• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extraordinary mechanical performance in charged carbyne

    2022-12-28 09:52:06YongZheGuo郭雍哲YongHengWang汪永珩KaiHuang黃凱HaoYin尹顥andEnLaiGao高恩來
    Chinese Physics B 2022年12期
    關鍵詞:恩來

    Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黃凱),Hao Yin(尹顥), and En-Lai Gao(高恩來)

    Department of Engineering Mechanics,School of Civil Engineering,Wuhan University,Wuhan 430072,China

    Keywords: charged carbyne,first-principles calculations,strength and toughness,bond alternation

    1. Introduction

    Carbon allotropes have been widely explored and used in various fields of science and technology for the last few decades. In addition to the well-known two-dimensional(2D)graphene[1,2]and three-dimensional (3D) diamond,[3,4]onedimensional (1D) carbon chains, carbyne, has also attracted increasing attention,[5,6]since carbyne with an extreme structure has been predicted to have extreme properties.[7–11]However, carbyne has a higher energy than graphite carbon because of sp1hybridization,making the fabrication of such material challenging.[12–14]Fortunately, carbyne formed at high temperatures and pressures was indicated in interstellar dust and meteorites,[15–18]and experimentalists have developed several methods for fabricating carbyne chains or segments,such as bulk production of long carbyne chains inside doublewalled carbon nanotubes,[19]deriving carbyne segments from graphene,[20]synthesis of confined carbyne,[21]and synthesis of carbyne on metal surface or within evaporating liquid carbon.[22,23]

    Mechanical strength and toughness are of fundamental importance for applications of carbyne, such as assembling strongest fibrous materials[24]and constructing angstromscale devices.[25,26]For example, Gaoet al.[24]proposed a carbon assembly including a large carbyne bundle that is confined within a carbon nanotube sheath,in which the nanotube sheath protects the carbyne bundles against reaction, while the carbyne chains act as stiffening structures. The highest Young’s modulus and gravimetric Young’s modulus of this assembly were determined as 1505 GPa and 977 GPa·g?1·cm3,much higher than any known fibrous materials. This ultrahigh performance of the assembly mainly results from the extreme mechanical properties of carbyne chains that have been well identified from both calculations and experiments. Liuet al.[7]first-principles calculated that the breaking force of carbyne chains is as high as 11.7 nN, corresponding to a tensile strength of 2500 GPa when a diameter of 0.77 ?A was used and gravimetric strength of 75 GPa·g?1·cm3. Mikhailovskijet al.[8]in-situmeasured the breaking force of carbyne chains as 11.2 nN,corresponding to a tensile strength of 245 GPa when a diameter of 2.4 ?A was adopted and gravimetric strength of 72 GPa·g?1·cm3.These results indicate the breaking force and gravimetric strength of carbyne chains obtained from highfield calculations and experiments are generally consistent,while the reported tensile strength of carbyne chains are controversial mainly because of the variations in determining the cross-sectional area.[27]To avoid such controversy and make comparison with other materials, we use gravimetric measures,e.g., gravimetric strength, to quantify the mechanical performance in this work.

    The predicted gravimetric strength (74 GPa·g?1·cm3)and gravimetric toughness (9.4 kJ·g?1) of carbyne chains are much greater than any known carbon allotropes, including diamond (24 GPa·g?1·cm3and 2.0 kJ·g?1) and graphene(51 GPa·g?1·cm3and 8.8 kJ·g?1).[28]The underlying mechanism is that chemical bonds of carbyne chains are stiff and aligned in the same direction,which endows carbyne with the mechanical supremacy over other materials. However, the stable form of carbyne (–C≡C–) contains alternating weak single-bonds and strong triple-bonds,[7,27,29–32]and the bond alternation increases with tensile strains, known as a Peierls instability, which ultimately causes the premature fracture of carbyne from the breaking of long and weak bonds.[7]

    Although the bond alternation greatly reduces the mechanical performance of carbyne,it still holds the records for the strength and toughness of materials. If the bond alternation can be eliminated for carbyne chains, these records of mechanical performance can be further improved. Considering that the bond alternation of carbyne originates from the electron density distribution between atoms, we wonder whether the electron density distribution can be engineered to suppress and even eliminate the bond alternation. Fortunately,Casariet al.[33]experimentally indicated that the bond length alternation of charged carbon-atom wires decreased. More recently, it was found that graphene,[34]graphene oxide,[35]phosphorene,[24]and Ti2C MXene[36]upon charge injection exhibit extraordinary electromechanical actuation performance,and the mechanical properties of such materials can be modulated by charge injection.[36,37]Several charge injection methods have been reported, such as immersing carbon nanotube in an electrolyte and apply potential,[38]charge transfer between carbon wires and metal nanoparticles,[39]and nitrogen doped carbyne.[40]These results provide an indication for obtaining record-breaking mechanical performance by chargeengineering carbyne chains.

