 日本猛色少妇xxxxx猛交久久| 日本91视频免费播放| 菩萨蛮人人尽说江南好唐韦庄| 欧美亚洲日本最大视频资源| a在线观看视频网站| 水蜜桃什么品种好| 亚洲av日韩在线播放| 夜夜骑夜夜射夜夜干| 成在线人永久免费视频| 国产亚洲精品一区二区www | 成人免费观看视频高清| 亚洲中文日韩欧美视频| 国产免费现黄频在线看| 亚洲av成人一区二区三| 久久中文字幕一级| av不卡在线播放| 欧美日韩亚洲综合一区二区三区_| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 亚洲精品国产av蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 婷婷成人精品国产| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 欧美成狂野欧美在线观看| 亚洲欧美激情在线| tocl精华| 久久久精品区二区三区| 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 美女高潮喷水抽搐中文字幕| 久久ye,这里只有精品| 两个人免费观看高清视频| 欧美另类一区| 久久av网站| 亚洲国产精品一区三区| 久久久久精品人妻al黑| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频| 国产av精品麻豆| av电影中文网址| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 大型av网站在线播放| 亚洲国产精品成人久久小说| 国产黄色免费在线视频| 欧美亚洲日本最大视频资源| 男女下面插进去视频免费观看| 免费一级毛片在线播放高清视频 | 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品一区三区| 丝袜喷水一区| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 高清视频免费观看一区二区| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 国产一区二区激情短视频 | 青春草视频在线免费观看| 中文字幕人妻熟女乱码| 九色亚洲精品在线播放| 99国产综合亚洲精品| 国产一区二区 视频在线| 一个人免费看片子| 国产黄色免费在线视频| 久久青草综合色| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 亚洲国产成人一精品久久久| 亚洲人成电影观看| 国产在视频线精品| 久久久久精品人妻al黑| 成人影院久久| 日韩视频在线欧美| 午夜精品久久久久久毛片777| 女性被躁到高潮视频| 美女高潮喷水抽搐中文字幕| 大码成人一级视频| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 国产精品熟女久久久久浪| 十八禁网站网址无遮挡| 成人三级做爰电影| 少妇粗大呻吟视频| 一级片免费观看大全| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 91国产中文字幕| 美国免费a级毛片| 捣出白浆h1v1| 搡老乐熟女国产| 久久久久精品人妻al黑| 在线观看舔阴道视频| 亚洲精品中文字幕一二三四区 | 国产av一区二区精品久久| 精品第一国产精品| 国产免费现黄频在线看| 欧美精品啪啪一区二区三区 | 美国免费a级毛片| 国产成人精品久久二区二区91| 久久国产精品影院| 男人操女人黄网站| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 18禁国产床啪视频网站| 99国产精品99久久久久| 亚洲国产精品一区二区三区在线| 日韩一区二区三区影片| 国产成人av教育| 欧美av亚洲av综合av国产av| 伦理电影免费视频| 美女高潮到喷水免费观看| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 不卡一级毛片| 老司机午夜十八禁免费视频| 国产成人av激情在线播放| 一区福利在线观看| 精品一区在线观看国产| www.av在线官网国产| 9191精品国产免费久久| 久久久久久久久久久久大奶| 亚洲国产欧美日韩在线播放| 成人国产av品久久久| 精品少妇黑人巨大在线播放| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 性色av一级| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 免费高清在线观看日韩| 国产精品99久久99久久久不卡| 久久九九热精品免费| 国产精品影院久久| 午夜久久久在线观看| www.999成人在线观看| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 亚洲国产欧美日韩在线播放| 久久久久视频综合| 国产伦理片在线播放av一区| 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 女人被躁到高潮嗷嗷叫费观| 777米奇影视久久| 亚洲国产精品999| 精品卡一卡二卡四卡免费| 纵有疾风起免费观看全集完整版| 国产成人欧美| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 青青草视频在线视频观看| 国产精品自产拍在线观看55亚洲 | 99久久99久久久精品蜜桃| 国产福利在线免费观看视频| 性色av一级| e午夜精品久久久久久久| 欧美变态另类bdsm刘玥| 精品高清国产在线一区| cao死你这个sao货| 蜜桃国产av成人99| 精品久久蜜臀av无| 在线精品无人区一区二区三| 欧美人与性动交α欧美软件| 国产精品成人在线| 无遮挡黄片免费观看| 男女高潮啪啪啪动态图| 亚洲中文av在线| 色老头精品视频在线观看| 如日韩欧美国产精品一区二区三区| 国产野战对白在线观看| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 久久中文看片网| 在线观看舔阴道视频| 亚洲av国产av综合av卡| 97在线人人人人妻| 中国国产av一级| 亚洲精品粉嫩美女一区| 午夜91福利影院| 中国美女看黄片| 欧美+亚洲+日韩+国产| 国产亚洲午夜精品一区二区久久| www.av在线官网国产| 男人爽女人下面视频在线观看| 男人操女人黄网站| 精品国产一区二区三区四区第35| av在线播放精品| 永久免费av网站大全| 欧美日韩亚洲高清精品| 日本猛色少妇xxxxx猛交久久| 国产在线免费精品| 老司机在亚洲福利影院| 久久精品久久久久久噜噜老黄| 一区福利在线观看| 亚洲欧美日韩高清在线视频 | 日韩制服骚丝袜av| kizo精华| 国产成+人综合+亚洲专区| 青草久久国产| 天天影视国产精品| av在线播放精品| 国产精品久久久久久人妻精品电影 | 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液| 国产精品九九99| 亚洲va日本ⅴa欧美va伊人久久 | 国产成+人综合+亚洲专区| 天天操日日干夜夜撸| 一二三四在线观看免费中文在| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 一区在线观看完整版| 天天躁夜夜躁狠狠躁躁| 亚洲av男天堂| 欧美97在线视频| 免费av中文字幕在线| 91麻豆精品激情在线观看国产 | 久久久久国产精品人妻一区二区| 1024视频免费在线观看| 亚洲中文字幕日韩| 最黄视频免费看| 乱人伦中国视频| 老司机午夜福利在线观看视频 | 亚洲av成人不卡在线观看播放网 | 欧美av亚洲av综合av国产av| 亚洲精品国产一区二区精华液| 久久天堂一区二区三区四区| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 一本久久精品| 久久久久久久久久久久大奶| 国产亚洲一区二区精品| 美女主播在线视频| 啦啦啦免费观看视频1| 久久 成人 亚洲| 一级片免费观看大全| av天堂在线播放| 91老司机精品| 亚洲国产精品一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线不卡| 精品国产乱码久久久久久男人| 黄色 视频免费看| 国产精品 欧美亚洲| 亚洲九九香蕉| 悠悠久久av| 丰满人妻熟妇乱又伦精品不卡| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 自拍欧美九色日韩亚洲蝌蚪91| 日韩熟女老妇一区二区性免费视频| 九色亚洲精品在线播放| 日本wwww免费看| 欧美午夜高清在线| 美女福利国产在线| 在线观看免费日韩欧美大片| 久久狼人影院| 亚洲欧美一区二区三区久久| 欧美成狂野欧美在线观看| h视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区av在线| 青春草视频在线免费观看| 国产免费一区二区三区四区乱码| 欧美成狂野欧美在线观看| h视频一区二区三区| 人妻人人澡人人爽人人| 欧美日韩一级在线毛片| 国产91精品成人一区二区三区 | 国产淫语在线视频| 丰满少妇做爰视频|