• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation

    2022-12-28 09:52:12TianShouLiang梁添壽PengPengShi時朋朋SanQingSu蘇三慶andZhiZeng曾志
    Chinese Physics B 2022年12期

    Tian-Shou Liang(梁添壽) Peng-Peng Shi(時朋朋) San-Qing Su(蘇三慶) and Zhi Zeng(曾志)

    1School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    2School of Civil Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    3School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: melting phase transition,crystalline materials,physical states,deep learning,molecular dynamics simulation

    Melting of crystalline material is a common physical phenomenon that occurs when the free energy of solid is equal to that of liquid, yet it remains elusive owing to the diversity in physical pictures of melting behavior in a variety of substances.[1–3]Large-scale molecular dynamics simulation is an effective and widely approved method for in-depth understanding of melting at the atomic level.[4–7]The atomic coordinates and velocities are the primary outputs describing atomic spatiotemporal state, and the pursuit to interpret the physical states of matter from atomic behavior is critical for understanding the essence of solid melting. Yet, till date finding a general physical quantity for interpreting the connotation of physical states has remained challenging.

    Usually, physical states of a simulation system can simply be determined via atomic local structure information,i.e.,order of atomic arrangement. The common atom types of crystalline systems mainly include face-centered cubic(FCC),body-centered cubic (BCC), hexagonal close packed (HCP),and icosahedral ones. Once subjected to thermal load, crystalline materials with regular lattice will lose their atomic order. According to this simple geometric change, the crystal structure recognition method, such as common neighbor analysis[8](CNA) and its extended model adaptive-CNA (a-CNA),[9]bond-orientational order parameter,[10]and the diamond structure[11](IDS) can be used to judge whether the crystal melts.[6,12]Recently,the polyhedral template matching(PTM)[13]was proposed based on the topology of the local atomic environment,which provides great reliability of atomic identification against thermal vibration. Although these methods can detect the melting phenomenon of crystalline materials, they cannot perform quantitative characterization due to the sensitivity to temperature or atom strain. Notably,the disorder of the atomic configuration is not the essence of the liquid phase.

    The Lindemann criterion,[14]proposed as early as the early 20th century, has been widely accepted as an orthodox theory to elucidate the melting of solid via atomic vibrations.According to the Lindemann melting theory, melting stems from the mechanical instability due to enhanced atomic vibration. Solid melts when the magnitude of atomic thermal vibration exceeds a certain proportion of interatomic spacing,e.g.,0.05–0.2.[15]The thresholds of different materials need to consider additional factors acting as prior knowledge,such as crystal structure,[16,17]crystal surface,[18]dimension,[19]and the periodic table.[20]

    Deep learning has attracted intensive attention to deal with complex scientific issues in many research fields.[21–24]Recently, a new modeling method“machine learning embedded with materials domain knowledge”[21]was proposed to reconcile the major contradictions[22]in applying machine learning to the materials community. Research shows that neural networks can explore the fundamental laws of classical mechanics.[23]Many scholars identified the transition of solid–liquid phase via deep learning,[25–28]where the atomic interaction potential surface[29]was applied to construct the learning feature.In fact,the dynamic behavior of atoms or particles is closer to the physical essence to characterize the melting phase transition of material systems.[30]From this point of view,atomic dynamic information,rather than atomic local structure, should be better to characterize the physical states.However,learning physical state of matter from atomic behavior for unlocking the essence of melting is still an open topic.

    Here, we put forward a strategy mapping atomic behavior to physical states for crystalline material via convolutionbased deep learning,where the temporal and spatial information of the atomic behavior, i.e., 3D atomic trajectories, are used as the inputs for training,validation,and prediction. The results show that the proposed method has excellent ability to identify solid and liquid atoms of bulk crystal materials in the first-order phase transition with high accuracy. The crossprediction demonstrates that the atomic behavior can be used to predict crystal phase transition. The proposed method exhibits the intrinsic characteristics against thermal shock noise.

