• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bottom-up design and assembly with superatomic building blocks

    2022-12-28 09:55:16FaminYu于法民ZhonghuaLiu劉中華JiaruiLi李佳芮WanrongHuang黃婉蓉XinruiYang楊欣瑞andZhigangWang王志剛
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王志剛中華

    Famin Yu(于法民) Zhonghua Liu(劉中華) Jiarui Li(李佳芮) Wanrong Huang(黃婉蓉)Xinrui Yang(楊欣瑞) and Zhigang Wang(王志剛)

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2College of Physics,Jilin University,Changchun 130012,China

    3Institute of Theoretical Chemistry,College of Chemistry,Jilin University,Changchun 130023,China

    Keywords: superatom,bottom-up,assembly,atomic level

    1. Introduction

    Designing specific atomically precise materials has attracted much attention in recent years,[1–4]including the organic,[5,6]metallic,[7,8]alloyed,[9]rare-earth,[10]and metalorganic frameworks,[11]etc.[12]However, the traditional topdown approaches (e.g., physical mechanical exfoliation and etching) suffer from the limitations that it is difficult to control microscopic morphology and may destroy the original properties of units.[13–15]In 1960,Feynman proposed that the quantum confinement effect of electrons enabled nanoparticles to exhibit uncommon properties.[16]It can be concluded that there is plenty of room at the bottom to synthesize novel materials,and the bottom-up design approach is currently attracting a lot of attention.[17,18]Not only that,since the structures that can be used as the bottom units of material science far exceed the types of elements in the periodic table,the development of the bottom-up atomic-level approach that directly targets specific needs will also promote a new paradigm,[19–21]which is of great significance for the future.

    Superatoms originate from cluster structures composed of atoms, and they have discrete superatomic molecular orbitals(SAMOs) that exhibit symmetries like atomic orbitals.[22–27]Consequently,superatoms are ideal atomic-level bottom units that meet Feynman’s expectations, and bottom-up assembly based on superatoms has become an important research direction.[9,28–30]Among the superatoms,it was found that the light actinide(An)elements Ac, Th, Pa, U and Pu embedded in fullerene C28can form a series of stable endohedral metallofullerene(EMF)superatomic structures with gradual electron arrangement.[31–35]In particular,the two unpaired electrons on the C28cage facilitate bonding with neighboring units by spinpolarized magnetic coupling.[36]Thus, actinide-based EMF superatoms have the potential to serve as artificial units for the bottom-up design of desirable structures with known bonding properties. Recently, a planar single-crystal fullerene was reported in which C60cages are covalently bonded with each other.[37]Evidently,artificial fullerenes are potential units for building unique planar topology structures. Despite the above understanding, assembly as a specific requirement generally faces complex intra-and inter-molecular interactions and still requires a clearer understanding of the path from the unit design to assembly.

    In this work,we took a series of actinide-based EMF superatoms An@C28(An=Ac,Pa,U,Np and Pu)as the units,on the Au(111)surface,to realize a complex assembly system including a rich variety of one, two, three and four chemical bonding, as well as including the intermolecular dispersion adsorption between different parts. The distinction in this study is that,unlike previous large-scale structural searches for possible building blocks, we first conceived a complex system containing rich intra- and inter-molecular interactions as a specific requirement. Then,based on the different electronic structures of EMF superatoms obtained at the atomic level, a complex structure with different bonding properties was constructed on the Au(111)surface.Therefore,this study not only develops a bottom-up assembly strategy based on the superatomic artificial units but also contributes to the establishment of a new research paradigm.

    2. Methods

    To carry out this research,the third-generation dispersioncorrected density functional theory (DFT-D3)[38]of firstprinciples was used in optimizing the structures of An@C28(An=Ac,Pa,U,Np and Pu). Specifically,the functional used was Perdew–Burke–Ernzerhof(PBE),[39]which has proved to have an advantage in the calculation of actinide-based EMF superatoms.[33,35]The double-ζbasis set was used for C.[40]In terms of the relativistic effect, Stuttgart–Dresden (SDD)pseudopotential and basis set were used for actinide atoms(ECP60MWB for Ac,Pa,U,Np and Pu).[41]

