• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extraordinary mechanical performance in charged carbyne

    2022-12-28 09:52:06YongZheGuo郭雍哲YongHengWang汪永珩KaiHuang黃凱HaoYin尹顥andEnLaiGao高恩來
    Chinese Physics B 2022年12期
    關鍵詞:恩來

    Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黃凱),Hao Yin(尹顥), and En-Lai Gao(高恩來)

    Department of Engineering Mechanics,School of Civil Engineering,Wuhan University,Wuhan 430072,China

    Keywords: charged carbyne,first-principles calculations,strength and toughness,bond alternation

    1. Introduction

    Carbon allotropes have been widely explored and used in various fields of science and technology for the last few decades. In addition to the well-known two-dimensional(2D)graphene[1,2]and three-dimensional (3D) diamond,[3,4]onedimensional (1D) carbon chains, carbyne, has also attracted increasing attention,[5,6]since carbyne with an extreme structure has been predicted to have extreme properties.[7–11]However, carbyne has a higher energy than graphite carbon because of sp1hybridization,making the fabrication of such material challenging.[12–14]Fortunately, carbyne formed at high temperatures and pressures was indicated in interstellar dust and meteorites,[15–18]and experimentalists have developed several methods for fabricating carbyne chains or segments,such as bulk production of long carbyne chains inside doublewalled carbon nanotubes,[19]deriving carbyne segments from graphene,[20]synthesis of confined carbyne,[21]and synthesis of carbyne on metal surface or within evaporating liquid carbon.[22,23]

    Mechanical strength and toughness are of fundamental importance for applications of carbyne, such as assembling strongest fibrous materials[24]and constructing angstromscale devices.[25,26]For example, Gaoet al.[24]proposed a carbon assembly including a large carbyne bundle that is confined within a carbon nanotube sheath,in which the nanotube sheath protects the carbyne bundles against reaction, while the carbyne chains act as stiffening structures. The highest Young’s modulus and gravimetric Young’s modulus of this assembly were determined as 1505 GPa and 977 GPa·g?1·cm3,much higher than any known fibrous materials. This ultrahigh performance of the assembly mainly results from the extreme mechanical properties of carbyne chains that have been well identified from both calculations and experiments. Liuet al.[7]first-principles calculated that the breaking force of carbyne chains is as high as 11.7 nN, corresponding to a tensile strength of 2500 GPa when a diameter of 0.77 ?A was used and gravimetric strength of 75 GPa·g?1·cm3. Mikhailovskijet al.[8]in-situmeasured the breaking force of carbyne chains as 11.2 nN,corresponding to a tensile strength of 245 GPa when a diameter of 2.4 ?A was adopted and gravimetric strength of 72 GPa·g?1·cm3.These results indicate the breaking force and gravimetric strength of carbyne chains obtained from highfield calculations and experiments are generally consistent,while the reported tensile strength of carbyne chains are controversial mainly because of the variations in determining the cross-sectional area.[27]To avoid such controversy and make comparison with other materials, we use gravimetric measures,e.g., gravimetric strength, to quantify the mechanical performance in this work.

    The predicted gravimetric strength (74 GPa·g?1·cm3)and gravimetric toughness (9.4 kJ·g?1) of carbyne chains are much greater than any known carbon allotropes, including diamond (24 GPa·g?1·cm3and 2.0 kJ·g?1) and graphene(51 GPa·g?1·cm3and 8.8 kJ·g?1).[28]The underlying mechanism is that chemical bonds of carbyne chains are stiff and aligned in the same direction,which endows carbyne with the mechanical supremacy over other materials. However, the stable form of carbyne (–C≡C–) contains alternating weak single-bonds and strong triple-bonds,[7,27,29–32]and the bond alternation increases with tensile strains, known as a Peierls instability, which ultimately causes the premature fracture of carbyne from the breaking of long and weak bonds.[7]

    Although the bond alternation greatly reduces the mechanical performance of carbyne,it still holds the records for the strength and toughness of materials. If the bond alternation can be eliminated for carbyne chains, these records of mechanical performance can be further improved. Considering that the bond alternation of carbyne originates from the electron density distribution between atoms, we wonder whether the electron density distribution can be engineered to suppress and even eliminate the bond alternation. Fortunately,Casariet al.[33]experimentally indicated that the bond length alternation of charged carbon-atom wires decreased. More recently, it was found that graphene,[34]graphene oxide,[35]phosphorene,[24]and Ti2C MXene[36]upon charge injection exhibit extraordinary electromechanical actuation performance,and the mechanical properties of such materials can be modulated by charge injection.[36,37]Several charge injection methods have been reported, such as immersing carbon nanotube in an electrolyte and apply potential,[38]charge transfer between carbon wires and metal nanoparticles,[39]and nitrogen doped carbyne.[40]These results provide an indication for obtaining record-breaking mechanical performance by chargeengineering carbyne chains.