    Figure 1 shows the time convolution neural network(TCNN) based architecture to forecast the physical state of crystalline materials during solid–liquid phase transition process which consists of two steps: (1) learning features from atomic trajectories [Figs. 1(a)–1(c)] and (2) predicting the solid–liquid phase transition of crystalline solid system[Figs. 1(c)–1(d)]. A defect-free bulk Au (FCC) is taken as an example to illustrate the architecture. Figure 1(a) shows a bulk Au arranged in a periodic box. Figure 1(b) shows the expanded trajectories of two atoms, signifying that the deep learning module exists three input channels.Figure 1(c)shows the module mainly including two parts: (1) the convolution layers for learning features from the atomic trajectories and(2) the fully connected neural network for mapping the features stemming from the first part to two output nodes indicating the atomic physical states, i.e., solid and liquid. Detailed configuration of this learning module and the corresponding parameters are provided in S1,where the inception module[31]was employed to build the convolution layers. The atoms that are identified as solid or liquid phase are called solid-like or liquid-like atoms for distinguishing the physical states in practical sense. It is noted that a single atom has no concept of physical state, but a group or system has real physical state,i.e.,solid,liquid and gas. Here we evaluate the physical state of the crystal material system by counting the proportion of liquid-like atoms predicted by the model,as shown in the upper panel of Fig.1(d). The lower panel of Fig.1(d)shows the corresponding error curve.

    In this paper, four single bulk crystalline solids, i.e., Au(FCC),Fe(BCC),Mg(HCP),and Si(diamond),and the Cu–Ni alloy with an initial FCC state were studied. The potential function of bulk Au is the multi-body potential function EAM.[32]That of bulk Fe is the multi-body potential function EAM/FS.[33]That of bulk Mg is the multi-body potential function EAM/FS.[34]That of bulk Si is the multi-body potential function SW.[35]The potential function of bulk Cu and Ni is the multi-body potential function EAM/ALLOY.[36]All molecular dynamics calculations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS).[37]See S2 for the simulation details and S3 for the training settings and loss functions.

    Fig.1. Architecture for probing the melting process of bulk crystalline solids. (a)A bulk Au solid. (b)Atomic trajectories in 3D space. (c)TCNN-based module comprising convolution layers and full connection layers. (d)The phase transition curve defined as the variation of the liquid-like atoms(upper)and the prediction error of the atomic physical states(lower).

    Figure 2 shows the average atomic potential energy(PE)and the ratio of liquid-like atoms predicted by TCNN as a function of temperature for the Au,Fe,Mg,and Si bulk crystal solids. The phase transition processes predicted by TCNN are consistent with those via PE curves. Since the quasistatic simulation method was adopted to anneal the crystalline solid with a gap of 10 K near the phase transition point,we calculated the melting points by averaging the two points before and after the phase transition. The predicted melting point is 1335.0 K for Au, 2000.4 K for Fe, 1075.2 K for Mg, and 2313.5 K for Si. In fact, there is a certain deviation of melting points between calculations and experiments,which mainly depends on the potential function, material defects, heating rate and simulation method. For all cases, the ratio of liquid-like atoms is almost at the level of 0.0 before the phase transition, and abrupt increases to 1.0 after the phase transition. The former means that the system is solid, while the latter is liquid. The results are also verified from the Lindemann law in S4,where the threshold to identify solid-like or liquid-like atoms is not unique for different materials. The results are confirmed by the distribution of atomic diffusion coefficient as shown in S5.These coincidences are not surprising,because atomic trajectory contains atomic thermal vibration and diffusion behavior,which should be learned via deep learning.

    Fig.2. The first-order phase transition curves represented with average atomic potential energy(blue)and ratio of liquid-like atoms by TCNN(red). (a)Au,(b)Fe,(c)Mg,and(d)Si.