    In this work, we investigated the mechanical performance of charged carbyne by using first-principles calculations. It was found that the gravimetric strength, strain-tofailure, gravimetric toughness,and breaking force can be improved from 74 GPa·g?1·cm3, 18%, 9.4 kJ·g?1, and 11.5 nN for pristine carbyne to the highest values of 106 GPa·g?1·cm3,26%, 19.0 kJ·g?1, and 16.5 nN for charged carbyne, making the charged carbyne the strongest and the toughest material. The mechanism analyses of bonding pattern and electronic structures show that the bonding alternation of carbyne under tension is suppressed and even eliminated by chargeengineering, which accounts for such record-breaking mechanical performance of charged carbyne.

    2. Computational details

    The calculations were conducted using density functional theory (DFT) implemented in the Viennaab-initiosimulation package(VASP).[41]Unless otherwise noted,the Perdew–Burke–Ernzerhof (PBE) parameterization[42]of the generalized gradient approximation (GGA)[43]was used for the exchange–correlation functional. For all the calculations in this work, energy cut-off of 520 eV was used, andk-point mesh with the density>80 ?A(the product of each lattice constant and the corresponding number ofk-points)was adopted for the Brillouin zone sampling.[44]All atomic positions and axial lattice parameters of the structures have been optimized until all forces were less than 0.01 eV/?A.Our calculations indicate that the calculated mechanical properties are almost independent on the axial sizes of computational cells (Fig. S1 in supporting information). Meanwhile,our calculations indicate that a vacuum layer over 40 ?A has only slight effect on the mechanical properties(Fig.S2). To balance the computational accuracy and cost,a vacuum layer of 40 ?A was adopted in this work. Considering a balance between accuracy and efficiency,energy cut-off of 400 eV,k-point mesh with the density of about 30 ?A and vacuum layer of 20 ?A was used in theab-initiomolecular dynamics(AIMD)simulations.

    3. Results and discussion

    3.1. Stabilities of charged carbyne

    Density functional theory (DFT) calculations were used to investigate the stabilities of charged carbyne. By tracking the bond length alternation (BLA), internal dimerization for the pristine carbyne has been identified,since the polyyne structure(–C≡C–)is more stable than the cumulene structure(=C=C=).[30]The calculated energy barrier for the transition from the polyyne structure to the cumulene structure for pristine carbyne is 4 meV per atom (Fig. S3). Upon a certain amount of charge injection (?0.10 e/atom to +0.10 e/atom),carbyne still maintains linear bonding patterns, as illustrated in Fig. 1(a). Interestingly, the BLA decreases to zero as the charge injection increases to±0.07 e/atom,since the energy of the cumulene structure is lower than that of polyyne structure(Fig. S3). When the charge injection exceeds±0.07 e/atom,the carbyne chains show uniform bond lengths,indicating that these chains are free of Peierls instabilities.

    Furthermore, we calculated the phonon dispersions for quantifying the dynamical stability of these structures(Fig. 1(b)). The absence of imaginary frequencies indicates the dynamical stability of the pristine carbyne and charged carbyne. Afterwards, the energy above convex hull was used to measure the stability of carbyne(the energy difference at zero pressure and zero temperature between the energy for charged carbyne and graphite). The calculated energy above convex hull values of carbyne upon charge injection of?0.07, 0.00,and +0.07 e/atom are 0.79, 1.03, and 1.52 eV/atom, respectively. This suggests that the likely ease of charged carbyne fabrication can be sequenced as electron injected carbyne>pristine carbyne>hole injected carbyne.Finally,we explored the thermodynamic stability by performing AIMD simulations(a supercell having 12 atoms)at 300 K for 10 ps. During the AIMD simulations, the pristine carbyne and charged carbyne maintain their structures with only slight lattice perturbation from thermal fluctuations (see Fig. S4 and movie S1 for details).

    Fig.1. Structures and stabilities of charged carbyne. (a)Illustration of charge injection into carbyne,and the bonding patterns for carbyne upon charge injection. (b)Phonon dispersions of pristine carbyne and charged carbyne upon electron injection of ?0.07 e/atom and hole injection of+0.07 e/atom.