    In this work, we investigated the mechanical performance of charged carbyne by using first-principles calculations. It was found that the gravimetric strength, strain-tofailure, gravimetric toughness,and breaking force can be improved from 74 GPa·g?1·cm3, 18%, 9.4 kJ·g?1, and 11.5 nN for pristine carbyne to the highest values of 106 GPa·g?1·cm3,26%, 19.0 kJ·g?1, and 16.5 nN for charged carbyne, making the charged carbyne the strongest and the toughest material. The mechanism analyses of bonding pattern and electronic structures show that the bonding alternation of carbyne under tension is suppressed and even eliminated by chargeengineering, which accounts for such record-breaking mechanical performance of charged carbyne.

    2. Computational details

    The calculations were conducted using density functional theory (DFT) implemented in the Viennaab-initiosimulation package(VASP).[41]Unless otherwise noted,the Perdew–Burke–Ernzerhof (PBE) parameterization[42]of the generalized gradient approximation (GGA)[43]was used for the exchange–correlation functional. For all the calculations in this work, energy cut-off of 520 eV was used, andk-point mesh with the density>80 ?A(the product of each lattice constant and the corresponding number ofk-points)was adopted for the Brillouin zone sampling.[44]All atomic positions and axial lattice parameters of the structures have been optimized until all forces were less than 0.01 eV/?A.Our calculations indicate that the calculated mechanical properties are almost independent on the axial sizes of computational cells (Fig. S1 in supporting information). Meanwhile,our calculations indicate that a vacuum layer over 40 ?A has only slight effect on the mechanical properties(Fig.S2). To balance the computational accuracy and cost,a vacuum layer of 40 ?A was adopted in this work. Considering a balance between accuracy and efficiency,energy cut-off of 400 eV,k-point mesh with the density of about 30 ?A and vacuum layer of 20 ?A was used in theab-initiomolecular dynamics(AIMD)simulations.

    3. Results and discussion

    3.1. Stabilities of charged carbyne

    Density functional theory (DFT) calculations were used to investigate the stabilities of charged carbyne. By tracking the bond length alternation (BLA), internal dimerization for the pristine carbyne has been identified,since the polyyne structure(–C≡C–)is more stable than the cumulene structure(=C=C=).[30]The calculated energy barrier for the transition from the polyyne structure to the cumulene structure for pristine carbyne is 4 meV per atom (Fig. S3). Upon a certain amount of charge injection (?0.10 e/atom to +0.10 e/atom),carbyne still maintains linear bonding patterns, as illustrated in Fig. 1(a). Interestingly, the BLA decreases to zero as the charge injection increases to±0.07 e/atom,since the energy of the cumulene structure is lower than that of polyyne structure(Fig. S3). When the charge injection exceeds±0.07 e/atom,the carbyne chains show uniform bond lengths,indicating that these chains are free of Peierls instabilities.

    Furthermore, we calculated the phonon dispersions for quantifying the dynamical stability of these structures(Fig. 1(b)). The absence of imaginary frequencies indicates the dynamical stability of the pristine carbyne and charged carbyne. Afterwards, the energy above convex hull was used to measure the stability of carbyne(the energy difference at zero pressure and zero temperature between the energy for charged carbyne and graphite). The calculated energy above convex hull values of carbyne upon charge injection of?0.07, 0.00,and +0.07 e/atom are 0.79, 1.03, and 1.52 eV/atom, respectively. This suggests that the likely ease of charged carbyne fabrication can be sequenced as electron injected carbyne>pristine carbyne>hole injected carbyne.Finally,we explored the thermodynamic stability by performing AIMD simulations(a supercell having 12 atoms)at 300 K for 10 ps. During the AIMD simulations, the pristine carbyne and charged carbyne maintain their structures with only slight lattice perturbation from thermal fluctuations (see Fig. S4 and movie S1 for details).

    Fig.1. Structures and stabilities of charged carbyne. (a)Illustration of charge injection into carbyne,and the bonding patterns for carbyne upon charge injection. (b)Phonon dispersions of pristine carbyne and charged carbyne upon electron injection of ?0.07 e/atom and hole injection of+0.07 e/atom.

    3.2. Mechanical properties of charged carbyne

    To investigate the mechanical performance of carbyne upon charge injection, we calculated the force–strain and gravimetric stress–strain curves by using the DFT method(Fig. 2). Both calculations at local density approximation(LDA)and generalized gradient approximation(GGA)levels were performed for comparison. Calculations using these two approximations are in good agreement (Fig. S5). Our calculated gravimetric strength (74 GPa·g?1·cm3), breaking force(11.5 nN),and strain-to-failure(18%)for the pristine carbyne agree with those(75 GPa·g?1·cm3,11.7 nN,and 18%)calculated by Yakobson’s team.[7]The gravimetric strength, gravimetric toughness and gravimetric modulus for pristine carbyne and charged carbyne were summarized in Table S1.

