• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rogue waves of a(3+1)-dimensional BKP equation

    2022-12-28 09:52:14YuQiangYuan袁玉強XiaoYuWu武曉昱andZhongDu杜仲
    Chinese Physics B 2022年12期
    關(guān)鍵詞:杜仲

    Yu-Qiang Yuan(袁玉強) Xiao-Yu Wu(武曉昱) and Zhong Du(杜仲)

    1Department of Mathematics,China University of Mining and Technology(Beijing),Beijing 100083,China

    2School of Science,Beijing Forestry University,Beijing 100083,China

    3Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China

    Keywords: (3+1)-dimensional BKP equation, Kadomtsev–Petviashvili hierarchy reduction, interaction,rogue wave,lump

    1. Introduction

    Since nonlinear waves have extensive applications, such as the evolution of optical pulse and water wave packet, researches of the nonlinear waves have been attractive in the optical fibers,fluids,and plasmas.[1–3]The physical systems relating to those nonlinear waves have been described via those nonlinear evolution equations (NLEEs) such as the nonlinear Schr¨odinger equation,the three-wave resonant interaction system, the Kadomtsev–Petviashvili(KP)equation, the longwave-short-wave resonant interaction system,the Ito equation,and the Fokas–Lenells equation.[4–7]The NLEEs play a critical part in explaining and handling problems in the fields of experiment and engineering.[8–10]Among these models,studies of the high dimensional NLEEs are concentrated to investigate the rich nonlinear waves interactions.[11–15]

    In this paper, we will investigate a (3+1)-dimensional BKP equation,[16–20]

    whereuis an analytic function of the scaled spatial coordinatesx,y,zand temporal coordinatet, with the subscripts denoting the partial differential derivatives. Equation (1) has been proposed as an opposite procedure on applying the linear superposition principle.[16]By using the multiple exp-function algorithm, the multiple wave solutions of Eq. (1) have been presented.[17]Rational lump solutions of Eq. (1) have been obtained via the symbolic computation.[18]The lump and linerogue wave have been derived via the KP hierarchy reduction method.[19]Certain hybrid solutions and breather solutions have been constructed.[20]

    Recently, some semi-rational solutions with certain parameter constraints which reveal special resonant interaction[The resonant interaction describing a special interaction between theN-th order rational solutions andN+1 solitons,which occurs that the phase of the lump (line rogue wave)varies to infinite suddenly when such lump(line rogue wave)interacts with a soliton (based on the semi-rational solutions obtained by the Hirota method)]between the lump(line rogue wave) and soliton have been investigated via the KP hierarchy reduction[21,22]and bilinear method for the KP I equation,[23,24]the Fokas system,[25]the Davey–Stewartson(DS)I equation,[26]and some other models.[27]The resonant interaction describes the pattern in which a lump arises from one soliton and then merges with the other soliton. What is more, such the lump (line rogue wave) is localized in both space and time,which performs like a rogue wave in the higher dimensional space.

    Motivated by the above interesting interaction,in this paper, we will pay our attention to investigating such resonant interaction by constructing semi-rational solutions of Eq. (1)which have not been reported before, to our knowledge. In Section 2, via the KP hierarchy reduction, we will derive the semi-rational solutions in determinant form of Eq.(1). Resonant interactions between one lump(line rogue wave)and two solitons,and between the higher-order lump and three solitons will be discussed in Section 3. Our conclusions will be presented in Section 4.

    2. Semi-rational solutions of Eq.(1)

    In this section, we will construct the semi-rational solutions which generate the resonant interactions between the lump (line rogue wave) and the solitons (actually the kinks)via the KP hierarchy reduction method. The basic idea of such a reduction is to make the bilinear form of the studied equation as a reduction of the KP hierarchy under certain constraints.Then we begin with the bilinear equation of Eq.(1),[19,20]

    whereτis a function of the variablesxj(j=1,2,3,4). TheN-th order semi-rational solutions for KP hierarchy(4)are defined as the followingN+1 determinant:

    withξ=px ?ip2y ?2p3t ?ip4z,ξ′=x ?2ipy ?6p2t ?4ip3z.The above solutions combine the rational and the exponential functions,namely,they are the semi-rational solutions in nature. Moreover,it is worth noting the following:

    (I) The above semi-rational solutions will be reduced to rational solutions if the constantδjkis removed, which are exactly those solutions reported in Ref. [19] of Eq. (1). We conclude that the order of operator?p(or?p?)determines the order of rational solutions and the order of the determinant determines the number of solitons. More subtle discussions will be seen in Section 3. In addition,to obtain the interaction between the rational lump or rogue wave and solitons, we need at least two solitons. Thus,the fundamental solutions defined above should be second-order determinants.