    3.2. Mechanical properties of charged carbyne

    To investigate the mechanical performance of carbyne upon charge injection, we calculated the force–strain and gravimetric stress–strain curves by using the DFT method(Fig. 2). Both calculations at local density approximation(LDA)and generalized gradient approximation(GGA)levels were performed for comparison. Calculations using these two approximations are in good agreement (Fig. S5). Our calculated gravimetric strength (74 GPa·g?1·cm3), breaking force(11.5 nN),and strain-to-failure(18%)for the pristine carbyne agree with those(75 GPa·g?1·cm3,11.7 nN,and 18%)calculated by Yakobson’s team.[7]The gravimetric strength, gravimetric toughness and gravimetric modulus for pristine carbyne and charged carbyne were summarized in Table S1.

    Fig. 2. Mechanical performance of pristine carbyne and charged carbyne.(a) Force versus strain and (b) gravimetric stress versus strain curves for pristine carbyne and charged carbyne.

    The gravimetric strength, strain-to-failure, gravimetric toughness, and breaking force of carbyne significantly increase with charge injection before±0.07 e/atom. Upon hole injection of +0.07 e/atom, the gravimetric strength, strainto-failure, gravimetric toughness, and breaking force of carbyne increase to their highest values of 106 GPa·g1·cm3,26%, and 19.0 kJ·g?1, and 16.5 nN. In a contrast, the maximum gravimetric modulus of carbyne upon charge injection is only 3% higher than that of pristine carbyne, suggesting a slight modulation of stiffness by charge-engineering.The highest gravimetric modulus (967 GPa·g?1·cm3), gravimetric strength (106 GPa·g?1·cm3), and gravimetric toughness (19.0 kJ·g?1) of charged carbyne is higher than those of pristine carbyne (939 GPa·g?1·cm3, 74 GPa·g?1·cm3, and 9.4 kJ·g?1), graphene (453 GPa·g?1·cm3, 51 GPa·g?1·cm3,and 8.8 kJ·g?1), and diamond (327 GPa·g?1·cm3,24 GPa·g?1·cm3, and 2.0 kJ·g?1)[24](Fig. 3). To our knowledge, the gravimetric modulus, gravimetric strength, and gravimetric toughness are higher than any reported materials in literature,making the optimally charged carbyne the stiffest,the strongest,and the toughest predicted material(Fig.3).

    The above-reported mechanical properties are investigated at the temperature of 0 K.Furthermore,we investigated the finite temperature effect on the mechanical properties of charged carbyne. At a finite temperature, the average failure rate for a single bond follows the Arrhenius form[45,46]

    wherev(f) is approximately 1013Hz (the “attempt rate” to cross over the energy barrier), ?E(σ)is the energy barrier to break a single bond,kBandTare the Boltzmann constant and temperature, respectively. For atomic chains, the increasing failure rates of every single bond due to the increase of temperature would lead to the decrease in strength. From Eq.(1)and the calculated ?E(σ) for charged carbyne, we predicted the relative strength(the averaged strength at a finite temperature divided by the averaged strength at the temperature of 0 K)as a function of temperature(Fig.S6).

    Fig. 3. Calculated modulus, strength, and toughness of typical high-mechanical-performance materials. (a) Gravimetric strength versus gravimetric modulus and(b)gravimetric strength versus gravimetric toughness of charged carbyne compared with other typical high-modulus, high-strength, and high-toughness materials.

    Fig.4. Bending configurations of charged carbyne from DFT calculations.

    Since the bending stiffness is useful for understanding the configurations of linear atomic chains in thermal fluctuations,[47–50]we calculate the bending stiffness of pristine charged carbyne for comparison with pristine carbyne.The bending stiffness(kb)was obtained from the energy(Eb)for bending a long chain into a circle with radiusR:kb=EbR/π.[51]Our calculated bending stiffness of pristine carbyne (3.7 eV·?A) agree with that (3.6 eV·?A) calculated by Yakobson’s team.[7]The calculated bending stiffness for carbyne upon charge injection of?0.07 e/atom and+0.07 e/atom were 2.8 eV·?A and 1.6 eV·?A, respectively, indicating the increased bending flexibility compared with pristine carbyne.Additionally, it was found that the bond alternation in both linear and circular charged structures decreases with charge injection, and the radius of the circles slightly increases (decreases)with electron(hole)injection(Fig.4).

