• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation

    2022-12-28 09:52:12TianShouLiang梁添壽PengPengShi時朋朋SanQingSu蘇三慶andZhiZeng曾志
    Chinese Physics B 2022年12期

    Tian-Shou Liang(梁添壽) Peng-Peng Shi(時朋朋) San-Qing Su(蘇三慶) and Zhi Zeng(曾志)

    1School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    2School of Civil Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    3School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: melting phase transition,crystalline materials,physical states,deep learning,molecular dynamics simulation

    Melting of crystalline material is a common physical phenomenon that occurs when the free energy of solid is equal to that of liquid, yet it remains elusive owing to the diversity in physical pictures of melting behavior in a variety of substances.[1–3]Large-scale molecular dynamics simulation is an effective and widely approved method for in-depth understanding of melting at the atomic level.[4–7]The atomic coordinates and velocities are the primary outputs describing atomic spatiotemporal state, and the pursuit to interpret the physical states of matter from atomic behavior is critical for understanding the essence of solid melting. Yet, till date finding a general physical quantity for interpreting the connotation of physical states has remained challenging.

    Usually, physical states of a simulation system can simply be determined via atomic local structure information,i.e.,order of atomic arrangement. The common atom types of crystalline systems mainly include face-centered cubic(FCC),body-centered cubic (BCC), hexagonal close packed (HCP),and icosahedral ones. Once subjected to thermal load, crystalline materials with regular lattice will lose their atomic order. According to this simple geometric change, the crystal structure recognition method, such as common neighbor analysis[8](CNA) and its extended model adaptive-CNA (a-CNA),[9]bond-orientational order parameter,[10]and the diamond structure[11](IDS) can be used to judge whether the crystal melts.[6,12]Recently,the polyhedral template matching(PTM)[13]was proposed based on the topology of the local atomic environment,which provides great reliability of atomic identification against thermal vibration. Although these methods can detect the melting phenomenon of crystalline materials, they cannot perform quantitative characterization due to the sensitivity to temperature or atom strain. Notably,the disorder of the atomic configuration is not the essence of the liquid phase.

    The Lindemann criterion,[14]proposed as early as the early 20th century, has been widely accepted as an orthodox theory to elucidate the melting of solid via atomic vibrations.According to the Lindemann melting theory, melting stems from the mechanical instability due to enhanced atomic vibration. Solid melts when the magnitude of atomic thermal vibration exceeds a certain proportion of interatomic spacing,e.g.,0.05–0.2.[15]The thresholds of different materials need to consider additional factors acting as prior knowledge,such as crystal structure,[16,17]crystal surface,[18]dimension,[19]and the periodic table.[20]

    Deep learning has attracted intensive attention to deal with complex scientific issues in many research fields.[21–24]Recently, a new modeling method“machine learning embedded with materials domain knowledge”[21]was proposed to reconcile the major contradictions[22]in applying machine learning to the materials community. Research shows that neural networks can explore the fundamental laws of classical mechanics.[23]Many scholars identified the transition of solid–liquid phase via deep learning,[25–28]where the atomic interaction potential surface[29]was applied to construct the learning feature.In fact,the dynamic behavior of atoms or particles is closer to the physical essence to characterize the melting phase transition of material systems.[30]From this point of view,atomic dynamic information,rather than atomic local structure, should be better to characterize the physical states.However,learning physical state of matter from atomic behavior for unlocking the essence of melting is still an open topic.

    Here, we put forward a strategy mapping atomic behavior to physical states for crystalline material via convolutionbased deep learning,where the temporal and spatial information of the atomic behavior, i.e., 3D atomic trajectories, are used as the inputs for training,validation,and prediction. The results show that the proposed method has excellent ability to identify solid and liquid atoms of bulk crystal materials in the first-order phase transition with high accuracy. The crossprediction demonstrates that the atomic behavior can be used to predict crystal phase transition. The proposed method exhibits the intrinsic characteristics against thermal shock noise.