    (II) Dynamics of the rational solutions contain entirely different two cases(a stable propagating lump and a line rogue wave),consequently,the above semi-rational will lead to two interaction patterns,i.e.,the interaction between the lump and the solitons,and between the line rogue wave and the solitons.

    3. Interaction between the lump (line rogue wave)and solitons

    3.1. The first order lump and rogue wave

    By settingN=1 in solutions(6),we derive

    withR=ηη?+1/(p+p?)2,η=ξ′?1/p+p?, andc10=c20=1,c11=0. It can be seen thatζj0is always accompanied byζ?j0,which means that the imaginary part ofζj0can be removed,thus we will takeζj0as real constants hereafter.

    Separating the rational and exponential functions, we rewrite the fundamental semi-rational solutions of Eq.(1)as

    with the subscripts R and I denoting the real and imaginary parts of constants. We derive that properties of the two solitons are determined by e2(ξR+ζ10)and e2(ξR+ζ20)respectively,while the properties of the rational solutions are determined byη2R+η2I.

    Based on the above solutions, we can obtain the asymptotic ofuas

    The result shows the soliton with two different asymptotic planes,which implies the above soliton is a kink one. Besides,for studying the interaction, we will takeζ10>ζ20(also in the following discussions),which makes the rational functionη2R+η2Ihold the prominent effect in the intermediate time.SinceηRandηIbear different variables, then with the different choices of parameters and planes, we will derive two different kinds of nonlinear waves: (i)whena2?3b2/=0,the rational solutions generate a lump that develops along the trajectory ofηR=0 andηI=0; (ii) whena2?3b2=0 and on thex–zplane,ηIis just a constant,thus the rational solutions generate a line wave(along the line trajectoryηR=0). Then combining with the kink solitons,we will discuss the interactions between the lump and kink solitons,and between the line rogue wave and kink solitons on thex–zplane.

    In Fig. 1, we present the interaction between one lump and two kink solitons on thex–yplane.The semi-rational solutions generate a novel nonlinear wave structure which shows:(i) as the two kink solitons own the same wavenumber, they are nearly parallel with each other;(ii)the lump only exists in a short time and emerges from one kink soliton and disappears into the other one later. It should pay attention that during the interaction, such lump localizes not only in space (the nature of the lump)but also in time,which behaves like a rogue wave.Similar structure has also been revealed in Refs.[23,26]for the KP and DSI equations(that lump is called a lump-type rogue wave). In addition, as the lump will disappear finally instead of passes through the kink soliton, such interaction is quite different from that interaction pattern reported in Ref. [20].Interactions of the lump and kink solitons on they–zplane are similar to those on thex–yplane,so we will omit those analyses.

    When we choosea2?3b2=0 on thex–zplane,ηIcan be seen as a constant, then solutions (9) will generate the interaction between line rogue wave and kink solitons. As shown in Figs.2,we find that(i)the two kink solitons propagate stably;(ii)the line rogue wave rises up at a certain time,reaches higher amplitude att=0, and then disappears soon; (iii) especially,the line rogue wave only exists in a segment between the two kink solitons,which implies that the line rogue wave is also localized in space. Such line rogue wave is different from that proposed in Ref.[21](which extends to infinity in space)for DSI equation. To discuss such interaction more clearly,in Fig. 3 we present some details such as the density plot of interaction att=0 and the trajectories at different positions in Fig.2(c).We compare the evolution of the interaction at different times at a fixed position atx=?5. A localized wave with a sharp shape rises between the two kink solitons(as shown in the real line in Fig.3(b))and vanishes after a short time.

    In general, in this paper, we obtain two novel kinds of interactions: between the lump and two kink solitons and between the rogue wave and two kink solitons. Evolutions of the lump and the line rogue wave are both confined in time and to space(the segment between two kink solitons),which perform like a rogue wave. Thus,we show two kinds of potential rogue wave for Eq.(1)via the semi-rational solutions, which are different from that in Refs.[19,20].

    Fig.1. Interaction between a lump and two kink solitons via solutions(9)with z=0,a=1,b=1,ζ10=2π,ζ20=?2π.