    Fig. 2. Mechanical performance of pristine carbyne and charged carbyne.(a) Force versus strain and (b) gravimetric stress versus strain curves for pristine carbyne and charged carbyne.

    The gravimetric strength, strain-to-failure, gravimetric toughness, and breaking force of carbyne significantly increase with charge injection before±0.07 e/atom. Upon hole injection of +0.07 e/atom, the gravimetric strength, strainto-failure, gravimetric toughness, and breaking force of carbyne increase to their highest values of 106 GPa·g1·cm3,26%, and 19.0 kJ·g?1, and 16.5 nN. In a contrast, the maximum gravimetric modulus of carbyne upon charge injection is only 3% higher than that of pristine carbyne, suggesting a slight modulation of stiffness by charge-engineering.The highest gravimetric modulus (967 GPa·g?1·cm3), gravimetric strength (106 GPa·g?1·cm3), and gravimetric toughness (19.0 kJ·g?1) of charged carbyne is higher than those of pristine carbyne (939 GPa·g?1·cm3, 74 GPa·g?1·cm3, and 9.4 kJ·g?1), graphene (453 GPa·g?1·cm3, 51 GPa·g?1·cm3,and 8.8 kJ·g?1), and diamond (327 GPa·g?1·cm3,24 GPa·g?1·cm3, and 2.0 kJ·g?1)[24](Fig. 3). To our knowledge, the gravimetric modulus, gravimetric strength, and gravimetric toughness are higher than any reported materials in literature,making the optimally charged carbyne the stiffest,the strongest,and the toughest predicted material(Fig.3).

    The above-reported mechanical properties are investigated at the temperature of 0 K.Furthermore,we investigated the finite temperature effect on the mechanical properties of charged carbyne. At a finite temperature, the average failure rate for a single bond follows the Arrhenius form[45,46]

    wherev(f) is approximately 1013Hz (the “attempt rate” to cross over the energy barrier), ?E(σ)is the energy barrier to break a single bond,kBandTare the Boltzmann constant and temperature, respectively. For atomic chains, the increasing failure rates of every single bond due to the increase of temperature would lead to the decrease in strength. From Eq.(1)and the calculated ?E(σ) for charged carbyne, we predicted the relative strength(the averaged strength at a finite temperature divided by the averaged strength at the temperature of 0 K)as a function of temperature(Fig.S6).

    Fig. 3. Calculated modulus, strength, and toughness of typical high-mechanical-performance materials. (a) Gravimetric strength versus gravimetric modulus and(b)gravimetric strength versus gravimetric toughness of charged carbyne compared with other typical high-modulus, high-strength, and high-toughness materials.

    Fig.4. Bending configurations of charged carbyne from DFT calculations.

    Since the bending stiffness is useful for understanding the configurations of linear atomic chains in thermal fluctuations,[47–50]we calculate the bending stiffness of pristine charged carbyne for comparison with pristine carbyne.The bending stiffness(kb)was obtained from the energy(Eb)for bending a long chain into a circle with radiusR:kb=EbR/π.[51]Our calculated bending stiffness of pristine carbyne (3.7 eV·?A) agree with that (3.6 eV·?A) calculated by Yakobson’s team.[7]The calculated bending stiffness for carbyne upon charge injection of?0.07 e/atom and+0.07 e/atom were 2.8 eV·?A and 1.6 eV·?A, respectively, indicating the increased bending flexibility compared with pristine carbyne.Additionally, it was found that the bond alternation in both linear and circular charged structures decreases with charge injection, and the radius of the circles slightly increases (decreases)with electron(hole)injection(Fig.4).

    3.3. Mechanism behind the superb mechanical performance of charged carbyne

    To understand the mechanism behind the exceptional mechanical performance of charged carbyne, we did analyses at the atomic and electronic scales. First,the bonding structures of strain-free carbyne upon different charge injections were calculated. The bonds of charge-free carbyne were alternated into long bonds and short bonds. As the electron/hole injection increases,the averaged bond length slightly changes from 1.28 ?A to 1.29 ?A,while the bond length alternation(BLA)decreases to zero as the charge injection exceeds±0.07 e/atom(Fig.5(a)),indicating that the charge injection suppresses and even eliminates the BLA for strain-free carbyne. Considering that the BLA of carbyne predicted by DFT theory is generally underestimated,and Yanget al.[52]found that the accurate estimate of the BLA is 0.13 ?A, we also did calculations using HSE06 functional for comparison. The BLA calculated using HSE06 functional is 0.1 ?A, which is generally consistent with previous reported values.[53,54]Additionally,the calculations using HSE06 functional indicated that BLA keeps zero in the whole stretching process until strain-to-failure as the hole injection increases to +0.13 e/atom. In this case, the gravimetric strength, strain-to-failure, and breaking force of carbyne reaches their highest values of 115 GPa·g?1·cm3, 29%,and 18.0 nN.These results generally agree with the achieved record-breaking mechanical performance of charged carbyne calculated at GGA level. Hence, considering a balance between computational accuracy and efficiency, the following mechanism analyses were based on calculations at GGA level.