    3.3. Mechanism behind the superb mechanical performance of charged carbyne

    To understand the mechanism behind the exceptional mechanical performance of charged carbyne, we did analyses at the atomic and electronic scales. First,the bonding structures of strain-free carbyne upon different charge injections were calculated. The bonds of charge-free carbyne were alternated into long bonds and short bonds. As the electron/hole injection increases,the averaged bond length slightly changes from 1.28 ?A to 1.29 ?A,while the bond length alternation(BLA)decreases to zero as the charge injection exceeds±0.07 e/atom(Fig.5(a)),indicating that the charge injection suppresses and even eliminates the BLA for strain-free carbyne. Considering that the BLA of carbyne predicted by DFT theory is generally underestimated,and Yanget al.[52]found that the accurate estimate of the BLA is 0.13 ?A, we also did calculations using HSE06 functional for comparison. The BLA calculated using HSE06 functional is 0.1 ?A, which is generally consistent with previous reported values.[53,54]Additionally,the calculations using HSE06 functional indicated that BLA keeps zero in the whole stretching process until strain-to-failure as the hole injection increases to +0.13 e/atom. In this case, the gravimetric strength, strain-to-failure, and breaking force of carbyne reaches their highest values of 115 GPa·g?1·cm3, 29%,and 18.0 nN.These results generally agree with the achieved record-breaking mechanical performance of charged carbyne calculated at GGA level. Hence, considering a balance between computational accuracy and efficiency, the following mechanism analyses were based on calculations at GGA level.

    As charged carbyne was stretched, both the long bonds and short bonds were elongated. To quantify the bond deformation for carbyne, the local strains for the alternated long bonds(εL)and short bonds(εS)were defined as

    whereLL0(LL)andLS0(LS)are the lengths of the long bonds and short bonds under zero strain (strain-to-failure), respectively. To quantify the contribution of long bonds and short bonds on the strain-to-failure of carbyne(ε),measures for the long bonds(CL)and short bonds(CS)were proposed as

    whereL0is the sum of lengths of the long and short bonds.Based on Eqs.(2)–(5),we calculated the local strains of long bonds and short bonds and measured their contribution on the strain-to-failure of carbyne (Fig. 5(b)). As the charge injected from?0.6 e/atom to+0.06 e/atom,the strains of long bonds and short bonds for carbyne are 32% and 3%–4%, respectively,and the contribution of long bonds to the strain-tofailure of carbyne exceeds 90%. These results indicate that the strain is largely localized in long bonds,accounting for the low strain-to-failure of carbyne upon these ranges of charge injections. As the charge injection exceeds±0.07 e/atom,the uniform strains of long bonds and short bonds contribute almost equally to the strain-to-failure of carbyne, which significantly improves the strain-to-failure of carbyne. Interestingly, although the initial bond length of carbyne upon hole injection of +0.07 e/atom is slightly shorter than that upon electron injection of?0.07 e/atom, the bond length at the strain-to-failure is reversed. These results explain the larger average bond strain (larger strain-to-failure) of carbyne upon hole injection of +0.07 e/atom than that upon electron injection of?0.07 e/atom. Considering that the gravimetric modulus almost keeps a constant value during charge injection (Fig. 2(b)), the increase of strain-to-failure explains the increase of gravimetric strength and gravimetric toughness.

    Since bond patterns are intrinsically from the electron density distribution between atoms, we further calculated the electron density distribution (Fig. 6(a)). It can be observed that the electron density distribution between atoms for pristine carbyne alternates, indicating an alternated bonding pattern. As stretched to strain-to-failure, the electron density alternation increases. As the charge injection increases to±0.07 e/atom,the electron density distribution between atoms becomes uniform. Furthermore, we calculated the excess charge density distribution (Fig. 6(b)). For electron injection,excessive electrons largely accumulate in the long bonds,strengthening these weak bonds; for hole injection, excessive holes largely accumulate in the short bonds, weakening the strong bonds. As a result, the bond orders become uniform as charge injection increases (Fig. 6(a)). Therefore, the fundamental mechanism at the electron scale is the peak shaving and valley filling of electron density distribution(injecting excess holes into short, strong bonds and excess electrons into long, weak bonds upon hole injection and electron injection,respectively),which suppresses and even eliminates the bonding alternation of carbyne upon charge injection.

    Fig. 5. Bonding pattern analysis of pristine carbyne and charged carbyne.(a)Bond lengths of strain-free charged carbyne. (b)Bond strain of long and short bonds and the contribution of these bonds to the strain-to-failure of carbyne.

    Additionally, we calculated band structures for pristine and charged carbyne, which agrees Peierls-type semiconductor-to-metal transition (Fig. S7). The value of Fermi level is?5.31 eV for pristine carbyne. Upon charge injection, the values of Fermi level shift accordingly. As a result, the band gap of pristine carbyne is 0.42 eV, which is close to previous DFT calculations at PBE level,[56]while the band gap decreases from 0.42 eV to 0.00 eV as the charge injection increases to±0.07 e/atom,signaling a semiconductorto-metal transitions. These results demonstrated a correlation between the semiconductor-to-metal transitions and a Peierls distortion.