    Fig.2. Interaction between a line rogue wave and two kink solitons via solutions(9)with y=0,a=1,b=?1/√3,ζ10=2π,ζ20=?2π.

    Fig.3.(a)The density plot of interaction at t=0,(b)trajectories at different positions in Fig.2(a). The parameters are the same as those in Fig.2.

    3.2. Higher-order lump and rogue wave

    WithN=2 in solutions (7), we can derive the secondorder semi-rational solutions of Eq.(1):

    wheremjkare given by solutions(7). The same as the above analyses, those solutions will generate interactions between three solitons and higher-order rational solutions,including(I)between three kink solitons and the line rogue wave on thex–zplane with constrainta2?3b2=0, as shown in Fig. 5;(II)between three kink solitons and two lumps in other cases,as shown in Fig. 4. The three kink solitons are of the same wavenumber(a+ib), thus they are all nearly parallel. In addition to the different kinds of rational solutions,the distance between the two kink solitons will also remarkably affect such wave interactions, which can be adjusted via the phase shifts constantsζj0. Thus,in what follows,we will discuss the interactions between the lumps (line rogue waves) and three kink solitons graphicly.

    We present the interactions between two lumps and three kink solitons on thex–yplane as an example. With different choices ofζj0, there are two kinds of interaction. The one is, by settingζ10>ζ20>ζ30, we see that two lumps arise from the leftmost (in thex-axis direction) kink soliton,go through the middle one, and fuse into the rightmost kink soliton,as shown in Figs.4(a)–4(d);The other is,while settingζ10>ζ30>ζ20,as shown in Figs.4(e)–4(h),we see only one lump arises from the leftmost kink soliton,with its shape varying when it goes through the middle kink soliton. And later,it shows a two-lumps outline(which means that there is another lump arising from the middle kink soliton). Subsequently,the two lumps fuse into the rightmost kink soliton.

    In the same way, with different choices ofζj0, we will present two interactions between line rogue wave and three kink solitons by settinga2?3b2= 0 on thex–zplane in Fig.5. Withζ10>ζ20>ζ30,it can be seen that one line rogue wave rises up in the segment between the leftmost and rightmost kink solitons, crosses the middle one, and arranges on a line nearly; and soon it reaches higher amplitude att=0,in the meantime, these two segments of the rogue wave connect together; and then the two segments retreat back with amplitudes decreased, and finally disappear. While by settingζ10>ζ30>ζ20,the rogue wave behaves almost the same as the former case except for that one segment of the rogue wave increases its amplitude after retreating back, as shown in Fig.5(g). Thus,the dynamics of these two interactions between the rogue wave and kinks are nearly the same,different from those in Fig.4. Besides,it is noteworthy that the secondorder rational solutions do not generate two-line rogue waves(arranging on two lines) or a second-order rogue wave (with three wave arms). Hence,in this paper,we call such localized line rogue waves as one rogue wave,distinctly different from those reported in Refs.[23,26].

    Fig.4. Interactions between two lumps and three kinks via solutions(13)with a=1,b=0. (a)–(d)ζ10=6,ζ20=0. and ζ30=?6;(e)–(h): ζ10=6π,ζ20=?6π,and ζ30=0.

    Fig. 5.Interactions between one rogue wave and three kinks via solutions (13) withy=1,a=1,b=?1/√3, and (a)–(d):ζ10=5,ζ20=0 andζ30=?5;(e)–(h):ζ10=4π,ζ20=?4π,andζ30=0.

    4. Conclusions

    In this paper, we investigated certain rogue waves of the(3+1)-dimensional BKP equation. Via the KP hierarchy reduction, semi-rational solutions in the determinant form of Eq.(1)have been constructed,which generate two novel nonlinear wave behaviors: (i) the interaction between one lump and two kink solitons with the lump developing from one kink soliton and then fusing into the other one; (ii) the interaction between one line rogue wave and two kink solitons on thex–zplane with the line rogue wave growing from and then decaying into the constant background between the segment of the two solitons. We have found that evolutions of the lump and line rogue wave are localized both in time and space, which means that such lump and line rogue wave play as a rogue wave. In addition, we have also discussed the second-order semi-rational solutions graphicly, which describe two types of interactions between two lumps(one line rogue wave)and three kink solitons.