    As charged carbyne was stretched, both the long bonds and short bonds were elongated. To quantify the bond deformation for carbyne, the local strains for the alternated long bonds(εL)and short bonds(εS)were defined as

    whereLL0(LL)andLS0(LS)are the lengths of the long bonds and short bonds under zero strain (strain-to-failure), respectively. To quantify the contribution of long bonds and short bonds on the strain-to-failure of carbyne(ε),measures for the long bonds(CL)and short bonds(CS)were proposed as

    whereL0is the sum of lengths of the long and short bonds.Based on Eqs.(2)–(5),we calculated the local strains of long bonds and short bonds and measured their contribution on the strain-to-failure of carbyne (Fig. 5(b)). As the charge injected from?0.6 e/atom to+0.06 e/atom,the strains of long bonds and short bonds for carbyne are 32% and 3%–4%, respectively,and the contribution of long bonds to the strain-tofailure of carbyne exceeds 90%. These results indicate that the strain is largely localized in long bonds,accounting for the low strain-to-failure of carbyne upon these ranges of charge injections. As the charge injection exceeds±0.07 e/atom,the uniform strains of long bonds and short bonds contribute almost equally to the strain-to-failure of carbyne, which significantly improves the strain-to-failure of carbyne. Interestingly, although the initial bond length of carbyne upon hole injection of +0.07 e/atom is slightly shorter than that upon electron injection of?0.07 e/atom, the bond length at the strain-to-failure is reversed. These results explain the larger average bond strain (larger strain-to-failure) of carbyne upon hole injection of +0.07 e/atom than that upon electron injection of?0.07 e/atom. Considering that the gravimetric modulus almost keeps a constant value during charge injection (Fig. 2(b)), the increase of strain-to-failure explains the increase of gravimetric strength and gravimetric toughness.

    Since bond patterns are intrinsically from the electron density distribution between atoms, we further calculated the electron density distribution (Fig. 6(a)). It can be observed that the electron density distribution between atoms for pristine carbyne alternates, indicating an alternated bonding pattern. As stretched to strain-to-failure, the electron density alternation increases. As the charge injection increases to±0.07 e/atom,the electron density distribution between atoms becomes uniform. Furthermore, we calculated the excess charge density distribution (Fig. 6(b)). For electron injection,excessive electrons largely accumulate in the long bonds,strengthening these weak bonds; for hole injection, excessive holes largely accumulate in the short bonds, weakening the strong bonds. As a result, the bond orders become uniform as charge injection increases (Fig. 6(a)). Therefore, the fundamental mechanism at the electron scale is the peak shaving and valley filling of electron density distribution(injecting excess holes into short, strong bonds and excess electrons into long, weak bonds upon hole injection and electron injection,respectively),which suppresses and even eliminates the bonding alternation of carbyne upon charge injection.

    Fig. 5. Bonding pattern analysis of pristine carbyne and charged carbyne.(a)Bond lengths of strain-free charged carbyne. (b)Bond strain of long and short bonds and the contribution of these bonds to the strain-to-failure of carbyne.

    Additionally, we calculated band structures for pristine and charged carbyne, which agrees Peierls-type semiconductor-to-metal transition (Fig. S7). The value of Fermi level is?5.31 eV for pristine carbyne. Upon charge injection, the values of Fermi level shift accordingly. As a result, the band gap of pristine carbyne is 0.42 eV, which is close to previous DFT calculations at PBE level,[56]while the band gap decreases from 0.42 eV to 0.00 eV as the charge injection increases to±0.07 e/atom,signaling a semiconductorto-metal transitions. These results demonstrated a correlation between the semiconductor-to-metal transitions and a Peierls distortion.

    Fig. 6. Electronic structures of pristine carbyne and charged carbyne. (a) Electron density distribution of pristine carbyne and charged carbyne upon electron injection of ?0.04, ?0.07 e/atom and hole injection of +0.04, +0.07 e/atom under strain of 0% and strain-to-failure. The calculated bond orders[55]are labelled between atoms. (b)Excess charge density distribution for pristine carbyne and charged carbyne upon electron injection of ?0.04,?0.07 e/atom and hole injection of+0.04,+0.07 e/atom,with the iso-surface values of 0.001 e/Bohr3,under strain of 0%and strain-to-failure. Color coding of yellow and green represents excess electron and hole,respectively.