    Figure 3 shows the robustness of the model against thermal oscillation.For comparative analysis,TCNN,a-CAN,and PTM were used to identify the atomic state of bulk Au,Fe,and Mg,and TCNN and IDS were employed for bulk Si. The first column displays the liquid-like atom variation curves, which show that the results predicted by TCNN exhibit the highest accuracy. Even within the superheated state near the phase transition point,the error of bulk Au is less than 4%,bulk Fe is less than 3%, bulk Mg is less than 2%, and bulk Si is almost negligible,shown as the middle one. The results of bulk Au, Fe, and Mg classified using a-CNA and PTM comprised large errors. The errors at the time of impending phase transition afforded when using a-CNA and PTM are 88.5% and 38.1%for bulk Au,79.7%and 34.5%for bulk Fe,and 80.1%and 23.6% for bulk Mg, respectively. The a-CNA and PTM usually employ atomic local information to identify the type or specific structure of atomic crystals; hence,they are easily affected by the violent thermal oscillation. The results of bulk Si identification through TCNN and IDS methods comprised negligible errors,which is attributed to the thermal stability of the diamond lattice. The right panels show several snapshots captured at the moments before and after the phase transition,where solid-like and liquid-like atoms are denoted with blue and orange colors,respectively.

    Therefore, the identification result by the TCNN-based method is insensitive to temperature and the errors for all crystal bulk materials were less than 4%, which can be explained from the statistical properties of the method itself. Theoretically, atomic vibration is a behavior contained in the trajectory of atoms. From this perspective, it should be beneficial to the recognition accuracy of atomic types, as described by Lindemann’s theory: the physical state of matter can be characterized using atomic thermal oscillation. Note that whether the thermally activated oscillation characteristic plays a positive role needs to be further researched due to the black box characteristic of neural networks.

    Last,cross-prediction experiments were designed to illustrate the generality of predicting the phase transition of crystalline solids using atomic trajectories. Figure 4(a)shows the variation of the ratio curves of liquid-like atoms of bulk Au,Fe,Mg,and Si with temperature,which were obtained by the approach that the physical state of each atom experiencing the phase transition process was predicted using different models trained with the data of other elements. Taking bulk Au as an example, the model parameters were first separately trained with the training data of Au,Fe,Mg,or Si,and given the welltrained network parameters, i.e., models; then, these models were utilized to predict the atomic physical state of each atom of bulk Au with additional data prepared using different random seeds. It shows that all the cross-prediction results for each case can accurately capture the temperature point of the phase transition, which agree well with the prediction results using target elements. However, the correctness loss before and after phase transition differs on a case-to-case basis. For bulk Au, the cross-prediction accuracies before phase transition exhibit little deviation, while those after phase transition decrease to a certain extent. Surprisingly, the accuracy increases with temperature,which is almost coincident once the temperature exceeds 1800 K. The cross-prediction results of the other elements (Fe, Mg, and Si) are consistent with each other;only the red curves(Au models)shown in the panels of Fe and Mg are not consistent,where a slight deviation ocurrs in a small range before the phase transition.

    Fig.3. Prediction accuracy of four types of bulk crystalline solids: (a)bulk Au(FCC),(b)bulk Fe(BCC),(c)bulk Mg(HCP),and(d)bulk Si(diamond)using TCNN,PTM,a-CNA,and IDS.The first column: ratio of liquid-like atoms as function of temperature; the middle column:the specific ratio of solid-like atoms with light blue and liquid-like atoms with pale yellow; the last column: snapshots corresponding to the middle column.

    To understand these deviations, the previous results shown in Fig. 2 are reviewed. In the melting process, bulk Au hardly experiences overheating,while bulk Fe or Mg experiences a certain degree of overheating and Si endures a large degree of overheating.These seemingly coincidental phenomena indicate that phase transition under overheating induces high prediction accuracy. On the one hand,as the temperature increases, the liquid phase characteristics of atomic behavior(rapid diffusion, violent oscillation, etc.) become significant.On the other hand, when phase transition occurs in the absence of overheating or a small amount of overheating occurs,some atoms still afford local vibrations similar to solid-like atoms.Hence,relevant features can be captured by deep learning methods and retain in the model parameters.