    Acknowledgements

    Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2021XJLX01 and BLX201927),China Post-doctoral Science Foundation(Grant No. 2019M660491), and the Natural Science Foundation of Hebei Province,China(Grant No.A2021502003).

    猜你喜歡
    杜仲
    DPPH-HPLC-QTOF-MS/MS快速篩選和鑒定杜仲黑茶中抗氧化活性成分
    HPLC法同時測定杜仲-當(dāng)歸藥對中5種成分
    中成藥(2018年8期)2018-08-29 01:28:14
    略陽杜仲
    陜西畫報(2016年1期)2016-12-01 05:35:28
    UPLC同時測定杜仲中6種有效成分的含量
    杜仲雄花氨基酸多樣性及營養(yǎng)價值評價
    聚焦微波助脫除纖維素提取杜仲籽殼中杜仲膠
    HPLC法同時測定杜仲3個藥用部位中8種成分
    中成藥(2016年8期)2016-05-17 06:08:28
    正交法優(yōu)選杜仲葉中綠原酸提取工藝
    殃及池魚
    周末
    欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| av有码第一页| 88av欧美| 国产免费男女视频| www.熟女人妻精品国产| 很黄的视频免费| 日韩成人在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美成狂野欧美在线观看| 免费搜索国产男女视频| 人成视频在线观看免费观看| 久久性视频一级片| 欧美成狂野欧美在线观看| 一进一出抽搐动态| 免费看日本二区| 亚洲avbb在线观看| 一级片免费观看大全| 51午夜福利影视在线观看| 舔av片在线| 两个人视频免费观看高清| 亚洲av熟女| 老司机靠b影院| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品久久久久久毛片| 国产一区二区三区视频了| 男人舔女人的私密视频| 午夜两性在线视频| 国产av又大| 日韩三级视频一区二区三区| 午夜福利高清视频| 2021天堂中文幕一二区在线观| 黄片小视频在线播放| 亚洲av第一区精品v没综合| 一边摸一边抽搐一进一小说| 午夜激情福利司机影院| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 欧美激情久久久久久爽电影| 免费无遮挡裸体视频| 成人永久免费在线观看视频| 熟妇人妻久久中文字幕3abv| 国产精品亚洲av一区麻豆| АⅤ资源中文在线天堂| 久久久国产精品麻豆| 美女高潮喷水抽搐中文字幕| 日本 av在线| 国产高清视频在线观看网站| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 又爽又黄无遮挡网站| 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 亚洲 欧美一区二区三区| 亚洲自偷自拍图片 自拍| 搡老熟女国产l中国老女人| 可以在线观看的亚洲视频| www.自偷自拍.com| 精品高清国产在线一区| 国产黄片美女视频| 每晚都被弄得嗷嗷叫到高潮| 97人妻精品一区二区三区麻豆| 妹子高潮喷水视频| 成年版毛片免费区| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 美女黄网站色视频| 精品国产乱码久久久久久男人| 青草久久国产| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 欧美激情久久久久久爽电影| 亚洲一区二区三区色噜噜| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 老司机深夜福利视频在线观看| 欧美一区二区国产精品久久精品 | 日韩欧美 国产精品| 每晚都被弄得嗷嗷叫到高潮| 一级a爱片免费观看的视频| 在线永久观看黄色视频| 国产精品一区二区三区四区久久| 叶爱在线成人免费视频播放| 日本一二三区视频观看| 国产成人aa在线观看| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| www日本在线高清视频| 亚洲 国产 在线| 国产一区在线观看成人免费| 美女黄网站色视频| 两个人视频免费观看高清| aaaaa片日本免费| 中文在线观看免费www的网站 | 欧美成人免费av一区二区三区| 久久久国产欧美日韩av| 一进一出抽搐gif免费好疼| 成人av一区二区三区在线看| 一本综合久久免费| 在线免费观看的www视频| 99热这里只有是精品50| 天天一区二区日本电影三级| 午夜福利18| 欧美一区二区国产精品久久精品 | 欧美色欧美亚洲另类二区| 日韩大尺度精品在线看网址| 欧美精品啪啪一区二区三区| 精品国产超薄肉色丝袜足j| 18禁观看日本| 国产精品久久久人人做人人爽| 88av欧美| 香蕉av资源在线| 中文字幕人妻丝袜一区二区| 久久精品综合一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲狠狠婷婷综合久久图片| 日本成人三级电影网站| 熟女电影av网| 一级a爱片免费观看的视频| 国产黄a三级三级三级人| av视频在线观看入口| 免费在线观看黄色视频的| www.