    The Au(111) surface was selected as the substrate because the fullerene can be physically adsorbed on the Au surface.[42]Moreover, the charge transfer between them is negligible, and it is more likely to detach than adsorbed on Ag and Cu surfaces.[43,44]Further, to study the bulk complex located on the Au substrate, quantum mechanics/molecular mechanics (QM/MM) simulations were performed,[45]using the ONIOM (our Own N-layer Integrated molecular Orbital molecular Mechanics)method.[46]It has been applied in many important chemical, biological, and material systems.[47]In this work, the QM region for the complex was treated at the PBE-D3 level with SDD pseudopotential and basis set(ECP60MWB for Ac, Pa, U, Np and Pu) for actinide atoms while the double-ζbasis set for C.The MM region was frozen and was described using the universal force field(UFF),which was developed to provide a reliable description for bonded and nonbonded interactions systems containing all the periodic table elements.[48]No symmetry restriction was imposed on the optimization calculation. The Gaussian 16 package[49]was used to optimize the geometric structures while the Multiwfn 3.8 package[50]was used to analyse the electronic structures.

    3. Results and discussion

    By embedding actinide atoms (including Ac, Pa, U, Np and Pu) into the C28cage, a series of EMF superatoms Ac@C28, Pa@C28, U@C28, Np@C28and Pu@C28superatoms were formed (Fig. 1(a)). Different from the atomembedded C60structure that loses the symmetry due to the off-center position of the embedded atom, the embedded atoms of An@C28are located at the center and maintain high symmetry.[51,52]The high symmetry,similar size and structure of An@C28help to assemble each other. The electronic structure of these EMF superatoms also follows the same rules.The valence electrons of actinide atoms(3 for Ac,5 for Pa,6 for U,7 for Np,and 8 for Pu)add the 28 valence electrons of C28up to 31,33,34,35,and 36,respectively. Their valence electrons first adopt the 32-electronic rule, and the remaining unpaired electrons are used to form chemical bonds (Fig. 1(b)). The An@C28following the 32-electronic rule is more stable than hollow C28.[35]Among them,Ac@C28and Pa@C28with one unpaired electron can form one covalent bond by sharing an electron. U@C28,Np@C28and Pu@C28have two,three and four unpaired electrons, respectively, resulting in the formation of the corresponding number of covalent bonds by sharing electrons(see Figs.S1–S5 of supporting information (SI)for details). Hence, actinide-based EMF superatoms are promising candidates for building controllable structures.

    Fig.1. Structural analyses of the complex assembled by EMF superatoms. (a)and(b)The structural representation and the number of chemical bonds that can be formed for An@C28 (An=Ac,Pa,U,Np and Pu),respectively. (c)and(d)The top and side views of the assembled complex. Color codes:grew,C;blue,Ac;red,Pa;green,U;orange,Np;pink,Pu. The blue label is the distance between the complex and the substrate. (e)and(f)The bond length and bond order analyses of inter-superatomic C–C bonds,respectively.

    Based on the above discussions, we designed a bulk planar complex on the Au(111) surface. For the optimized structure, the distance between An@C28and Au substrate is 2.8±0.1 ?A (Figs. 1(c) and 1(d)), which is consist with the result of a low-energy electron diffraction experiment.[42]Obviously,this has exceeded the bond length of the Au–C single bond(2.0–2.3 ?A),[53]and belongs to physical adsorption. The distance of the complex from the substrate boundary is sufficiently far to avoid boundary effects (see Fig. S6 of SI). In the complex, there are many different interactions, including one,two,three,and four chemical bonds for a superatom and weak interactions between closed-shell parts. Hence, multiple analyses were performed to confirm that the interactions in the complex are as expected. First, to verify that the number of inter-molecular chemical bonds is determined by the number of valence electrons,the bond length and Mayer bond order analyses were performed. The results show that the inter-superatomic C–C bond length is between 1.523–1.611 ?A and the bond order of these chemical bonds is close to 1(Figs. 1(e) and 1(f)), indicating that these bonds are covalent bonds formed by sharing electrons between superatoms.Hence, the number of 17 inter-molecular covalent bonds corresponds exactly to the 34 unpaired electrons in the whole system. Orbital analysis of the complex suggests that the units are connected by valence orbital fusion (see Fig. S7 of SI).In addition,the upper and lower parts are connected by weak interactions,since the shortest bond length between the superatoms in the upper and lower parts is about 3 ?A and the corresponding bond order is zero. Therefore, predictable intersuperatomic interaction systems can be constructed from the bottom up based on the understanding of the bonding properties of the superatomic units.