    Fig. 6. Electronic structures of pristine carbyne and charged carbyne. (a) Electron density distribution of pristine carbyne and charged carbyne upon electron injection of ?0.04, ?0.07 e/atom and hole injection of +0.04, +0.07 e/atom under strain of 0% and strain-to-failure. The calculated bond orders[55]are labelled between atoms. (b)Excess charge density distribution for pristine carbyne and charged carbyne upon electron injection of ?0.04,?0.07 e/atom and hole injection of+0.04,+0.07 e/atom,with the iso-surface values of 0.001 e/Bohr3,under strain of 0%and strain-to-failure. Color coding of yellow and green represents excess electron and hole,respectively.

    4. Conclusions

    In summary, we computationally achieved recordbreaking mechanical performance by demonstrating that charged carbyne chains have the known highest gravimetric strength and gravimetric toughness. The gravimetric strength,strain-to-failure, gravimetric toughness, and breaking force can be significantly improved from 74 GPa·g?1·cm3, 18%,9.4 kJ·g?1,and 11.5 nN for pristine carbyne to the highest values of 106 GPa·g?1·cm3, 26%, 19.0 kJ·g?1, and 16.5 nN for carbyne upon hole injection of+0.07 e/atom. Some of which are near the theoretical bounds.[57]Further comparison with other high-mechanical-performance materials identified that carbyne upon the optimal charge injection has much higher gravimetric strength and gravimetric toughness than any know materials. The mechanism analyses revealed that the recordbreaking mechanical properties of carbyne upon charge injection results from the peak shaving and valley filling of electron density distribution,which suppresses and even eliminates the bond alternation.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12172261 and 11972263). The numerical calculations in this work have been performed on a supercomputing system in the Supercomputing Center of Wuhan University. Yongzhe Guo acknowledges the technical assistance from Chunbo Zhang and Xiangzheng Jia.