    Figure 1 shows the time convolution neural network(TCNN) based architecture to forecast the physical state of crystalline materials during solid–liquid phase transition process which consists of two steps: (1) learning features from atomic trajectories [Figs. 1(a)–1(c)] and (2) predicting the solid–liquid phase transition of crystalline solid system[Figs. 1(c)–1(d)]. A defect-free bulk Au (FCC) is taken as an example to illustrate the architecture. Figure 1(a) shows a bulk Au arranged in a periodic box. Figure 1(b) shows the expanded trajectories of two atoms, signifying that the deep learning module exists three input channels.Figure 1(c)shows the module mainly including two parts: (1) the convolution layers for learning features from the atomic trajectories and(2) the fully connected neural network for mapping the features stemming from the first part to two output nodes indicating the atomic physical states, i.e., solid and liquid. Detailed configuration of this learning module and the corresponding parameters are provided in S1,where the inception module[31]was employed to build the convolution layers. The atoms that are identified as solid or liquid phase are called solid-like or liquid-like atoms for distinguishing the physical states in practical sense. It is noted that a single atom has no concept of physical state, but a group or system has real physical state,i.e.,solid,liquid and gas. Here we evaluate the physical state of the crystal material system by counting the proportion of liquid-like atoms predicted by the model,as shown in the upper panel of Fig.1(d). The lower panel of Fig.1(d)shows the corresponding error curve.

    In this paper, four single bulk crystalline solids, i.e., Au(FCC),Fe(BCC),Mg(HCP),and Si(diamond),and the Cu–Ni alloy with an initial FCC state were studied. The potential function of bulk Au is the multi-body potential function EAM.[32]That of bulk Fe is the multi-body potential function EAM/FS.[33]That of bulk Mg is the multi-body potential function EAM/FS.[34]That of bulk Si is the multi-body potential function SW.[35]The potential function of bulk Cu and Ni is the multi-body potential function EAM/ALLOY.[36]All molecular dynamics calculations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS).[37]See S2 for the simulation details and S3 for the training settings and loss functions.

    Fig.1. Architecture for probing the melting process of bulk crystalline solids. (a)A bulk Au solid. (b)Atomic trajectories in 3D space. (c)TCNN-based module comprising convolution layers and full connection layers. (d)The phase transition curve defined as the variation of the liquid-like atoms(upper)and the prediction error of the atomic physical states(lower).

    Figure 2 shows the average atomic potential energy(PE)and the ratio of liquid-like atoms predicted by TCNN as a function of temperature for the Au,Fe,Mg,and Si bulk crystal solids. The phase transition processes predicted by TCNN are consistent with those via PE curves. Since the quasistatic simulation method was adopted to anneal the crystalline solid with a gap of 10 K near the phase transition point,we calculated the melting points by averaging the two points before and after the phase transition. The predicted melting point is 1335.0 K for Au, 2000.4 K for Fe, 1075.2 K for Mg, and 2313.5 K for Si. In fact, there is a certain deviation of melting points between calculations and experiments,which mainly depends on the potential function, material defects, heating rate and simulation method. For all cases, the ratio of liquid-like atoms is almost at the level of 0.0 before the phase transition, and abrupt increases to 1.0 after the phase transition. The former means that the system is solid, while the latter is liquid. The results are also verified from the Lindemann law in S4,where the threshold to identify solid-like or liquid-like atoms is not unique for different materials. The results are confirmed by the distribution of atomic diffusion coefficient as shown in S5.These coincidences are not surprising,because atomic trajectory contains atomic thermal vibration and diffusion behavior,which should be learned via deep learning.

    Fig.2. The first-order phase transition curves represented with average atomic potential energy(blue)and ratio of liquid-like atoms by TCNN(red). (a)Au,(b)Fe,(c)Mg,and(d)Si.