    The electron density difference(EDD)and charge population analyses also prove that the number of inter-molecular chemical bonds is determined by the number of valence electrons. These analyses reveal only a small amount of charge transfer between superatoms in the upper part and no charge transfer between superatoms in the lower part, based on each unit being divided into a fragment (see Fig. S8 of SI). This indicates that they are bonded by sharing unpaired electrons.In addition,the upper part of the complex is composed of five kinds of superatoms and staggered connections. The charge transfer between different superatoms suggests that the chemical bonds between different superatoms are polar. Moreover,the lower part of the complex assembled by the same units has no charge transfer between them, indicating the formation of non-polar inter-molecular bonds.This conclusion is consistent with previous studies showing that polar bonds are formed between heterodimers,and non-polar bonds are formed between homodimers.[54,55]

    To investigate the weak interaction in the complex, the upper and lower parts were divided into two fragments(Fig. 2(a)). It is shown that there is no charge transfer between the two fragments. Combining the analyses of bond length and Mayer bond order, they both prove that the upper and lower parts are connected by weak interactions. Furthermore, the van der Waals (vdW) surface is around the complex rather than cutting off the upper and lower parts,showing electron density between them is more than 0.001. This also proves that there is a weak interaction between them.

    The independent gradient model based on Hirshfeld partition of molecular density (IGMH) analysis was performed to further visualize the weak interaction in the complex(Fig. 2(b)).[56]In the calculation, the upper and lower parts were defined as individual fragments. In the IGMH map, the map function sign(λ)ρ ≈0 represents the vdW interaction,the area of sign(λ)ρ<0 represents the attractive weak interaction, and the area of sign(λ)ρ>0 represents the repulsive interaction. It can be seen that a thin and broad isosurface appears between the fragments. The isosurface defined by the IGMH exhibits weak interaction. The light green region between the upper and lower parts is commonly dispersion interaction.This results in the weak interaction between the closedshell upper and lower parts.

    Fig.2. The interaction analysis of the complex. (a)The electron density difference analysis between the upper and lower parts. The blue line is the van der Waals(vdW)surface,the electron density is 0.001. (b)The sign(λ2)colored scatter map,and the isosurface corresponds to the independent gradient model based on Hirshfeld partition of molecular density (IGMH) analysis of the complex. The correspondence between the peaks and maximum of δginter in the isosurface map is indicated via green arrows.

    Fig. 3. Electronic structures of the complex and its building blocks An@C28 (An=Ac, Pa, U, Np and Pu). (a) The TDOS of the complex and the PDOS of An@C28 in the complex. The vertical black line and the dotted line indicate the locations of HOMO and LUMO,and the values represent the HOMO–LUMO gap. The green,yellow,pink,and purple regions correspond to S,P&D,F and G SAMOs,and the grey and white regions represent electron occupancy and no electron occupancy. (b)Electrons occupied SAMOs of typical structure Pu@C28. Here,the isosurface is 0.01.

    To explore the relation of chemical properties between the complex and units, the total density of states (TDOS) of the complex and particle density of states(PDOS)of units in the complex were calculated (Fig. 3(a)). Due to the Pu@C28superatom has more valence electrons than other building blocks,its electrons occupied SAMOs are shown as typical orbitals(Fig.3(b)). Compared to the PDOS of units,the TDOS curve of the complex presents a smooth trend and smaller gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital (LUMO), caused by the increase in the number of electrons. The PDOS curves for the EMF units present similar trends,with the differences mainly around the frontier molecular orbitals,due to the different number of valence electrons. In addition,the curve frames of both SAMOs and non-SAMOs are reflected in the TDOS curves of the complexes. Similar trends in the DOS curves of the complex and units suggest that they have similar chemical properties. Therefore,EMF superatoms with different central atoms from the same period can not only control the number of bonds but also build complex structures with similar chemical properties. Evidently,the bottom-up approach shows great potential in the field of accurate assembly while preserving the properties of the units.