熟女人妻精品国产| 免费在线观看视频国产中文字幕亚洲| 欧美日本视频| 日韩大码丰满熟妇| 最近视频中文字幕2019在线8| 久久久久久国产a免费观看| 国模一区二区三区四区视频 | 午夜激情福利司机影院| 免费观看精品视频网站| 久久久久久久久免费视频了| 成年版毛片免费区| 国产精品久久久av美女十八| 久久香蕉国产精品| 亚洲狠狠婷婷综合久久图片| 午夜免费激情av| 亚洲18禁久久av| 又粗又爽又猛毛片免费看| 欧美久久黑人一区二区| 香蕉国产在线看| 老司机午夜十八禁免费视频| 99精品在免费线老司机午夜| 午夜两性在线视频| 好男人电影高清在线观看| 哪里可以看免费的av片| 搡老妇女老女人老熟妇| 后天国语完整版免费观看| 性欧美人与动物交配| 亚洲avbb在线观看| 人妻丰满熟妇av一区二区三区| 欧美精品啪啪一区二区三区| 日本黄大片高清| 色噜噜av男人的天堂激情| 淫秽高清视频在线观看| 色精品久久人妻99蜜桃| 国产亚洲精品久久久久5区| 国产高清视频在线观看网站| 超碰成人久久| 成人欧美大片| 亚洲七黄色美女视频| 国产亚洲av嫩草精品影院| 久久久国产成人精品二区| 老司机午夜十八禁免费视频| 欧美久久黑人一区二区| 久久久久免费精品人妻一区二区| 999精品在线视频| 999久久久国产精品视频| 丁香欧美五月| 天堂动漫精品| 亚洲精品中文字幕一二三四区| 搡老熟女国产l中国老女人| 99热这里只有是精品50| 曰老女人黄片| 999精品在线视频| 日本五十路高清| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 久久香蕉激情| 午夜福利视频1000在线观看| 国产高清视频在线播放一区| 国产高清视频在线播放一区| 亚洲男人天堂网一区| 国产精品av久久久久免费| 欧美在线一区亚洲| 国产亚洲欧美98| 欧美日韩亚洲国产一区二区在线观看| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 中文字幕人成人乱码亚洲影| 久久香蕉国产精品| 国产精华一区二区三区| 黑人欧美特级aaaaaa片| 久久国产精品影院| 三级男女做爰猛烈吃奶摸视频| 91av网站免费观看| 天堂动漫精品| 天堂动漫精品| 在线观看免费日韩欧美大片| 免费观看精品视频网站| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片免费观看直播| 亚洲无线在线观看| 亚洲成a人片在线一区二区| 一本综合久久免费| 99久久久亚洲精品蜜臀av| 草草在线视频免费看| 99国产精品一区二区蜜桃av| 在线看三级毛片| 国产免费男女视频| 国产三级在线视频| 精品国产美女av久久久久小说| 亚洲成人国产一区在线观看| 波多野结衣高清作品| 黄片大片在线免费观看| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 久久久久久免费高清国产稀缺| 亚洲美女黄片视频| 亚洲av成人av| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久| 男男h啪啪无遮挡| 欧美久久黑人一区二区| 黄色毛片三级朝国网站| ponron亚洲| 亚洲精品色激情综合| 又大又爽又粗| www.熟女人妻精品国产| 日本成人三级电影网站| 日韩精品免费视频一区二区三区| 欧美zozozo另类| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女| 啦啦啦免费观看视频1| 亚洲av美国av| 日本一本二区三区精品| 窝窝影院91人妻| 婷婷亚洲欧美| 久久精品人妻少妇| 亚洲熟妇熟女久久| 狂野欧美白嫩少妇大欣赏| 啦啦啦观看免费观看视频高清| 久久精品91蜜桃| av在线播放免费不卡| 最近视频中文字幕2019在线8| 日日干狠狠操夜夜爽| 亚洲精品美女久久久久99蜜臀| 深夜精品福利| 精品熟女少妇八av免费久了| 精品国产乱子伦一区二区三区| 曰老女人黄片| 在线免费观看的www视频| 国产成人一区二区三区免费视频网站| 国产成+人综合+亚洲专区| 天天一区二区日本电影三级| 巨乳人妻的诱惑在线观看| av有码第一页| 99久久国产精品久久久| 亚洲国产欧美网| 男女下面进入的视频免费午夜| 成年人黄色毛片网站| 91在线观看av| 久久亚洲精品不卡| 精品欧美国产一区二区三| 日本三级黄在线观看| 精品福利观看| 中文字幕人妻丝袜一区二区| 中文字幕熟女人妻在线| 99久久国产精品久久久| 中文资源天堂在线| 色在线成人网| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 欧美三级亚洲精品| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 黄色毛片三级朝国网站| 美女免费视频网站| 最近最新免费中文字幕在线| 一本精品99久久精品77| 色哟哟哟哟哟哟| av有码第一页| 午夜激情福利司机影院| 亚洲最大成人中文| 99热只有精品国产| 欧美乱妇无乱码| 99热这里只有是精品50| 日韩欧美 国产精品| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 久久久久久免费高清国产稀缺| 精品久久久久久久毛片微露脸| 久久香蕉激情| 啦啦啦观看免费观看视频高清| 少妇人妻一区二区三区视频| 这个男人来自地球电影免费观看| 九色国产91popny在线| www.