    4. Conclusions

    In summary, we computationally achieved recordbreaking mechanical performance by demonstrating that charged carbyne chains have the known highest gravimetric strength and gravimetric toughness. The gravimetric strength,strain-to-failure, gravimetric toughness, and breaking force can be significantly improved from 74 GPa·g?1·cm3, 18%,9.4 kJ·g?1,and 11.5 nN for pristine carbyne to the highest values of 106 GPa·g?1·cm3, 26%, 19.0 kJ·g?1, and 16.5 nN for carbyne upon hole injection of+0.07 e/atom. Some of which are near the theoretical bounds.[57]Further comparison with other high-mechanical-performance materials identified that carbyne upon the optimal charge injection has much higher gravimetric strength and gravimetric toughness than any know materials. The mechanism analyses revealed that the recordbreaking mechanical properties of carbyne upon charge injection results from the peak shaving and valley filling of electron density distribution,which suppresses and even eliminates the bond alternation.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12172261 and 11972263). The numerical calculations in this work have been performed on a supercomputing system in the Supercomputing Center of Wuhan University. Yongzhe Guo acknowledges the technical assistance from Chunbo Zhang and Xiangzheng Jia.

    猜你喜歡
    恩來
    悼念恩來,不能捏造
    青年文摘(2022年23期)2022-12-07 17:44:29
    鸞翔新時代:恩來精神錘煉兒童品格
    江蘇教育(2022年23期)2022-11-20 17:59:54
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    補腎溫陽法對激素抵抗型腎病綜合征增敏效應研究進展
    鄧穎超:悼念恩來要尊重歷史
    華聲文萃(2022年2期)2022-03-08 14:29:13
    鄧穎超:悼念恩來要尊重歷史
    給恩來爺爺的一封信
    少先隊活動(2021年9期)2021-11-05 07:31:10
    云南元江紅軍小學六(3)恩來中隊
    少先隊活動(2021年9期)2021-11-05 07:31:10
    傳承恩來精神 爭做新時代好隊員——上海市黃浦區(qū)復興中路第二小學“周恩來中隊”的創(chuàng)建故事
    在深圳名師馬恩來老師退休會上的講話
    国产精品不卡视频一区二区| 国产亚洲av嫩草精品影院| 人体艺术视频欧美日本| 人妻系列 视频| 国产麻豆成人av免费视频| 国产黄色视频一区二区在线观看 | 日本黄色视频三级网站网址| 亚洲人成网站在线播| 18禁裸乳无遮挡免费网站照片| 日本爱情动作片www.在线观看| 国产高清视频在线观看网站| 黄片wwwwww| 日本五十路高清| 亚洲真实伦在线观看| 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕 | 夜夜爽天天搞| 免费观看的影片在线观看| 久久精品国产亚洲av香蕉五月| 亚洲av中文av极速乱| 欧美+亚洲+日韩+国产| 一区二区三区高清视频在线| 欧美一区二区精品小视频在线| 精品一区二区三区人妻视频| 边亲边吃奶的免费视频| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 22中文网久久字幕| 国产三级在线视频| 亚洲国产精品sss在线观看| 人人妻人人澡欧美一区二区| 日日啪夜夜撸| 只有这里有精品99| av国产免费在线观看| 美女国产视频在线观看| 丰满人妻一区二区三区视频av| 日韩三级伦理在线观看| 国产精品一区二区三区四区久久| 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 色哟哟·www| 国产黄a三级三级三级人| 亚洲无线在线观看| 色哟哟·www| 欧美性猛交╳xxx乱大交人| 免费观看人在逋| 丝袜美腿在线中文| 免费搜索国产男女视频| 能在线免费看毛片的网站| 春色校园在线视频观看| 国产亚洲精品久久久com| 日本欧美国产在线视频| 麻豆国产av国片精品| 午夜爱爱视频在线播放| 亚洲人与动物交配视频| 久久精品夜色国产| 如何舔出高潮| 精品人妻一区二区三区麻豆| 别揉我奶头 嗯啊视频| 国产精品麻豆人妻色哟哟久久 | 久久久精品94久久精品| 少妇裸体淫交视频免费看高清| 