    4. Conclusion

    In summary, we have demonstrated that the pathway for constructing the demanding structures can be achieved by artificial superatomic units assembled from the bottom up. The mechanism of this precise assembly strategy is that the bonding properties can be regulated by adjusting central atoms in An@C28(An = Ac, Pa, U, Np and Pu), such as the formation of one,two,three and four chemical bonds or weak interactions between superatoms. Obviously, since our structures are microscopically at atomic-level precision, the properties of the constructed system are explicitly governed by quantum mechanics. Different from previous large-scale structural searches for possible assembled systems, we first propose a new paradigm for constructing the complex system with rich intra- and inter-molecular interactions based on the obtained superatoms with different kinds of electronic structures. In contrast to the top-down approach, the bottom-up approach has the advantage of high precision at the atomic level and forming materials or devices different from those composed of atoms. Therefore, this work provides a reference for designing demand materials from the bottom up and will facilitate the development of the new paradigm at the atomic level.

    Acknowledgments

    This work is dedicated to the 70th anniversary of physics and chemistry at Jilin University.

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11974136, 11674123, and 11374004). Z. W. also acknowledges the High-Performance Computing Center of Jilin University and National Supercomputing Center in Shanghai.

    猜你喜歡
    王志剛中華
    What Should The Man Do
    中華龍
    寶藏(2022年1期)2022-08-01 02:12:26
    王志剛教授簡(jiǎn)介
    王志剛教授簡(jiǎn)介
    Scalar or Vector Tetraquark State Candidate: Zc(4100)?
    愛(ài)我中華
    歌海(2018年5期)2018-06-11 07:02:15
    Satiric Art in Gulliver’s Travels
    東方教育(2017年11期)2017-08-02 15:02:00
    An Analysis of "The Open Boat" from the Perspective of Naturalism
    東方教育(2017年11期)2017-08-02 12:17:28
    On the Images of Araby and Their Symbolic Meaning
    東方教育(2017年11期)2017-08-02 06:22:44
    A Study of the Feminism in Mary Shelly`s Frankenstein
    東方教育(2017年11期)2017-08-02 00:08:49
    国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 久久久国产成人免费| 日韩有码中文字幕| 精品久久久久久电影网| 国产成人欧美在线观看 | 欧美成狂野欧美在线观看| 国产成人av教育| 亚洲国产av影院在线观看| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 在线观看免费午夜福利视频| 亚洲成a人片在线一区二区| 大片电影免费在线观看免费| 最新美女视频免费是黄的| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 曰老女人黄片| 侵犯人妻中文字幕一二三四区| 久久久久久久国产电影| 涩涩av久久男人的天堂| 国产高清激情床上av| 中文字幕人妻丝袜一区二区| 国产成人精品在线电影| 桃花免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产一区二区精华液| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 99国产精品99久久久久| 色在线成人网| 