自偷自拍.com| 搡老妇女老女人老熟妇| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 欧美日韩乱码在线| 国产v大片淫在线免费观看| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 国产99久久九九免费精品| 天天躁夜夜躁狠狠躁躁| 少妇裸体淫交视频免费看高清 | 成人亚洲精品av一区二区| 欧美精品亚洲一区二区| 波多野结衣高清作品| 国产v大片淫在线免费观看| 一级黄色大片毛片| 九色成人免费人妻av| x7x7x7水蜜桃| 一本综合久久免费| 亚洲自拍偷在线| 母亲3免费完整高清在线观看| 中文在线观看免费www的网站 | 99riav亚洲国产免费| 成人欧美大片| 国内揄拍国产精品人妻在线| 国产精品久久久久久人妻精品电影| 色av中文字幕| 午夜两性在线视频| 五月玫瑰六月丁香| 精品国产超薄肉色丝袜足j| 身体一侧抽搐| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区 | 男插女下体视频免费在线播放| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 日本熟妇午夜| 亚洲av成人一区二区三| 好男人电影高清在线观看| 最近最新中文字幕大全免费视频| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| www日本在线高清视频| 国产99白浆流出| 国产精品av视频在线免费观看| 香蕉国产在线看| 亚洲一区二区三区不卡视频| 黄色女人牲交| 夜夜夜夜夜久久久久| 国产高清视频在线播放一区| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 毛片女人毛片| 午夜日韩欧美国产| 亚洲激情在线av| 在线观看免费午夜福利视频| 中文字幕av在线有码专区| 精华霜和精华液先用哪个| 国产精品久久视频播放| 国产亚洲精品av在线| 精品人妻1区二区| 桃红色精品国产亚洲av| 亚洲国产日韩欧美精品在线观看 | 午夜成年电影在线免费观看| 亚洲 国产 在线| 18禁美女被吸乳视频| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 日本免费a在线| 欧美丝袜亚洲另类 | av在线播放免费不卡| 国产av一区二区精品久久| 99热只有精品国产| 日韩欧美在线二视频| 久久人人精品亚洲av| 黄色片一级片一级黄色片| 精品不卡国产一区二区三区| 91av网站免费观看| 窝窝影院91人妻| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 日本黄色视频三级网站网址| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 日本黄大片高清| 国产成人影院久久av| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 观看免费一级毛片| 国产不卡一卡二| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 国产亚洲精品久久久久5区| 成人18禁在线播放| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 舔av片在线| 久久精品国产99精品国产亚洲性色| 国产精品1区2区在线观看.| 亚洲精品国产精品久久久不卡| 成熟少妇高潮喷水视频| 午夜视频精品福利| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 少妇人妻一区二区三区视频| 久久天躁狠狠躁夜夜2o2o| 色综合婷婷激情| 久久久久久久久久黄片| 免费在线观看黄色视频的| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 成人av在线播放网站| 亚洲精品av麻豆狂野| www日本黄色视频网| 禁无遮挡网站| 一本综合久久免费| 国产成年人精品一区二区| 婷婷丁香在线五月| 日韩欧美 国产精品| 免费观看人在逋| 午夜精品一区二区三区免费看| 亚洲欧美日韩无卡精品| 一本一本综合久久| 老司机深夜福利视频在线观看| 久久久国产精品麻豆| 制服人妻中文乱码| 中文在线观看免费www的网站 | 亚洲精品在线美女| av有码第一页| √禁漫天堂资源中文www| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 亚洲天堂国产精品一区在线| 五月伊人婷婷丁香| 