    Figure 3 shows the robustness of the model against thermal oscillation.For comparative analysis,TCNN,a-CAN,and PTM were used to identify the atomic state of bulk Au,Fe,and Mg,and TCNN and IDS were employed for bulk Si. The first column displays the liquid-like atom variation curves, which show that the results predicted by TCNN exhibit the highest accuracy. Even within the superheated state near the phase transition point,the error of bulk Au is less than 4%,bulk Fe is less than 3%, bulk Mg is less than 2%, and bulk Si is almost negligible,shown as the middle one. The results of bulk Au, Fe, and Mg classified using a-CNA and PTM comprised large errors. The errors at the time of impending phase transition afforded when using a-CNA and PTM are 88.5% and 38.1%for bulk Au,79.7%and 34.5%for bulk Fe,and 80.1%and 23.6% for bulk Mg, respectively. The a-CNA and PTM usually employ atomic local information to identify the type or specific structure of atomic crystals; hence,they are easily affected by the violent thermal oscillation. The results of bulk Si identification through TCNN and IDS methods comprised negligible errors,which is attributed to the thermal stability of the diamond lattice. The right panels show several snapshots captured at the moments before and after the phase transition,where solid-like and liquid-like atoms are denoted with blue and orange colors,respectively.

    Therefore, the identification result by the TCNN-based method is insensitive to temperature and the errors for all crystal bulk materials were less than 4%, which can be explained from the statistical properties of the method itself. Theoretically, atomic vibration is a behavior contained in the trajectory of atoms. From this perspective, it should be beneficial to the recognition accuracy of atomic types, as described by Lindemann’s theory: the physical state of matter can be characterized using atomic thermal oscillation. Note that whether the thermally activated oscillation characteristic plays a positive role needs to be further researched due to the black box characteristic of neural networks.

    Last,cross-prediction experiments were designed to illustrate the generality of predicting the phase transition of crystalline solids using atomic trajectories. Figure 4(a)shows the variation of the ratio curves of liquid-like atoms of bulk Au,Fe,Mg,and Si with temperature,which were obtained by the approach that the physical state of each atom experiencing the phase transition process was predicted using different models trained with the data of other elements. Taking bulk Au as an example, the model parameters were first separately trained with the training data of Au,Fe,Mg,or Si,and given the welltrained network parameters, i.e., models; then, these models were utilized to predict the atomic physical state of each atom of bulk Au with additional data prepared using different random seeds. It shows that all the cross-prediction results for each case can accurately capture the temperature point of the phase transition, which agree well with the prediction results using target elements. However, the correctness loss before and after phase transition differs on a case-to-case basis. For bulk Au, the cross-prediction accuracies before phase transition exhibit little deviation, while those after phase transition decrease to a certain extent. Surprisingly, the accuracy increases with temperature,which is almost coincident once the temperature exceeds 1800 K. The cross-prediction results of the other elements (Fe, Mg, and Si) are consistent with each other;only the red curves(Au models)shown in the panels of Fe and Mg are not consistent,where a slight deviation ocurrs in a small range before the phase transition.

    Fig.3. Prediction accuracy of four types of bulk crystalline solids: (a)bulk Au(FCC),(b)bulk Fe(BCC),(c)bulk Mg(HCP),and(d)bulk Si(diamond)using TCNN,PTM,a-CNA,and IDS.The first column: ratio of liquid-like atoms as function of temperature; the middle column:the specific ratio of solid-like atoms with light blue and liquid-like atoms with pale yellow; the last column: snapshots corresponding to the middle column.