人成视频在线观看免费观看| av又黄又爽大尺度在线免费看| 大码成人一级视频| 视频区欧美日本亚洲| 99国产精品免费福利视频| 亚洲性夜色夜夜综合| 精品免费久久久久久久清纯 | 日韩欧美三级三区| 久久久久精品人妻al黑| 女性生殖器流出的白浆| 亚洲av日韩在线播放| 国产黄色免费在线视频| 波多野结衣一区麻豆| 日本vs欧美在线观看视频| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 午夜日韩欧美国产| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 新久久久久国产一级毛片| 国产一卡二卡三卡精品| 午夜福利免费观看在线| 这个男人来自地球电影免费观看| 亚洲人成电影观看| 欧美日本中文国产一区发布| 18禁观看日本| 欧美变态另类bdsm刘玥| 大香蕉久久网| 久久久久久久久久久久大奶| 男女免费视频国产| 人妻一区二区av| 在线看a的网站| 18禁黄网站禁片午夜丰满| 国产亚洲午夜精品一区二区久久| 久久精品亚洲精品国产色婷小说| 麻豆成人av在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av香蕉五月 | 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| 国产福利在线免费观看视频| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 一级毛片精品| 国产日韩欧美视频二区| 国产精品影院久久| 亚洲av美国av| 肉色欧美久久久久久久蜜桃| 香蕉国产在线看| 大码成人一级视频| 国产1区2区3区精品| 黑人巨大精品欧美一区二区mp4| 亚洲第一av免费看| 老司机影院毛片| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美| 免费一级毛片在线播放高清视频 | 成人av一区二区三区在线看| 欧美日韩黄片免| www.自偷自拍.com| www.自偷自拍.com| 欧美 亚洲 国产 日韩一| 亚洲午夜理论影院| 黄色视频在线播放观看不卡| 下体分泌物呈黄色| 757午夜福利合集在线观看| 精品国产超薄肉色丝袜足j| 亚洲熟女毛片儿| 超碰97精品在线观看| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 国产有黄有色有爽视频| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| 曰老女人黄片| 丝瓜视频免费看黄片| 国产精品免费一区二区三区在线 | 老司机影院毛片| 欧美日韩福利视频一区二区| 欧美精品av麻豆av| 手机成人av网站| 欧美av亚洲av综合av国产av| 成人免费观看视频高清| 国产av又大| 高清在线国产一区| 91精品国产国语对白视频| 变态另类成人亚洲欧美熟女 | 国产福利在线免费观看视频| 日韩大片免费观看网站| 中文字幕高清在线视频| 建设人人有责人人尽责人人享有的| 亚洲第一av免费看| 99国产综合亚洲精品| 精品久久久久久电影网| 亚洲成人手机| 999久久久精品免费观看国产| 精品人妻1区二区| 久久久国产精品麻豆| 国产av又大| 黄色a级毛片大全视频| 国产精品1区2区在线观看. | 男人舔女人的私密视频| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| av一本久久久久| 激情在线观看视频在线高清 | 黑人巨大精品欧美一区二区mp4| 91精品国产国语对白视频| 动漫黄色视频在线观看| 久久毛片免费看一区二区三区| 国产有黄有色有爽视频| 极品人妻少妇av视频| 成人国产av品久久久| 飞空精品影院首页| 在线观看免费视频网站a站| 国产主播在线观看一区二区| 亚洲专区中文字幕在线| 国产精品二区激情视频| 欧美精品一区二区大全| 99久久精品国产亚洲精品| 一级毛片女人18水好多| 久久国产精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美一区视频在线观看| 黄色视频不卡| 亚洲色图 男人天堂 中文字幕| 久久影院123| 麻豆乱淫一区二区| 免费在线观看完整版高清| 久久天躁狠狠躁夜夜2o2o| 欧美大码av| www日本在线高清视频| 精品一品国产午夜福利视频| 欧美在线一区亚洲| 免费av中文字幕在线| 少妇 在线观看| 欧美黑人精品巨大| 亚洲av电影在线进入| 中文欧美无线码| 婷婷丁香在线五月| 18禁美女被吸乳视频| 最新的欧美精品一区二区| 色尼玛亚洲综合影院| 岛国在线观看网站| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 亚洲成a人片在线一区二区| 欧美另类亚洲清纯唯美| 久久午夜亚洲精品久久| 777米奇影视久久| 色综合婷婷激情| 久久 成人 亚洲| av天堂在线播放| 欧美在线一区亚洲| 一级毛片电影观看| 超碰97精品在线观看| 亚洲人成77777在线视频| 日本撒尿小便嘘嘘汇集6| 黄色毛片三级朝国网站| 999久久久国产精品视频| 国产免费现黄频在线看| 最新在线观看一区二区三区| 我要看黄色一级片免费的| 国产av一区二区精品久久| 最新的欧美精品一区二区| xxxhd国产人妻xxx| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| 亚洲免费av在线视频| 久久国产亚洲av麻豆专区| 一边摸一边做爽爽视频免费| 亚洲欧美精品综合一区二区三区| 桃花免费在线播放| 色视频在线一区二区三区| 久久精品国产综合久久久| 老司机午夜福利在线观看视频 | 曰老女人黄片| 日韩成人在线观看一区二区三区| 岛国毛片在线播放| 亚洲天堂av无毛| 在线播放国产精品三级| 国产精品免费视频内射| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 精品国产一区二区三区久久久樱花| 99国产极品粉嫩在线观看| 在线观看一区二区三区激情| 国产亚洲精品久久久久5区| 亚洲国产欧美在线一区| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 美女视频免费永久观看网站| 欧美激情 