    We further demonstrated the generality of the TCNNbased method for predicting the evolution of physical states for solid alloys, where the 50%–50% copper–nickel alloy(Cu0.5Ni0.5) was considered, as shown in Fig. 4(b). The left panel shows that the model trained by each single element(Cu or Ni)not only can accurately predict the phase transition process of the alloy but also has high consistency in the ratio curves of liquid-like atoms at each temperature point. The right panel shows that the max error of Cu is about 2.5%and Ni is about 1.5%. The errors of the prediction results are almost the same (2%) near the phase transition line. It shows that the atomic behavior of different elements exhibits unified solid-or liquid-phase characteristics,which is independent of element or lattice types.The TCNN-based method using complete atomic trajectories affords a certain degree of consistency and universality,indicating that a more universal characterization quantity should be defined to identify the physical state of crystalline solid. This is consistent with the mean square displacement (MSD) theory that only considers the characteristics of atomic trajectories without distinguishing element types. Note that the average diffusion coefficient of particles is calculated by combing MSD with the Einstein theory.[38]

    Fig. 4. Cross-prediction of melting phase transition for single-element crystalline solid and Cu0.5Ni0.5 alloy solid. (a) Ratio distribution of liquid-like atoms vs. temperature for bulk Au,Fe,Mg,and Si. (b)Ratio distribution of liquid-like atoms of Cu0.5Ni0.5 alloy vs. temperature.

    This paper is limited to crystal bulk materials. However,the black box nature of the model limits us to deeply understand mechanism of the model extracting features and learning physical states. This interpretability problem should be solved by introducing domain expert knowledge. In addition,the applicability of our model needs further verification for more complex material systems with liquid-like atoms and solidlike atoms, such as nanoscale materials with significant scale effects, metallic glass materials and polymers with complex glass conversion processes.

    Herein, a deep learning architecture based on the timedomain convolution neural network was proposed to predict the phase transition process of bulk crystalline solids by probing the atomic physical state with atomic trajectories. For the bulk Au,Fe, Mg, and Si, the proposed architecture can accurately predict the physical states. i.e., solid and liquid. The predicted results are insensitive to temperature and the errors for all the crystal bulk materials are less than 4%. The crosstraining and prediction analysis indicate that there should exhibit a lattice-independent generalized physical quantity for characterizing the physical state of crystal materials. Our study inspires future research to construct a more universal characterization quantity based on the atomic behavior to identify the atomic physical states of various materials.

    Acknowledgements

    Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M663935XB), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-261), and the National Natural Science Foundation of China(Grant Nos.11802225 and 51878548).