    猜你喜歡
    恩來
    悼念恩來,不能捏造
    青年文摘(2022年23期)2022-12-07 17:44:29
    鸞翔新時代:恩來精神錘煉兒童品格
    江蘇教育(2022年23期)2022-11-20 17:59:54
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    補腎溫陽法對激素抵抗型腎病綜合征增敏效應研究進展
    鄧穎超:悼念恩來要尊重歷史
    華聲文萃(2022年2期)2022-03-08 14:29:13
    鄧穎超:悼念恩來要尊重歷史
    給恩來爺爺的一封信
    少先隊活動(2021年9期)2021-11-05 07:31:10
    云南元江紅軍小學六(3)恩來中隊
    少先隊活動(2021年9期)2021-11-05 07:31:10
    傳承恩來精神 爭做新時代好隊員——上海市黃浦區(qū)復興中路第二小學“周恩來中隊”的創(chuàng)建故事
    在深圳名師馬恩來老師退休會上的講話
    咕卡用的链子| 精品一区二区三区视频在线| 99热这里只有是精品在线观看| 成人综合一区亚洲| 午夜福利网站1000一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲 欧美一区二区三区| 水蜜桃什么品种好| 18+在线观看网站| 天天操日日干夜夜撸| 一区二区av电影网| 黄色毛片三级朝国网站| 老熟女久久久| 老司机影院毛片| av福利片在线| 男男h啪啪无遮挡| 久久久久精品性色| 99热6这里只有精品| 久久久精品区二区三区| 久久99热6这里只有精品| 狂野欧美激情性bbbbbb| www日本在线高清视频| 国产精品久久久久久精品电影小说| 色婷婷久久久亚洲欧美| 国产精品一区www在线观看| 丝袜脚勾引网站| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 亚洲欧美日韩另类电影网站| 亚洲精品国产av蜜桃| 久久狼人影院| 18禁观看日本| 伦理电影大哥的女人| 欧美激情极品国产一区二区三区 | 九草在线视频观看| 在线精品无人区一区二区三| 日韩,欧美,国产一区二区三区| 久久久精品免费免费高清| 人妻 亚洲 视频| 亚洲精品久久成人aⅴ小说| 午夜免费男女啪啪视频观看| 欧美变态另类bdsm刘玥| 免费在线观看完整版高清| 波野结衣二区三区在线| 1024视频免费在线观看| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看 | 亚洲精品456在线播放app| 欧美+日韩+精品| 免费人妻精品一区二区三区视频| 青春草亚洲视频在线观看| 亚洲人与动物交配视频| 日韩成人伦理影院| 99香蕉大伊视频| 最近中文字幕高清免费大全6| 妹子高潮喷水视频| 女性生殖器流出的白浆| 中文欧美无线码| 久久热在线av| 久久人人97超碰香蕉20202| 女性生殖器流出的白浆| 爱豆传媒免费全集在线观看| 亚洲av免费高清在线观看| 国产色爽女视频免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡 | 丝袜喷水一区| 国产永久视频网站| 亚洲国产精品一区三区| 亚洲国产成人一精品久久久| 在线天堂最新版资源| 成人国产av品久久久| 各种免费的搞黄视频| 又黄又粗又硬又大视频| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久小说| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 亚洲精品视频女| 狂野欧美激情性xxxx在线观看| 韩国高清视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人看| av卡一久久| 高清在线视频一区二区三区| 高清黄色对白视频在线免费看| 一级片'在线观看视频| 99久国产av精品国产电影| 久久狼人影院| 成人手机av| 精品少妇久久久久久888优播| 黄色 视频免费看| 岛国毛片在线播放| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| a级片在线免费高清观看视频| 国产黄频视频在线观看| 99久久综合免费| 在线观看人妻少妇| 日产精品乱码卡一卡2卡三| 国产成人av激情在线播放| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 午夜激情久久久久久久| 久久精品夜色国产| 黄色一级大片看看| 精品午夜福利在线看| 丝袜脚勾引网站| 熟女av电影| 波多野结衣一区麻豆| 久久 成人 亚洲| 亚洲伊人色综图| 日本免费在线观看一区| 在线观看国产h片| 久热久热在线精品观看| 亚洲欧美一区二区三区黑人 | 熟女人妻精品中文字幕| 精品少妇黑人巨大在线播放| 成人国产av品久久久| 秋霞在线观看毛片| 伦理电影大哥的女人| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 国产片特级美女逼逼视频| 热99久久久久精品小说推荐| 亚洲美女视频黄频| 97人妻天天添夜夜摸| 尾随美女入室| 国产成人91sexporn| 五月天丁香电影| 蜜桃在线观看..| 免费观看a级毛片全部| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 亚洲av在线观看美女高潮| 日本-黄色视频高清免费观看| 丰满乱子伦码专区| av线在线观看网站| 日韩人妻精品一区2区三区| 免费大片18禁| 青春草视频在线免费观看| 只有这里有精品99| 日本欧美国产在线视频| av女优亚洲男人天堂| 18+在线观看网站| 国产欧美日韩综合在线一区二区| 国产 精品1| 色5月婷婷丁香| 国产国语露脸激情在线看| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 91成人精品电影| 精品人妻偷拍中文字幕| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| 1024视频免费在线观看| 久久韩国三级中文字幕| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 日韩欧美精品免费久久| 亚洲性久久影院| 少妇人妻久久综合中文| 成年人午夜在线观看视频| 国产毛片在线视频| 亚洲综合色网址| 国产亚洲一区二区精品| 亚洲欧美精品自产自拍| 日日爽夜夜爽网站| 久久久欧美国产精品| av免费观看日本| 日日摸夜夜添夜夜爱| 久久 成人 亚洲| 亚洲av成人精品一二三区| 国产精品女同一区二区软件| 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| 街头女战士在线观看网站| 中国国产av一级| 99热6这里只有精品| 免费看不卡的av| 精品人妻偷拍中文字幕| 亚洲欧洲日产国产| 午夜激情av网站| 亚洲丝袜综合中文字幕| 国产福利在线免费观看视频| 少妇的丰满在线观看| 中文字幕精品免费在线观看视频 | 日韩av在线免费看完整版不卡| 一级毛片电影观看| 少妇 在线观看| 久久这里有精品视频免费| 22中文网久久字幕| 免费久久久久久久精品成人欧美视频 | 高清黄色对白视频在线免费看| 日韩制服骚丝袜av| 欧美日韩视频高清一区二区三区二| 9热在线视频观看99| 又黄又爽又刺激的免费视频.