    To understand these deviations, the previous results shown in Fig. 2 are reviewed. In the melting process, bulk Au hardly experiences overheating,while bulk Fe or Mg experiences a certain degree of overheating and Si endures a large degree of overheating.These seemingly coincidental phenomena indicate that phase transition under overheating induces high prediction accuracy. On the one hand,as the temperature increases, the liquid phase characteristics of atomic behavior(rapid diffusion, violent oscillation, etc.) become significant.On the other hand, when phase transition occurs in the absence of overheating or a small amount of overheating occurs,some atoms still afford local vibrations similar to solid-like atoms.Hence,relevant features can be captured by deep learning methods and retain in the model parameters.

    We further demonstrated the generality of the TCNNbased method for predicting the evolution of physical states for solid alloys, where the 50%–50% copper–nickel alloy(Cu0.5Ni0.5) was considered, as shown in Fig. 4(b). The left panel shows that the model trained by each single element(Cu or Ni)not only can accurately predict the phase transition process of the alloy but also has high consistency in the ratio curves of liquid-like atoms at each temperature point. The right panel shows that the max error of Cu is about 2.5%and Ni is about 1.5%. The errors of the prediction results are almost the same (2%) near the phase transition line. It shows that the atomic behavior of different elements exhibits unified solid-or liquid-phase characteristics,which is independent of element or lattice types.The TCNN-based method using complete atomic trajectories affords a certain degree of consistency and universality,indicating that a more universal characterization quantity should be defined to identify the physical state of crystalline solid. This is consistent with the mean square displacement (MSD) theory that only considers the characteristics of atomic trajectories without distinguishing element types. Note that the average diffusion coefficient of particles is calculated by combing MSD with the Einstein theory.[38]

    Fig. 4. Cross-prediction of melting phase transition for single-element crystalline solid and Cu0.5Ni0.5 alloy solid. (a) Ratio distribution of liquid-like atoms vs. temperature for bulk Au,Fe,Mg,and Si. (b)Ratio distribution of liquid-like atoms of Cu0.5Ni0.5 alloy vs. temperature.

    This paper is limited to crystal bulk materials. However,the black box nature of the model limits us to deeply understand mechanism of the model extracting features and learning physical states. This interpretability problem should be solved by introducing domain expert knowledge. In addition,the applicability of our model needs further verification for more complex material systems with liquid-like atoms and solidlike atoms, such as nanoscale materials with significant scale effects, metallic glass materials and polymers with complex glass conversion processes.

    Herein, a deep learning architecture based on the timedomain convolution neural network was proposed to predict the phase transition process of bulk crystalline solids by probing the atomic physical state with atomic trajectories. For the bulk Au,Fe, Mg, and Si, the proposed architecture can accurately predict the physical states. i.e., solid and liquid. The predicted results are insensitive to temperature and the errors for all the crystal bulk materials are less than 4%. The crosstraining and prediction analysis indicate that there should exhibit a lattice-independent generalized physical quantity for characterizing the physical state of crystal materials. Our study inspires future research to construct a more universal characterization quantity based on the atomic behavior to identify the atomic physical states of various materials.

    Acknowledgements

    Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M663935XB), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-261), and the National Natural Science Foundation of China(Grant Nos.11802225 and 51878548).