    香蕉久久夜色| 久久精品国产亚洲av涩爱 | 18禁黄网站禁片午夜丰满| 一夜夜www| 国产三级黄色录像| 美女黄网站色视频| 午夜福利18| eeuss影院久久| av国产免费在线观看| 欧美在线黄色| 精品国产美女av久久久久小说| 丁香欧美五月| 亚洲国产精品sss在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品乱码一区二三区的特点| 麻豆一二三区av精品| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 午夜a级毛片| 亚洲自拍偷在线| 成人三级黄色视频| 亚洲成人精品中文字幕电影| 欧美日本亚洲视频在线播放| 伊人久久大香线蕉亚洲五| 1000部很黄的大片| 悠悠久久av| 黄色成人免费大全| 久久久久免费精品人妻一区二区| 国内久久婷婷六月综合欲色啪| 日本在线视频免费播放| 校园春色视频在线观看| 婷婷丁香在线五月| 内地一区二区视频在线| 亚洲久久久久久中文字幕| 欧美中文日本在线观看视频| 91麻豆av在线| 美女高潮的动态| 在线观看日韩欧美| 狂野欧美白嫩少妇大欣赏| 国产精品嫩草影院av在线观看 | 亚洲人成网站在线播| www国产在线视频色| 最新在线观看一区二区三区| 婷婷丁香在线五月| 欧美日韩亚洲国产一区二区在线观看| 首页视频小说图片口味搜索| 亚洲人成伊人成综合网2020| 亚洲欧美激情综合另类| 国产日本99.免费观看| 国产成人aa在线观看| 美女 人体艺术 gogo| 18禁黄网站禁片午夜丰满| 国产97色在线日韩免费| 欧美中文日本在线观看视频| 国产成人av教育| 非洲黑人性xxxx精品又粗又长| 欧美3d第一页| 久久久久国内视频| tocl精华| 女警被强在线播放| 一进一出抽搐动态| 亚洲五月天丁香| 男女视频在线观看网站免费| 啪啪无遮挡十八禁网站| 高清毛片免费观看视频网站| 成人性生交大片免费视频hd| 亚洲人与动物交配视频| 日本一二三区视频观看| 黄片大片在线免费观看| 99国产精品一区二区蜜桃av| 床上黄色一级片| 国产亚洲欧美在线一区二区| or卡值多少钱| 69人妻影院| www.www免费av| 国产美女午夜福利| 夜夜夜夜夜久久久久| 美女 人体艺术 gogo| 人妻久久中文字幕网| 天堂网av新在线| 真人做人爱边吃奶动态| 性色avwww在线观看| 无遮挡黄片免费观看| 国产精品一及| 天堂√8在线中文| 欧美一区二区国产精品久久精品| 久久久久久大精品| 欧美性猛交╳xxx乱大交人| 亚洲aⅴ乱码一区二区在线播放| 成人午夜高清在线视频| 十八禁人妻一区二区| 亚洲欧美激情综合另类| 一卡2卡三卡四卡精品乱码亚洲| 国内精品久久久久精免费| 中文资源天堂在线| 日韩国内少妇激情av| 999久久久精品免费观看国产| 中文字幕av成人在线电影| 亚洲国产精品sss在线观看| 他把我摸到了高潮在线观看| 悠悠久久av| 午夜影院日韩av| 午夜a级毛片| 长腿黑丝高跟| 国产一区二区激情短视频| 制服丝袜大香蕉在线| 国产精品久久视频播放| 午夜精品在线福利| 熟女人妻精品中文字幕| 国产69精品久久久久777片| 99久久综合精品五月天人人| 3wmmmm亚洲av在线观看| 国产成人系列免费观看| 国产精品免费一区二区三区在线| 天堂动漫精品| 亚洲精品色激情综合| 午夜福利免费观看在线| 欧美一区二区亚洲| 亚洲五月婷婷丁香| 国产日本99.免费观看| 日本三级黄在线观看| 天堂影院成人在线观看| 亚洲欧美日韩高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人精品一区久久| 亚洲午夜理论影院| 91在线观看av| 免费无遮挡裸体视频| 全区人妻精品视频| 国产高潮美女av| 国产不卡一卡二| 久久精品国产自在天天线| 91麻豆精品激情在线观看国产| 变态另类丝袜制服| 观看美女的网站| 欧美成人一区二区免费高清观看| 1024手机看黄色片| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 国产av一区在线观看免费| 精品一区二区三区av网在线观看| 男女那种视频在线观看| 91在线观看av| 精品福利观看| 老熟妇乱子伦视频在线观看| 精品福利观看| 99久久久亚洲精品蜜臀av| 成人三级黄色视频| 色综合亚洲欧美另类图片| 亚洲精品粉嫩美女一区| 欧美性猛交╳xxx乱大交人| 最近最新免费中文字幕在线| bbb黄色大片| 久久久国产成人免费| 久久久久性生活片| 色综合欧美亚洲国产小说| 亚洲在线自拍视频| 国产亚洲精品一区二区www| 人妻夜夜爽99麻豆av| 动漫黄色视频在线观看| 欧美+亚洲+日韩+国产| 人人妻人人澡欧美一区二区| 国内揄拍国产精品人妻在线| 宅男免费午夜| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 久久久久九九精品影院| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 国产精品亚洲av一区麻豆| 最新美女视频免费是黄的| 中文字幕高清在线视频| 一级黄色大片毛片| 国产精品1区2区在线观看.