日韩有码中文字幕| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 欧美中文综合在线视频| 国产精品 欧美亚洲| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区| 日韩欧美 国产精品| 精品欧美国产一区二区三| 精品国产超薄肉色丝袜足j| 一本久久中文字幕| 老司机在亚洲福利影院| 18禁美女被吸乳视频| 超碰成人久久| 岛国在线免费视频观看| 国产精品亚洲av一区麻豆| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区三| 午夜精品在线福利| 欧美日韩精品网址| 成人午夜高清在线视频| 日韩国内少妇激情av| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看 | 欧美成人性av电影在线观看| 欧美一级a爱片免费观看看 | 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 色综合站精品国产| 91麻豆av在线| 国产三级在线视频| 可以在线观看的亚洲视频| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看 | 看黄色毛片网站| 黄片小视频在线播放| 久久草成人影院| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 婷婷亚洲欧美| 免费看美女性在线毛片视频| 久久久久久久久中文| 搡老岳熟女国产| www.自偷自拍.com| 亚洲乱码一区二区免费版| 别揉我奶头~嗯~啊~动态视频| 国产亚洲av高清不卡| www.999成人在线观看| 九色成人免费人妻av| 久久久国产精品麻豆| 国产成人一区二区三区免费视频网站| 亚洲专区字幕在线| 亚洲熟妇熟女久久| 国产久久久一区二区三区| 午夜福利18| 啪啪无遮挡十八禁网站| 99热这里只有是精品50| 少妇被粗大的猛进出69影院| 久久香蕉激情| 亚洲欧美日韩东京热| 视频区欧美日本亚洲| 久久久久久久久免费视频了| 免费电影在线观看免费观看| 九色国产91popny在线| 香蕉av资源在线| 高清在线国产一区| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 国产午夜福利久久久久久| 母亲3免费完整高清在线观看| 中文资源天堂在线| 听说在线观看完整版免费高清| 一级毛片高清免费大全| 长腿黑丝高跟| 夜夜躁狠狠躁天天躁| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片| 久久久久性生活片| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| 变态另类成人亚洲欧美熟女| 最近最新免费中文字幕在线| 国产黄片美女视频| 男女视频在线观看网站免费 | 黄色a级毛片大全视频| 午夜影院日韩av| 亚洲成人中文字幕在线播放| 精品一区二区三区四区五区乱码| 亚洲成人久久性| 热99re8久久精品国产| 国产高清视频在线播放一区| 香蕉国产在线看| 18禁观看日本| 国产真实乱freesex| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 在线观看免费日韩欧美大片| 亚洲电影在线观看av| 一本一本综合久久| 每晚都被弄得嗷嗷叫到高潮| 精品熟女少妇八av免费久了| 国产精品综合久久久久久久免费| 操出白浆在线播放| 我的老师免费观看完整版| 一级作爱视频免费观看| 亚洲全国av大片| 三级毛片av免费| 欧美又色又爽又黄视频| 99久久精品国产亚洲精品| 久久人人精品亚洲av| 精品午夜福利视频在线观看一区| 美女免费视频网站| 成熟少妇高潮喷水视频| 欧美午夜高清在线| 观看免费一级毛片| 国产av不卡久久| 中文字幕高清在线视频| 亚洲狠狠婷婷综合久久图片| 亚洲av成人一区二区三| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月| 免费看十八禁软件| 欧美三级亚洲精品| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 国产精品久久电影中文字幕| 亚洲,欧美精品.| 男男h啪啪无遮挡| 久久精品国产亚洲av高清一级| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 亚洲,欧美精品.| 精品一区二区三区av网在线观看| 日韩欧美三级三区| 中文字幕久久专区| 天天添夜夜摸| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 国产视频一区二区在线看| tocl精华| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 88av欧美| 91在线观看av| 啪啪无遮挡十八禁网站| 在线观看www视频免费| 色播亚洲综合网| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 18禁观看日本| 亚洲成a人片在线一区二区| 中文字幕人成人乱码亚洲影| 欧美极品一区二区三区四区|