    精品99又大又爽又粗少妇毛片| av免费在线看不卡| 亚洲欧美日韩东京热| 国产伦理片在线播放av一区| 日韩一区二区视频免费看| 亚洲国产毛片av蜜桃av| 亚洲av不卡在线观看| 日本黄色片子视频| 欧美丝袜亚洲另类| 国语对白做爰xxxⅹ性视频网站| 黄色怎么调成土黄色| 亚洲,一卡二卡三卡| 午夜免费鲁丝| 国产免费视频播放在线视频| 六月丁香七月| 亚洲色图综合在线观看| av卡一久久| 亚洲va在线va天堂va国产| 国产片特级美女逼逼视频| 国产美女午夜福利| 建设人人有责人人尽责人人享有的| 亚洲国产欧美日韩在线播放 | 波野结衣二区三区在线| 精品久久久久久电影网| 国产高清有码在线观看视频| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 日韩伦理黄色片| 午夜免费鲁丝| 国产精品久久久久久精品古装| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 国产精品国产三级国产av玫瑰| 美女内射精品一级片tv| 97在线人人人人妻| 九九在线视频观看精品| 大码成人一级视频| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 亚洲电影在线观看av| 国产成人免费观看mmmm| 男人和女人高潮做爰伦理| av黄色大香蕉| 国产精品一区二区性色av| 一本色道久久久久久精品综合| 一级毛片我不卡| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 观看av在线不卡| 亚洲精品久久午夜乱码| 极品教师在线视频| 久久久国产精品麻豆| 成人黄色视频免费在线看| 中国国产av一级| 少妇人妻精品综合一区二区| 国产成人一区二区在线| 视频区图区小说| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 在线播放无遮挡| 日韩一本色道免费dvd| 丰满乱子伦码专区| 久久精品久久精品一区二区三区| 久久久久人妻精品一区果冻| 欧美少妇被猛烈插入视频| 777米奇影视久久| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 午夜福利影视在线免费观看| 好男人视频免费观看在线| 午夜福利影视在线免费观看| 亚洲国产最新在线播放| 日本欧美国产在线视频| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频 | 女的被弄到高潮叫床怎么办| 精品亚洲乱码少妇综合久久| 国产日韩欧美视频二区| 极品少妇高潮喷水抽搐| 亚洲精品一二三| 国产av精品麻豆| 亚洲精品视频女| 亚洲美女视频黄频| 97在线视频观看| 精品卡一卡二卡四卡免费| 亚洲精品第二区| 国产色爽女视频免费观看| 久久久久久久久久成人| 国内少妇人妻偷人精品xxx网站| 一区二区av电影网| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频 | freevideosex欧美| 少妇人妻久久综合中文| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 成人午夜精彩视频在线观看| 最近中文字幕2019免费版| 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频 | 哪个播放器可以免费观看大片| 又大又黄又爽视频免费| 免费久久久久久久精品成人欧美视频 | 日韩 亚洲 欧美在线| 国产日韩欧美亚洲二区| 大香蕉久久网| 色网站视频免费| 极品人妻少妇av视频| 青春草亚洲视频在线观看| 热99国产精品久久久久久7| 乱人伦中国视频| 成年人免费黄色播放视频 | 色视频在线一区二区三区| 老司机影院成人| 天堂俺去俺来也www色官网| 又爽又黄a免费视频| 91精品一卡2卡3卡4卡| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 国产亚洲最大av| 我要看黄色一级片免费的| av女优亚洲男人天堂| 晚上一个人看的免费电影| 欧美激情极品国产一区二区三区 | 亚洲婷婷狠狠爱综合网| 亚洲va在线va天堂va国产| 最近中文字幕高清免费大全6| 欧美日韩av久久| 欧美日韩亚洲高清精品| 亚洲成人一二三区av| 国产成人aa在线观看| 国产黄片视频在线免费观看| 久久久久网色| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 日本与韩国留学比较| 精品久久久久久久久av| 王馨瑶露胸无遮挡在线观看| 国产乱来视频区| 国产免费又黄又爽又色| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频 | 欧美日本中文国产一区发布| 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 