| 日本五十路高清| 欧美bdsm另类| or卡值多少钱| 91久久精品国产一区二区成人 | 日韩高清综合在线| 99热6这里只有精品| 亚洲avbb在线观看| 波多野结衣巨乳人妻| 老司机在亚洲福利影院| 欧美又色又爽又黄视频| 精品乱码久久久久久99久播| 一个人免费在线观看电影| 国产亚洲av嫩草精品影院| 欧美丝袜亚洲另类 | 两性午夜刺激爽爽歪歪视频在线观看| 成年女人看的毛片在线观看| 嫩草影视91久久| 国产伦精品一区二区三区视频9 | 一夜夜www| 国模一区二区三区四区视频| 18禁黄网站禁片午夜丰满| 欧美大码av| 亚洲av中文字字幕乱码综合| 日韩精品中文字幕看吧| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 天天躁日日操中文字幕| 首页视频小说图片口味搜索| 日韩大尺度精品在线看网址| 99国产精品一区二区三区| 日韩精品青青久久久久久| 免费av毛片视频| 国产精品精品国产色婷婷| 十八禁人妻一区二区| 在线看三级毛片| 久久久精品大字幕| 又紧又爽又黄一区二区| 国产真实伦视频高清在线观看 | 国产亚洲精品综合一区在线观看| 日韩中文字幕欧美一区二区| 中文字幕人成人乱码亚洲影| 亚洲精品一区av在线观看| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 一区二区三区国产精品乱码| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区三区四区久久| 欧美xxxx黑人xx丫x性爽| 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www| 久久精品人妻少妇| 婷婷六月久久综合丁香| 午夜亚洲福利在线播放| 国产成人aa在线观看| 日韩大尺度精品在线看网址| 成人特级黄色片久久久久久久| 午夜a级毛片| 99视频精品全部免费 在线| 成人av一区二区三区在线看| 色吧在线观看| 黄色视频,在线免费观看| 一级黄片播放器| 久久精品国产综合久久久| 91字幕亚洲| 亚洲精品粉嫩美女一区| 午夜精品在线福利| 黄色丝袜av网址大全| 日本熟妇午夜| 色噜噜av男人的天堂激情| 日本a在线网址| 中出人妻视频一区二区| 久久久久免费精品人妻一区二区| 久久久久久九九精品二区国产| 精品人妻偷拍中文字幕| 天堂√8在线中文| 久9热在线精品视频| 午夜视频国产福利| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 国产精品嫩草影院av在线观看 | 悠悠久久av| 99在线人妻在线中文字幕| 给我免费播放毛片高清在线观看| 久久久久精品国产欧美久久久| 国产乱人伦免费视频| 日韩成人在线观看一区二区三区| 国产精品爽爽va在线观看网站| 欧美乱妇无乱码| 在线播放国产精品三级| 在线观看66精品国产| 国产精品av视频在线免费观看| а√天堂www在线а√下载| 少妇的丰满在线观看| 国产精品国产高清国产av| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 亚洲欧美激情综合另类| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 国产色婷婷99| 午夜福利在线观看免费完整高清在 | xxxwww97欧美| 成年免费大片在线观看| 午夜免费男女啪啪视频观看 | 久久精品国产亚洲av涩爱 | 夜夜爽天天搞| 国产视频内射| 在线播放无遮挡| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 亚洲人成伊人成综合网2020| 一级毛片高清免费大全| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 天天躁日日操中文字幕| 精品久久久久久成人av| 成人国产综合亚洲| 搡女人真爽免费视频火全软件 | 国产伦精品一区二区三区视频9 | 精品久久久久久成人av| 色老头精品视频在线观看| 亚洲片人在线观看| 国产精品 国内视频| 中文字幕人妻熟人妻熟丝袜美 | www.www免费av| 黑人欧美特级aaaaaa片| 99视频精品全部免费 在线| 国产精品,欧美在线| 欧美乱妇无乱码| 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 无人区码免费观看不卡| 亚洲av中文字字幕乱码综合| 国产野战对白在线观看| ponron亚洲| 亚洲国产欧洲综合997久久,| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 成熟少妇高潮喷水视频| 