搡老妇女老女人老熟妇| 丝袜美腿在线中文| 亚洲精品久久国产高清桃花| 欧美xxxx性猛交bbbb| 成年免费大片在线观看| 欧美极品一区二区三区四区| 高清在线视频一区二区三区 | 国产成人aa在线观看| 婷婷色av中文字幕| 91精品国产九色| 51国产日韩欧美| 少妇人妻精品综合一区二区 | 亚洲丝袜综合中文字幕| 伦精品一区二区三区| 网址你懂的国产日韩在线| 亚洲第一区二区三区不卡| 麻豆久久精品国产亚洲av| 国产高潮美女av| 2021天堂中文幕一二区在线观| 少妇人妻一区二区三区视频| 日韩中字成人| 欧美日韩精品成人综合77777| 菩萨蛮人人尽说江南好唐韦庄 | 悠悠久久av| 亚洲精品久久久久久婷婷小说 | 99热全是精品| 精品一区二区三区视频在线| 国产淫片久久久久久久久| 久久精品国产99精品国产亚洲性色| 欧美成人精品欧美一级黄| 国产乱人偷精品视频| 成人一区二区视频在线观看| 亚洲国产日韩欧美精品在线观看| 内射极品少妇av片p| 亚洲经典国产精华液单| av.在线天堂| 久久精品人妻少妇| 成人毛片60女人毛片免费| 日韩欧美精品v在线| 99久久精品热视频| 国产私拍福利视频在线观看| 国产一区亚洲一区在线观看| 日韩强制内射视频| 成人午夜高清在线视频| 能在线免费看毛片的网站| 狂野欧美白嫩少妇大欣赏| 婷婷色av中文字幕| 十八禁国产超污无遮挡网站| 亚洲欧美成人精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 小说图片视频综合网站| 蜜臀久久99精品久久宅男| 男女做爰动态图高潮gif福利片| АⅤ资源中文在线天堂| 午夜亚洲福利在线播放| 色综合站精品国产| 国产精品三级大全| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 精品一区二区三区视频在线| 国产精品蜜桃在线观看 | 九九在线视频观看精品| 日本五十路高清| av免费在线看不卡| 国产一区二区三区在线臀色熟女| 免费人成视频x8x8入口观看| 国产成人aa在线观看| 蜜桃久久精品国产亚洲av| 国产伦一二天堂av在线观看| 老熟妇乱子伦视频在线观看| 悠悠久久av| www日本黄色视频网| 黑人高潮一二区| 综合色av麻豆| 在线观看美女被高潮喷水网站| 色播亚洲综合网| 国产片特级美女逼逼视频| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| 在线播放无遮挡| 国语自产精品视频在线第100页| 黄色日韩在线| 日韩欧美 国产精品| 国产极品天堂在线| 少妇丰满av| 淫秽高清视频在线观看| 欧美在线一区亚洲| 能在线免费观看的黄片| 欧美高清性xxxxhd video| 国产欧美日韩精品一区二区| 黄色配什么色好看| 成年女人看的毛片在线观看| 亚洲av中文av极速乱| 久久久成人免费电影| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 亚洲国产色片| 国产精品久久久久久久久免| 真实男女啪啪啪动态图| 欧美日韩国产亚洲二区| 12—13女人毛片做爰片一| 草草在线视频免费看| 国产精品人妻久久久影院| 校园人妻丝袜中文字幕| 在线免费十八禁| 免费黄网站久久成人精品| 亚洲欧美日韩高清在线视频| 日韩,欧美,国产一区二区三区 | 少妇熟女aⅴ在线视频| 天堂中文最新版在线下载 | 国产极品精品免费视频能看的| 91aial.com中文字幕在线观看| 日韩三级伦理在线观看| 国产精品女同一区二区软件| 在现免费观看毛片| 亚洲人成网站在线播| 看黄色毛片网站| 日本成人三级电影网站| 村上凉子中文字幕在线| 亚洲欧洲日产国产| 91久久精品国产一区二区成人| 亚洲欧美中文字幕日韩二区| 91精品国产九色| 国产一级毛片在线| 观看免费一级毛片| 精品日产1卡2卡| 国产av麻豆久久久久久久| 国产精品一区二区三区四区免费观看| 日日啪夜夜撸| 久久人人爽人人爽人人片va| 性插视频无遮挡在线免费观看| 婷婷色av中文字幕| 国产一区二区三区在线臀色熟女| 99国产精品一区二区蜜桃av| 国产成人aa在线观看| 别揉我奶头 嗯啊视频| 国产成人一区二区在线| 国产精品综合久久久久久久免费| 午夜a级毛片| 久久久精品欧美日韩精品| 毛片女人毛片| 欧美高清性xxxxhd video| 欧美变态另类bdsm刘玥| h日本视频在线播放| 亚洲自拍偷在线| 亚洲内射少妇av| 一本久久中文字幕| 中文字幕制服av| 赤兔流量卡办理| 亚洲一区二区三区色噜噜| 黄片无遮挡物在线观看| 国产精品三级大全| 男插女下体视频免费在线播放| 欧美极品一区二区三区四区| 麻豆成人av视频| 亚洲一区二区三区色噜噜| www.色视频.com| 日本免费a在线| 久久人人爽人人片av| 久久久a久久爽久久v久久| 国产精品乱码一区二三区的特点| 91久久精品电影网| 我的女老师完整版在线观看| 六月丁香七月| 亚洲av电影不卡..在线观看| 一本精品99久久精品77| 看片在线看免费视频| 人人妻人人澡人人爽人人夜夜 | 精品免费久久久久久久清纯| 最近2019中文字幕mv第一页| 麻豆av噜噜一区二区三区| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品| 亚洲欧美清纯卡通| 亚洲熟妇中文字幕五十中出| 色噜噜av男人的天堂激情| 亚洲最大成人av| 国产精品美女特级片免费视频播放器| 国产又黄又爽又无遮挡在线| 亚洲成人av在线免费| 国产高清激情床上av| av在线播放精品| 国产精品伦人一区二区| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 亚洲av成人av| 久久久久九九精品影院| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 国产精品无大码| 国产一区二区在线av高清观看| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 日韩一本色道免费dvd| 少妇的逼好多水| 成人av在线播放网站| 