| 香蕉丝袜av| 少妇的丰满在线观看| 一本大道久久a久久精品| 久久精品国产鲁丝片午夜精品| 在线天堂中文资源库| 国产一区二区三区av在线| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 日韩,欧美,国产一区二区三区| 国产极品粉嫩免费观看在线| 人妻系列 视频| 99精国产麻豆久久婷婷| 精品第一国产精品| 亚洲三级黄色毛片| 日韩伦理黄色片| 一二三四在线观看免费中文在 | 综合色丁香网| 国产xxxxx性猛交| 一区在线观看完整版| 成年人午夜在线观看视频| 九草在线视频观看| 欧美少妇被猛烈插入视频| 欧美成人午夜免费资源| 美女大奶头黄色视频| 国产亚洲最大av| 亚洲欧洲精品一区二区精品久久久 | 五月伊人婷婷丁香| 亚洲色图综合在线观看| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 亚洲国产av新网站| 最近手机中文字幕大全| 老熟女久久久| 全区人妻精品视频| 精品99又大又爽又粗少妇毛片| 狂野欧美激情性bbbbbb| 成人综合一区亚洲| 制服丝袜香蕉在线| 久久久久视频综合| 成人国产av品久久久| 国产黄频视频在线观看| 精品第一国产精品| 亚洲成人一二三区av| 女人久久www免费人成看片| 日韩制服骚丝袜av| 欧美国产精品va在线观看不卡| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看 | 亚洲av成人精品一二三区| 亚洲精品国产av成人精品| 亚洲国产看品久久| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| 捣出白浆h1v1| 青青草视频在线视频观看| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 高清毛片免费看| 高清黄色对白视频在线免费看| 亚洲一级一片aⅴ在线观看| a级毛片黄视频| 午夜福利,免费看| 99热网站在线观看| 最近2019中文字幕mv第一页| 91精品三级在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 日本色播在线视频| 免费观看无遮挡的男女| 国产亚洲精品第一综合不卡 | 热99国产精品久久久久久7| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 毛片一级片免费看久久久久| 美女中出高潮动态图| 91国产中文字幕| 精品国产国语对白av| 在线观看人妻少妇| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 久久鲁丝午夜福利片| 一级毛片电影观看| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| 熟妇人妻不卡中文字幕| 国产成人精品无人区| 男女高潮啪啪啪动态图| 秋霞在线观看毛片| 国产在线视频一区二区| 国产国语露脸激情在线看| 夜夜骑夜夜射夜夜干| 久久久欧美国产精品| 最黄视频免费看| 大香蕉97超碰在线| 久久久精品免费免费高清| 午夜av观看不卡| 国产精品久久久久久av不卡| tube8黄色片| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 乱码一卡2卡4卡精品| 边亲边吃奶的免费视频| 9色porny在线观看| 九九爱精品视频在线观看| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 国产极品天堂在线| 天美传媒精品一区二区| 在线 av 中文字幕| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 大片电影免费在线观看免费| 久久精品久久久久久久性| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 成人免费观看视频高清| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 国产亚洲欧美精品永久| 国产一级毛片在线| 九九在线视频观看精品| 一级毛片电影观看| 九九爱精品视频在线观看| 中文天堂在线官网| 高清不卡的av网站| 国产又爽黄色视频| 成人黄色视频免费在线看| 最近手机中文字幕大全| 宅男免费午夜| 极品人妻少妇av视频| 久久久久国产精品人妻一区二区| 九草在线视频观看| 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| www.熟女人妻精品国产 | 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 伦精品一区二区三区| 亚洲成国产人片在线观看| 久久精品久久久久久久性| 亚洲成人av在线免费| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 欧美亚洲 丝袜 人妻 在线| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 久久久久精品久久久久真实原创| 欧美日韩av久久| 久久久久久久久久久免费av| 夫妻午夜视频| 老熟女久久久| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 亚洲国产精品999| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区三区影片| 国产精品久久久久久久电影| 9色porny在线观看| 国产精品久久久av美女十八| 免费观看a级毛片全部| 9热在线视频观看99| 老司机影院毛片| 两个人看的免费小视频| 欧美精品高潮呻吟av久久| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 午夜久久久在线观看| 老熟女久久久| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 亚洲精华国产精华液的使用体验| 一级毛片 在线播放| 蜜桃国产av成人99| 男的添女的下面高潮视频| 精品少妇内射三级| 国产精品不卡视频一区二区| av免费在线看不卡| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 美女视频免费永久观看网站| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 免费久久久久久久精品成人欧美视频 | 丝瓜视频免费看黄片| 久久99精品国语久久久| 国产精品熟女久久久久浪| av有码第一页| 成人漫画全彩无遮挡| 精品国产一区二区三区四区第35| 视频区图区小说| 久久久精品区二区三区| 边亲边吃奶的免费视频| 99九九在线精品视频| 国产探花极品一区二区| 伦理电影免费视频| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 青春草国产在线视频| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美精品.