乱人伦中国视频| 国产又色又爽无遮挡免| 人人妻人人澡人人爽人人夜夜| 国产极品天堂在线| 女人精品久久久久毛片| 91在线精品国自产拍蜜月| 极品教师在线视频| 高清视频免费观看一区二区| 中文天堂在线官网| 国产一区亚洲一区在线观看| 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 欧美日本中文国产一区发布| 2022亚洲国产成人精品| 成人国产av品久久久| 亚洲成人一二三区av| 午夜免费观看性视频| 天堂中文最新版在线下载| av免费观看日本| 国产精品无大码| 免费av中文字幕在线| 街头女战士在线观看网站| 国产熟女午夜一区二区三区 | 精品午夜福利在线看| 欧美日韩国产mv在线观看视频| 久久久久久久久久久丰满| 黄色一级大片看看| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 久久鲁丝午夜福利片| 男女免费视频国产| 少妇被粗大猛烈的视频| 免费大片18禁| 男人爽女人下面视频在线观看| 国产精品蜜桃在线观看| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 男人爽女人下面视频在线观看| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 国产精品久久久久久av不卡| 51国产日韩欧美| 少妇 在线观看| 成人综合一区亚洲| 高清视频免费观看一区二区| 在线天堂最新版资源| 免费高清在线观看视频在线观看| 精品国产乱码久久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91 | 美女视频免费永久观看网站| videos熟女内射| 国产精品人妻久久久久久| .国产精品久久| 国产极品天堂在线| 一级a做视频免费观看| 高清不卡的av网站| 麻豆乱淫一区二区| 97在线人人人人妻| 亚洲精品一二三| 欧美三级亚洲精品| 少妇被粗大猛烈的视频| 成人影院久久| 乱系列少妇在线播放| 日日啪夜夜爽| 亚洲无线观看免费| 亚洲av日韩在线播放| 精品久久久久久久久亚洲| 狂野欧美激情性xxxx在线观看| 王馨瑶露胸无遮挡在线观看| 超碰97精品在线观看| 精品久久久噜噜| 国产精品.久久久| 亚洲欧美精品专区久久| 五月玫瑰六月丁香| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 少妇精品久久久久久久| 国产成人freesex在线| 男人舔奶头视频| 色吧在线观看| 久久人人爽av亚洲精品天堂| 精品人妻熟女av久视频| 国产欧美日韩精品一区二区| 国产熟女欧美一区二区| 精品久久久久久电影网| 91久久精品国产一区二区成人| 免费在线观看成人毛片| 成人午夜精彩视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲精品乱久久久久久| 我要看黄色一级片免费的| 99热这里只有精品一区| 国产又色又爽无遮挡免| 三级国产精品欧美在线观看| 免费不卡的大黄色大毛片视频在线观看| 日韩成人av中文字幕在线观看| 午夜激情福利司机影院| 国产免费又黄又爽又色| 日韩欧美 国产精品| 黑人猛操日本美女一级片| 久久午夜福利片| 亚洲精品456在线播放app| 日韩一区二区视频免费看| av有码第一页| 2022亚洲国产成人精品| av一本久久久久| 热99国产精品久久久久久7| 久久国产精品男人的天堂亚洲 | 国产亚洲午夜精品一区二区久久| 麻豆成人午夜福利视频| 日韩一区二区视频免费看| 日日啪夜夜撸| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 在线天堂最新版资源| 一级片'在线观看视频| 国模一区二区三区四区视频| 涩涩av久久男人的天堂| 黑丝袜美女国产一区| 亚洲综合色惰| 老司机亚洲免费影院| 国产免费又黄又爽又色| 久久国产精品大桥未久av | 亚洲精品456在线播放app| 午夜影院在线不卡| 岛国毛片在线播放| 国产精品无大码| 精品午夜福利在线看| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 久久精品国产亚洲网站| av专区在线播放| 久久99一区二区三区| 国精品久久久久久国模美| 美女cb高潮喷水在线观看| 午夜影院在线不卡| 午夜福利在线观看免费完整高清在| 成人国产麻豆网| 黄色怎么调成土黄色| 少妇熟女欧美另类| 国产日韩欧美在线精品| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 欧美国产精品一级二级三级 | 免费人成在线观看视频色| 亚洲av国产av综合av卡| 色哟哟·www| 久久久久精品性色| 亚洲国产最新在线播放| 纯流量卡能插随身wifi吗| 黑丝袜美女国产一区| 国产精品三级大全| 人妻少妇偷人精品九色| 