99热精品在线国产| 99久久久亚洲精品蜜臀av| 国产一区亚洲一区在线观看| 性色avwww在线观看| 久久人妻av系列| 三级经典国产精品| 国产伦精品一区二区三区视频9| 欧美zozozo另类| 99热这里只有精品一区| www.av在线官网国产| 欧美日韩在线观看h| 一区二区三区四区激情视频 | ponron亚洲| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 日本一本二区三区精品| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 日韩高清综合在线| 99久国产av精品| 欧美不卡视频在线免费观看| 欧美日韩精品成人综合77777| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 一个人看的www免费观看视频| 久久精品国产亚洲av香蕉五月| 国模一区二区三区四区视频| 丝袜喷水一区| 午夜福利在线观看免费完整高清在 | 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 六月丁香七月| 十八禁国产超污无遮挡网站| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区蜜桃av| 久久草成人影院| 不卡视频在线观看欧美| 2021天堂中文幕一二区在线观| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 午夜福利在线在线| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 99视频精品全部免费 在线| 日韩欧美三级三区| 日本三级黄在线观看| 黄色日韩在线| 亚洲综合色惰| 禁无遮挡网站| 99热精品在线国产| 最好的美女福利视频网| 亚洲熟妇中文字幕五十中出| 在现免费观看毛片| 亚洲丝袜综合中文字幕| 欧美+亚洲+日韩+国产| 成人漫画全彩无遮挡| 国产精品蜜桃在线观看 | 亚洲欧美精品专区久久| 黄色视频,在线免费观看| 一级av片app| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 国产伦精品一区二区三区四那| 亚洲精品日韩在线中文字幕 | 国产午夜精品论理片| 欧美bdsm另类| 中国美女看黄片| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 又粗又硬又长又爽又黄的视频 | 欧美日韩国产亚洲二区| 只有这里有精品99| 亚洲七黄色美女视频| 国产在视频线在精品| 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 久久久色成人| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 日本-黄色视频高清免费观看| 一级毛片电影观看 | 国产成年人精品一区二区| 久久午夜福利片| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 99国产精品一区二区蜜桃av| 一本精品99久久精品77| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 国产亚洲精品久久久久久毛片| 亚洲18禁久久av| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 成人国产麻豆网| 欧美色视频一区免费| 亚洲无线观看免费| 在线观看一区二区三区| 亚洲精品国产av成人精品| 亚洲在线自拍视频| 亚洲精品自拍成人| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 亚洲va在线va天堂va国产| 看黄色毛片网站| 亚洲欧美成人综合另类久久久 | 男插女下体视频免费在线播放| 午夜免费男女啪啪视频观看| 亚洲av中文av极速乱| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3| 国产极品精品免费视频能看的| 狂野欧美激情性xxxx在线观看| 极品教师在线视频| 久久精品91蜜桃| 一个人免费在线观看电影| 午夜久久久久精精品| 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久久久| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| 大香蕉久久网| 亚洲精品粉嫩美女一区| 麻豆av噜噜一区二区三区| 成人特级黄色片久久久久久久| 欧美性感艳星| 高清在线视频一区二区三区 | 国产成人一区二区在线| 久久久久久伊人网av| 青春草国产在线视频 | av免费在线看不卡| 国产亚洲欧美98| 亚洲欧美精品自产自拍| 欧美性猛交╳xxx乱大交人| 观看免费一级毛片| 黄片无遮挡物在线观看| 性色avwww在线观看| 欧美日韩国产亚洲二区| 亚州av有码| 国产精品蜜桃在线观看 | 变态另类丝袜制服| 亚洲不卡免费看| 国产极品天堂在线| 毛片女人毛片| 久久久久国产网址| 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 国产爱豆传媒在线观看| 亚洲婷婷狠狠爱综合网| 国产在线男女| 我的女老师完整版在线观看| 免费看av在线观看网站| 人妻夜夜爽99麻豆av| 日本免费a在线| 99热这里只有是精品50| av国产免费在线观看| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 偷拍熟女少妇极品色| 一本精品99久久精品77| 2022亚洲国产成人精品| 日韩欧美精品免费久久| 国产午夜精品论理片| 亚洲内射少妇av| 天堂影院成人在线观看| 国产 一区精品| 一本一本综合久久| 国产精品国产高清国产av| 久久久久久大精品| 十八禁国产超污无遮挡网站| 色噜噜av男人的天堂激情| 熟女人妻精品中文字幕| 在线观看66精品国产| 床上黄色一级片| 