| 中文精品一卡2卡3卡4更新| 老熟女久久久| 哪个播放器可以免费观看大片| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 久久97久久精品| 国产精品不卡视频一区二区| 欧美精品国产亚洲| 亚洲欧洲日产国产| 婷婷色av中文字幕| 永久免费av网站大全| 毛片一级片免费看久久久久| 国产毛片在线视频| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 欧美亚洲 丝袜 人妻 在线| av女优亚洲男人天堂| 插逼视频在线观看| 国产1区2区3区精品| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 日本免费在线观看一区| 美女福利国产在线| 欧美激情国产日韩精品一区| 国产精品久久久久久精品古装| 免费观看在线日韩| videossex国产| 看十八女毛片水多多多| 国产av国产精品国产| 国产不卡av网站在线观看| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 最新中文字幕久久久久| 超碰97精品在线观看| 欧美精品一区二区大全| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 最近中文字幕高清免费大全6| 尾随美女入室| 国产精品一区二区在线不卡| 久久精品aⅴ一区二区三区四区 | 在线观看免费日韩欧美大片| a 毛片基地| 永久免费av网站大全| 国产亚洲精品久久久com| 亚洲成人av在线免费| 嫩草影院入口| 亚洲精品美女久久久久99蜜臀 | 久久久久久人人人人人| av播播在线观看一区| 麻豆乱淫一区二区| 午夜福利网站1000一区二区三区| av电影中文网址| 国产av精品麻豆| 国产精品久久久久久av不卡| 精品酒店卫生间| 久久热在线av| 宅男免费午夜| 中国国产av一级| 欧美老熟妇乱子伦牲交| 男女国产视频网站| 久久精品aⅴ一区二区三区四区 | 久久久久精品久久久久真实原创| 女人被躁到高潮嗷嗷叫费观| 制服诱惑二区| 天堂俺去俺来也www色官网| 91午夜精品亚洲一区二区三区| 国产片特级美女逼逼视频| 亚洲av日韩在线播放| 国产精品久久久久成人av| 国产高清不卡午夜福利| 好男人视频免费观看在线| 看十八女毛片水多多多| 久久国产亚洲av麻豆专区| 大香蕉久久网| 午夜福利视频精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩卡通动漫| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 在线精品无人区一区二区三| 色视频在线一区二区三区| 亚洲久久久国产精品| 天美传媒精品一区二区| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| 亚洲性久久影院| 天美传媒精品一区二区| 亚洲精品美女久久av网站| 观看美女的网站| 99re6热这里在线精品视频| 9色porny在线观看| 亚洲久久久国产精品| 久久青草综合色| 国产成人精品福利久久| 国产成人免费无遮挡视频| 女人久久www免费人成看片| 午夜福利视频精品| 久久国产精品大桥未久av| 午夜老司机福利剧场| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产av成人精品| 日本黄大片高清| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 97人妻天天添夜夜摸| 亚洲精品视频女| 久久99热6这里只有精品| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 中文字幕人妻熟女乱码| 中文字幕亚洲精品专区| 亚洲美女视频黄频| 涩涩av久久男人的天堂| 成人国语在线视频| 夜夜爽夜夜爽视频| 亚洲内射少妇av| 久久久欧美国产精品| 国产精品女同一区二区软件| 在线天堂中文资源库| 热re99久久国产66热| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 黄色 视频免费看| 精品国产一区二区久久| 日日啪夜夜爽| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频| 制服人妻中文乱码| 看免费成人av毛片| 欧美日韩国产mv在线观看视频| 国产福利在线免费观看视频| 51国产日韩欧美| 2022亚洲国产成人精品| 美女视频免费永久观看网站| 搡女人真爽免费视频火全软件| 国产亚洲精品第一综合不卡 | 美女中出高潮动态图| 国产亚洲最大av| 99re6热这里在线精品视频| 国产成人a∨麻豆精品| 在线天堂最新版资源| 国产 精品1| 国产一区二区三区av在线| 高清毛片免费看| 国产亚洲欧美精品永久| 亚洲精华国产精华液的使用体验| 黄色怎么调成土黄色| 亚洲成色77777| 在现免费观看毛片| 亚洲一区二区三区欧美精品| 999精品在线视频| 国产成人91sexporn| 男人添女人高潮全过程视频| 日本wwww免费看| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 成年女人在线观看亚洲视频| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区 | 最黄视频免费看| 伊人久久国产一区二区| 亚洲av福利一区| 18禁国产床啪视频网站| 国精品久久久久久国模美| 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| av在线观看视频网站免费| 天天躁夜夜躁狠狠躁躁| 国产一区亚洲一区在线观看| 少妇的逼水好多| 黄色怎么调成土黄色| 国产av精品麻豆| 51国产日韩欧美| 69精品国产乱码久久久| 老女人水多毛片| 丰满乱子伦码专区| 国产欧美亚洲国产| 婷婷色综合www| 亚洲精品日韩在线中文字幕| 妹子高潮喷水视频| 99热网站在线观看| 午夜免费观看性视频| 久久精品久久精品一区二区三区| 99视频精品全部免费 在线|