高清一区二区三区| 成人手机av| 成人精品一区二区免费| 免费黄频网站在线观看国产| 天堂中文最新版在线下载| 亚洲免费av在线视频| 精品卡一卡二卡四卡免费| 色播在线永久视频| 在线av久久热| 国产精品国产高清国产av | 一个人免费看片子| 久久99一区二区三区| 午夜激情久久久久久久| av免费在线观看网站| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 黄色成人免费大全| 天堂动漫精品| 色婷婷av一区二区三区视频| 老司机深夜福利视频在线观看| 男女无遮挡免费网站观看| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 国产精品一区二区免费欧美| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| 69av精品久久久久久 | 日韩欧美国产一区二区入口| 露出奶头的视频| 人妻久久中文字幕网| 激情在线观看视频在线高清 | 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 精品亚洲成a人片在线观看| 亚洲av第一区精品v没综合| 久久人妻av系列| 国产日韩欧美亚洲二区| 亚洲av第一区精品v没综合| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区mp4| 一二三四社区在线视频社区8| 1024视频免费在线观看| 午夜免费鲁丝| 国产日韩一区二区三区精品不卡| 免费观看av网站的网址| 一级片免费观看大全| 久久久久久久精品吃奶| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看| 美女福利国产在线| 欧美黑人精品巨大| 日本a在线网址| 一本色道久久久久久精品综合| 五月天丁香电影| 一区二区日韩欧美中文字幕| 国产国语露脸激情在线看| 搡老熟女国产l中国老女人| 日本五十路高清| 高清黄色对白视频在线免费看| 精品国产乱子伦一区二区三区| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频| www.自偷自拍.com| 成人亚洲精品一区在线观看| 亚洲男人天堂网一区| 91精品三级在线观看| 欧美日韩视频精品一区| 91大片在线观看| 亚洲伊人色综图| 精品免费久久久久久久清纯 | 两个人看的免费小视频| 色在线成人网| 波多野结衣一区麻豆| 欧美国产精品va在线观看不卡| 精品人妻熟女毛片av久久网站| 久久久久视频综合| 在线观看www视频免费| 满18在线观看网站| 久久影院123| 亚洲第一av免费看| 一进一出抽搐动态| 超碰成人久久| a级片在线免费高清观看视频| 99久久精品国产亚洲精品| 在线观看免费视频日本深夜| 啦啦啦 在线观看视频| 精品久久久久久电影网| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 亚洲欧洲日产国产| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91| 免费不卡黄色视频| 岛国在线观看网站| 国产精品九九99| 国产男女内射视频| 18禁观看日本| 一夜夜www| 欧美中文综合在线视频| 激情视频va一区二区三区| 精品国产一区二区三区久久久樱花| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全电影3 | 777米奇影视久久| 999精品在线视频| 天堂中文最新版在线下载| 人人妻人人添人人爽欧美一区卜| 亚洲成人免费av在线播放| 国产精品偷伦视频观看了| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 可以免费在线观看a视频的电影网站| 丰满饥渴人妻一区二区三| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 久久久国产欧美日韩av| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 99九九在线精品视频| av天堂久久9| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 久久九九热精品免费| 高清欧美精品videossex| 久久亚洲精品不卡| 国产一区二区在线观看av| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 在线天堂中文资源库| 黄色丝袜av网址大全| av天堂在线播放| 亚洲五月婷婷丁香| 99国产精品一区二区三区| 天堂动漫精品| 成人18禁在线播放| 91成人精品电影| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 欧美乱码精品一区二区三区| 亚洲av美国av| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 性高湖久久久久久久久免费观看| 欧美中文综合在线视频| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 国产精品亚洲一级av第二区| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 一个人免费看片子| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 日本wwww免费看| 欧美成人午夜精品| 中文字幕人妻丝袜一区二区| 久久久久久亚洲精品国产蜜桃av| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 黑人猛操日本美女一级片| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 久久 成人 亚洲| h视频一区二区三区| 日本av免费视频播放| 亚洲av成人一区二区三| 亚洲精品美女久久av网站| 超色免费av| 久久精品成人免费网站| 丰满人妻熟妇乱又伦精品不卡| 免费少妇av软件| 亚洲国产欧美一区二区综合| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 