久久精品国产亚洲av天美| 国产av在哪里看| 精品一区二区三区视频在线| av福利片在线观看| 我要搜黄色片| 青春草视频在线免费观看| 国产一区二区在线观看日韩| 久久久国产成人免费| 亚洲色图av天堂| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 成人性生交大片免费视频hd| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线 | 黄色日韩在线| 18禁在线播放成人免费| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 国产午夜福利久久久久久| 免费搜索国产男女视频| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 全区人妻精品视频| 亚洲国产精品成人综合色| 搞女人的毛片| 国产视频首页在线观看| 高清毛片免费看| 亚洲自拍偷在线| 乱系列少妇在线播放| 高清午夜精品一区二区三区 | 国产精品99久久久久久久久| 国产一区二区在线av高清观看| 国产大屁股一区二区在线视频| 黄片wwwwww| 美女高潮的动态| 日韩欧美 国产精品| 春色校园在线视频观看| 少妇熟女aⅴ在线视频| 综合色av麻豆| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 能在线免费观看的黄片| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人综合色| 精品少妇黑人巨大在线播放 | 超碰av人人做人人爽久久| 国产av麻豆久久久久久久| 亚洲精品色激情综合| 国产乱人偷精品视频| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 九草在线视频观看| 91在线精品国自产拍蜜月| 国产精品99久久久久久久久| 成人漫画全彩无遮挡| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 成人综合一区亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人av在线播放网站| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 小说图片视频综合网站| 天天躁日日操中文字幕| 亚洲国产精品合色在线| 观看美女的网站| 国产伦在线观看视频一区| 青春草亚洲视频在线观看| 欧美高清成人免费视频www| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 丰满人妻一区二区三区视频av| 久久精品国产鲁丝片午夜精品| 热99在线观看视频| 欧美成人精品欧美一级黄| 只有这里有精品99| 久久99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 99热全是精品| 国产极品天堂在线| 一级黄片播放器| 亚洲自拍偷在线| 久久草成人影院| 国产真实伦视频高清在线观看| 色视频www国产| 黄片无遮挡物在线观看| 免费看av在线观看网站| 黄片无遮挡物在线观看| 国产69精品久久久久777片| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 久久99精品国语久久久| 韩国av在线不卡| 自拍偷自拍亚洲精品老妇| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 欧美极品一区二区三区四区| 黄片wwwwww| 亚洲av电影不卡..在线观看| 欧美日韩精品成人综合77777| 国产91av在线免费观看| 久久亚洲精品不卡| 亚洲不卡免费看| 久久这里只有精品中国| 国产av一区在线观看免费| 99热网站在线观看| 老师上课跳d突然被开到最大视频| 99热网站在线观看| 老女人水多毛片| 亚洲精品色激情综合| 亚洲三级黄色毛片| 亚洲国产欧美人成| 亚洲欧美成人精品一区二区| 欧美一区二区亚洲| 国产成人freesex在线| 国产成人a∨麻豆精品| 日本成人三级电影网站| 男人的好看免费观看在线视频| 精品熟女少妇av免费看| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 狂野欧美白嫩少妇大欣赏| 国产极品天堂在线| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲| 中文字幕免费在线视频6| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 赤兔流量卡办理| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | 色播亚洲综合网| 免费av不卡在线播放| 国产成人影院久久av| 两个人的视频大全免费| 午夜激情欧美在线| 亚洲自拍偷在线| 人妻久久中文字幕网| 亚洲av.av天堂| 青春草视频在线免费观看| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久 | 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 久99久视频精品免费| 日日啪夜夜撸| 嘟嘟电影网在线观看| 国产精品久久久久久精品电影| 国内精品久久久久精免费| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 亚洲五月天丁香| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 成人特级av手机在线观看| 欧美日韩国产亚洲二区| 久久韩国三级中文字幕| 夜夜看夜夜爽夜夜摸| 午夜爱爱视频在线播放| 黄片无遮挡物在线观看| 中文字幕制服av| av免费在线看不卡| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图| 婷婷亚洲欧美| 禁无遮挡网站| 又粗又爽又猛毛片免费看|