日韩视频在线欧美| 国产精品一区二区在线观看99| 一区在线观看完整版| 2018国产大陆天天弄谢| 最后的刺客免费高清国语| 乱人伦中国视频| 国产精品一区二区在线观看99| 亚洲国产精品专区欧美| 人人妻人人添人人爽欧美一区卜| 秋霞在线观看毛片| 久久久欧美国产精品| 久久久午夜欧美精品| 一级二级三级毛片免费看| 大香蕉97超碰在线| 亚洲精品一区蜜桃| 老司机影院毛片| 五月伊人婷婷丁香| 久久精品久久精品一区二区三区| 韩国高清视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 久久韩国三级中文字幕| 久久精品久久久久久久性| 99热这里只有是精品50| 国产又色又爽无遮挡免| 91午夜精品亚洲一区二区三区| 中国国产av一级| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 91成人精品电影| 久久久久久久久久久久大奶| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 黄色配什么色好看| 久久久久精品久久久久真实原创| 国产在视频线精品| 国产一区有黄有色的免费视频| 99视频精品全部免费 在线| 久久久久视频综合| 人妻少妇偷人精品九色| 亚洲在久久综合| 亚洲天堂av无毛| 美女福利国产在线| 欧美 日韩 精品 国产| 亚洲成色77777| 黑人高潮一二区| 午夜激情福利司机影院| 国产又色又爽无遮挡免| 国产欧美日韩综合在线一区二区 | 一本大道久久a久久精品| 中文字幕人妻熟人妻熟丝袜美| 久热这里只有精品99| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 一二三四中文在线观看免费高清| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 91成人精品电影| 亚洲国产精品一区二区三区在线| 有码 亚洲区| 亚洲av免费高清在线观看| 久久这里有精品视频免费| 一级,二级,三级黄色视频| 嫩草影院新地址| videos熟女内射| 久久久久久久久久久久大奶| 精品久久国产蜜桃| 国产精品久久久久久精品古装| 91精品一卡2卡3卡4卡| 午夜福利网站1000一区二区三区| 国产亚洲91精品色在线| 99久国产av精品国产电影| 国产色爽女视频免费观看| 欧美三级亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲综合精品二区| 蜜桃在线观看..| 一区在线观看完整版| 一本久久精品| 国产伦在线观看视频一区| 国产精品人妻久久久影院| 99久久人妻综合| 男的添女的下面高潮视频| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 成人毛片a级毛片在线播放| 久久午夜综合久久蜜桃| 国产乱人偷精品视频| 精品熟女少妇av免费看| 一级毛片电影观看| 乱人伦中国视频| 日韩av不卡免费在线播放| 国产精品一区二区在线不卡| 18禁动态无遮挡网站| 亚洲第一区二区三区不卡| 精品一区在线观看国产| 国产91av在线免费观看| 欧美日韩综合久久久久久| 亚洲国产精品专区欧美| 亚洲精品第二区| 国产在线视频一区二区| 亚洲熟女精品中文字幕| 中文字幕av电影在线播放| av黄色大香蕉| 高清黄色对白视频在线免费看 | 国模一区二区三区四区视频| 国产一区有黄有色的免费视频| 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 免费观看a级毛片全部| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 欧美成人午夜免费资源| av.在线天堂| 2018国产大陆天天弄谢| 国产乱来视频区| av有码第一页| 午夜激情久久久久久久| 欧美3d第一页| 人妻夜夜爽99麻豆av| 人人妻人人添人人爽欧美一区卜| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生| 在线观看人妻少妇| 街头女战士在线观看网站| 亚洲四区av| 少妇高潮的动态图| 国产亚洲欧美精品永久| 超碰97精品在线观看| 精品国产露脸久久av麻豆| 高清av免费在线| 欧美日韩亚洲高清精品| 在线观看av片永久免费下载| 日本av手机在线免费观看| 亚洲av成人精品一区久久| 亚洲av成人精品一二三区| 亚洲国产色片| 熟女电影av网| 少妇猛男粗大的猛烈进出视频| 国产精品一区www在线观看| 高清午夜精品一区二区三区| 观看美女的网站| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 色吧在线观看| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 18禁在线无遮挡免费观看视频| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 