久久婷婷成人综合色麻豆| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| 亚洲中文日韩欧美视频| 亚洲成av片中文字幕在线观看| 777米奇影视久久| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看 | 欧美精品人与动牲交sv欧美| 操出白浆在线播放| 国产精品久久久久成人av| 美女高潮喷水抽搐中文字幕| √禁漫天堂资源中文www| 人妻 亚洲 视频| 国产片内射在线| 国产不卡av网站在线观看| 免费看十八禁软件| 亚洲成人手机| 99精品欧美一区二区三区四区| 成人三级做爰电影| tube8黄色片| 在线观看免费午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 日本撒尿小便嘘嘘汇集6| 999久久久国产精品视频| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 在线观看免费高清a一片| 久久狼人影院| 欧美日韩一级在线毛片| 国产精品久久久久久精品古装| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 三级毛片av免费| 日韩制服丝袜自拍偷拍| 亚洲人成伊人成综合网2020| 国产精品影院久久| 免费不卡黄色视频| 99国产极品粉嫩在线观看| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 色综合婷婷激情| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 国产黄频视频在线观看| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 丝袜美足系列| 大香蕉久久网| 久久青草综合色| 亚洲男人天堂网一区| 午夜久久久在线观看| 成人国产一区最新在线观看| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 香蕉丝袜av| 丁香六月欧美| 黄色视频不卡| 国产成人av激情在线播放| 国产一区有黄有色的免费视频| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影 | 99国产精品99久久久久| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 伦理电影免费视频| 人妻 亚洲 视频| 老司机福利观看| 日韩制服丝袜自拍偷拍| 99在线人妻在线中文字幕 | 国产精品二区激情视频| 成人18禁在线播放| 成年动漫av网址| 亚洲成国产人片在线观看| 亚洲成人免费av在线播放| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 久久精品国产a三级三级三级| 日本wwww免费看| 美女视频免费永久观看网站| 黄色视频不卡| 久久中文字幕一级| 亚洲av片天天在线观看| 亚洲av电影在线进入| 精品国产国语对白av| 日韩欧美免费精品| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 丰满迷人的少妇在线观看| 丝袜喷水一区| 18禁黄网站禁片午夜丰满| 天天躁夜夜躁狠狠躁躁| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 国产免费福利视频在线观看| 天天躁日日躁夜夜躁夜夜| 久久久水蜜桃国产精品网| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 国产免费视频播放在线视频| 女人久久www免费人成看片| 免费在线观看日本一区| videosex国产| av电影中文网址| 狠狠狠狠99中文字幕| www日本在线高清视频| 国产免费福利视频在线观看| 国产老妇伦熟女老妇高清| 久久人妻福利社区极品人妻图片| 一区二区三区国产精品乱码| 国产欧美日韩精品亚洲av| 黄色怎么调成土黄色| 久久av网站| 人人妻人人添人人爽欧美一区卜| 国产不卡av网站在线观看| svipshipincom国产片| 国产淫语在线视频| www.精华液| 久久毛片免费看一区二区三区| 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 人人妻人人爽人人添夜夜欢视频| 日日夜夜操网爽| 欧美变态另类bdsm刘玥| a级片在线免费高清观看视频| 国产激情久久老熟女| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | av一本久久久久| 91精品三级在线观看| 黑人操中国人逼视频| 男女下面插进去视频免费观看| 变态另类成人亚洲欧美熟女 | 中文字幕精品免费在线观看视频| 一夜夜www| 9热在线视频观看99| 一级片免费观看大全| 国产成人欧美| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 欧美激情高清一区二区三区| 色老头精品视频在线观看| 中国美女看黄片| 中文亚洲av片在线观看爽 | 亚洲国产欧美在线一区| 18禁国产床啪视频网站| 成人精品一区二区免费| 亚洲黑人精品在线| 少妇粗大呻吟视频| 18禁裸乳无遮挡动漫免费视频| 一进一出好大好爽视频| 国产成人免费无遮挡视频| 中文字幕人妻丝袜制服| 又紧又爽又黄一区二区| 久9热在线精品视频| 少妇精品久久久久久久| 法律面前人人平等表现在哪些方面| 欧美黄色片欧美黄色片| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 99久久国产精品久久久| 极品少妇高潮喷水抽搐| 国产男女内射视频| 高清视频免费观看一区二区| 亚洲中文日韩欧美视频| 国产免费福利视频在线观看| 手机成人av网站| 成人手机av| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区 | 久久精品亚洲av国产电影网| www.自偷自拍.com| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具|