亚洲av五月六月丁香网| 亚洲激情在线av| tocl精华| 99热精品在线国产| 精品电影一区二区在线| 最近视频中文字幕2019在线8| 很黄的视频免费| 熟妇人妻久久中文字幕3abv| 3wmmmm亚洲av在线观看| 啪啪无遮挡十八禁网站| svipshipincom国产片| 欧美日韩黄片免| 有码 亚洲区| e午夜精品久久久久久久| 免费看光身美女| 久久这里只有精品中国| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 好男人电影高清在线观看| 18禁美女被吸乳视频| 亚洲精品乱码久久久v下载方式 | 国模一区二区三区四区视频| xxx96com| 两个人的视频大全免费| 综合色av麻豆| x7x7x7水蜜桃| 特级一级黄色大片| 国产高清激情床上av| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 精品人妻1区二区| 91久久精品国产一区二区成人 | 动漫黄色视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 激情在线观看视频在线高清| 日韩欧美三级三区| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 日本 av在线| 一级作爱视频免费观看| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看 | 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 美女高潮的动态| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 俺也久久电影网| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看| 精品久久久久久久末码| 免费观看精品视频网站| 亚洲真实伦在线观看| 超碰av人人做人人爽久久 | 精品国内亚洲2022精品成人| 久久久久久人人人人人| 国产国拍精品亚洲av在线观看 | 久久伊人香网站| 伊人久久精品亚洲午夜| 啦啦啦免费观看视频1| a级毛片a级免费在线| 欧美中文日本在线观看视频| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 国产探花极品一区二区| 国产精品一及| 三级毛片av免费| 岛国在线观看网站| 久久久久久久久久黄片| 女警被强在线播放| 757午夜福利合集在线观看| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 国产真实乱freesex| 9191精品国产免费久久| 少妇丰满av| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 久久久成人免费电影| 欧美日韩福利视频一区二区| 国产免费男女视频| 国产精品免费一区二区三区在线| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 亚洲精品美女久久久久99蜜臀| 中出人妻视频一区二区| 动漫黄色视频在线观看| 一个人免费在线观看的高清视频| 日本在线视频免费播放| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 天堂网av新在线| 村上凉子中文字幕在线| 1024手机看黄色片| 搡老熟女国产l中国老女人| 香蕉av资源在线| 国产97色在线日韩免费| 黄色日韩在线| 亚洲性夜色夜夜综合| 99久久成人亚洲精品观看| 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 亚洲人成网站在线播| 日韩免费av在线播放| 国产精品 国内视频| 看免费av毛片| 国产真人三级小视频在线观看| 国产淫片久久久久久久久 | 欧美一区二区国产精品久久精品| 国产伦人伦偷精品视频| 色精品久久人妻99蜜桃| 俺也久久电影网| 日韩欧美精品免费久久 | 欧美性猛交╳xxx乱大交人| 狂野欧美白嫩少妇大欣赏| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 久久草成人影院| 亚洲国产高清在线一区二区三| 制服丝袜大香蕉在线| 亚洲在线观看片| 亚洲精品456在线播放app | 最后的刺客免费高清国语| 国产成人a区在线观看| 五月伊人婷婷丁香| 久久精品91蜜桃| 国产成人aa在线观看| 9191精品国产免费久久| 香蕉av资源在线| 国产单亲对白刺激| 日韩欧美 国产精品| 91久久精品国产一区二区成人 | 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 看免费av毛片| 热99在线观看视频| 亚洲人成伊人成综合网2020| 国产精品1区2区在线观看.