人妻 亚洲 视频| 多毛熟女@视频| 久久久久久久亚洲中文字幕| 97超视频在线观看视频| 极品教师在线视频| 中文欧美无线码| 三级国产精品片| 高清黄色对白视频在线免费看 | 久久久久久人妻| 如日韩欧美国产精品一区二区三区 | 不卡视频在线观看欧美| 伦理电影免费视频| 国产精品国产av在线观看| 欧美精品国产亚洲| 久久久国产欧美日韩av| 99久久精品热视频| 免费黄网站久久成人精品| 免费观看a级毛片全部| 国产精品一二三区在线看| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 久久人妻熟女aⅴ| 一级毛片我不卡| 九九在线视频观看精品| 中文字幕av电影在线播放| 久久久久久久久久成人| 9色porny在线观看| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 少妇精品久久久久久久| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 男女免费视频国产| 女性被躁到高潮视频| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩东京热| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频 | 麻豆乱淫一区二区| 免费高清在线观看视频在线观看| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 午夜激情福利司机影院| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| 亚洲精品乱码久久久久久按摩| 国产黄色视频一区二区在线观看| 久久热精品热| 51国产日韩欧美| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 熟妇人妻不卡中文字幕| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 国产精品嫩草影院av在线观看| 亚洲真实伦在线观看| 久久久久久久久久久丰满| 成人特级av手机在线观看| 女人久久www免费人成看片| 女性被躁到高潮视频| 国产熟女午夜一区二区三区 | 国产熟女欧美一区二区| 免费在线观看成人毛片| 亚洲综合色惰| 国产毛片在线视频| 99久国产av精品国产电影| 国产精品国产三级专区第一集| av在线app专区| 欧美另类一区| 2018国产大陆天天弄谢| 岛国毛片在线播放| 美女cb高潮喷水在线观看| 伊人亚洲综合成人网| 国产日韩欧美视频二区| 国产精品国产三级专区第一集| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 一级av片app| 日韩不卡一区二区三区视频在线| 亚洲不卡免费看| 亚洲伊人久久精品综合| 国产一区有黄有色的免费视频| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 有码 亚洲区| 91精品一卡2卡3卡4卡| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 亚洲综合精品二区| 久久久久久久久久久久大奶| 国产日韩欧美视频二区| 国产午夜精品久久久久久一区二区三区| 建设人人有责人人尽责人人享有的| 国产精品福利在线免费观看| 麻豆乱淫一区二区| 亚洲av中文av极速乱| 亚洲av综合色区一区| 一区二区三区精品91| 国产69精品久久久久777片| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说| 国产精品一区二区性色av| 亚洲精品日本国产第一区| 亚洲av中文av极速乱| 成人二区视频| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 日韩大片免费观看网站| av在线老鸭窝| 一边亲一边摸免费视频| 久热这里只有精品99| 激情五月婷婷亚洲| 欧美激情国产日韩精品一区| 黄色毛片三级朝国网站 | 日韩av免费高清视频| 少妇的逼水好多| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 国产日韩欧美亚洲二区| 久久精品国产自在天天线| 国产精品久久久久久精品古装| 少妇人妻一区二区三区视频| 性色av一级| av福利片在线| 黑人巨大精品欧美一区二区蜜桃 | 伊人久久国产一区二区| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 七月丁香在线播放| 国产一区有黄有色的免费视频| 国产欧美另类精品又又久久亚洲欧美| 欧美一级a爱片免费观看看| xxx大片免费视频| 欧美97在线视频| 91久久精品国产一区二区三区| 久久av网站| 亚洲成人手机| 男女免费视频国产|