| av在线天堂中文字幕| 国产精品一区二区免费欧美| 美女大奶头视频| 欧美日韩一级在线毛片| 免费av不卡在线播放| 嫩草影院精品99| 中文字幕久久专区| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器| 岛国在线观看网站| 国产精品日韩av在线免费观看| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 午夜免费男女啪啪视频观看 | 久久99热这里只有精品18| 久99久视频精品免费| av福利片在线观看| 国产成人福利小说| 日本在线视频免费播放| 日韩欧美精品v在线| 久99久视频精品免费| 激情在线观看视频在线高清| 亚洲av电影在线进入| 人妻丰满熟妇av一区二区三区| 男女下面进入的视频免费午夜| 中文字幕精品亚洲无线码一区| 一区二区三区激情视频| 亚洲黑人精品在线| 9191精品国产免费久久| 亚洲熟妇中文字幕五十中出| 国内久久婷婷六月综合欲色啪| 国产午夜精品久久久久久一区二区三区 | 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 亚洲成人精品中文字幕电影| 无人区码免费观看不卡| 久久精品91蜜桃| 久久精品91无色码中文字幕| 欧美+日韩+精品| 国产精品日韩av在线免费观看| 九色国产91popny在线| 精品国产美女av久久久久小说| 亚洲精品456在线播放app | 非洲黑人性xxxx精品又粗又长| 三级国产精品欧美在线观看| 俺也久久电影网| 精品福利观看| 成人午夜高清在线视频| 欧美日韩国产亚洲二区| 亚洲国产欧美人成| 99久久精品一区二区三区| www.999成人在线观看| 国产在视频线在精品| 最新中文字幕久久久久| 久久久国产成人精品二区| 神马国产精品三级电影在线观看| 成人av在线播放网站| 国内精品一区二区在线观看| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 老司机福利观看| 日韩欧美精品v在线| 欧美色欧美亚洲另类二区| 91久久精品电影网| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看| 18禁美女被吸乳视频| 一个人看视频在线观看www免费 | 国产精品野战在线观看| www.999成人在线观看| 国产探花在线观看一区二区| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| aaaaa片日本免费| 波多野结衣高清无吗| 免费在线观看成人毛片| 国内少妇人妻偷人精品xxx网站| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 日本成人三级电影网站| 久久久久国内视频| 在线观看免费视频日本深夜| 十八禁人妻一区二区| 熟女电影av网| 成人无遮挡网站| 一个人看的www免费观看视频| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 欧美+日韩+精品| 一夜夜www| 欧美精品啪啪一区二区三区| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看 | av女优亚洲男人天堂| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 日韩免费av在线播放| 在线观看日韩欧美| 亚洲真实伦在线观看| 色视频www国产| 中文字幕人成人乱码亚洲影| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 欧美午夜高清在线| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 久久久久久久亚洲中文字幕 | 美女黄网站色视频| 脱女人内裤的视频| 长腿黑丝高跟| 国产欧美日韩精品一区二区| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 亚洲七黄色美女视频| 麻豆成人av在线观看| 国产精华一区二区三区| 免费在线观看影片大全网站| 99热6这里只有精品| 午夜福利在线在线| 亚洲第一欧美日韩一区二区三区| 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| 欧美一区二区国产精品久久精品| 日韩国内少妇激情av| 男女视频在线观看网站免费| 中文亚洲av片在线观看爽| 精品欧美国产一区二区三| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 91av网一区二区| 精品99又大又爽又粗少妇毛片 | av专区在线播放| 国产一区二区三区在线臀色熟女| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| 黄色日韩在线| 国产亚洲av嫩草精品影院| 中文字幕av成人在线电影|