• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse identification method of extracting hybrid energy harvesting system from observed data

    2022-12-28 09:52:16YaHuiSun孫亞輝YuanHuiZeng曾遠輝andYongGeYang楊勇歌
    Chinese Physics B 2022年12期

    Ya-Hui Sun(孫亞輝) Yuan-Hui Zeng(曾遠輝) and Yong-Ge Yang(楊勇歌)

    1School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510520,China

    2State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: data-driven,hybrid energy harvester,harmonic excitation,Gaussian white noise

    1. Introduction

    The vibration energy harvester(VEH)can produce electric energy from ambient vibrations[1–3]to provide wireless sensors with sustaining energy. There are many types of energy harvesting techniques, such as piezoelectric,[4,5]electromagnetic,[6]etc.[7,8]Among them, combining piezoelectric components and electromagnetic elements,hybrid energy harvesters were investigated and widely applied due to the advantage of improving the harvesting efficiency.[9]Panyam and Daqaq[10]studied a tri-stable hybrid energy harvester under harmonic excitation by using multi-scales method. Karami and Inman[11]proposed an approximation method to explore the hybrid energy harvester under harmonic excitation. Xiaet al.[12]investigated the performances of the energy harvesters with different boundary conditions. Moreover, noises exist in the real environment and result in different dynamical behaviors.[13,14]Therefore, hybrid energy harvesters under random excitation were studied in previous researches.[15–20]For example,Zhouet al.[15]showed that the performance of hybrid energy harvesters under Gaussian excitation is improved by adding nonlinear components. Senghaet al.[16]modeled a hybrid energy harvesting system driven by harmonic excitation and colored noise. Foupouapouognigniet al.[17]indicated that the performance of the hybrid VEH,which was influenced by Gaussian white noise (GWN) and harmonic excitation, was improved. Sunet al.[18]used the stochastic averaging technique to analyze the stochastic responses of a fractional-order hybrid VEH driven by GWN.The influences of colored noise excitation on hybrid VEH were investigated by Yang and Cao.[20]

    Stochastic responses of hybrid VEH in the above articles were studied in the condition that the governing equations were firstly known. However,for a complex system,it is trouble to model the governing equations precisely in practical applications. To overcome this difficulty, in recent years, datadriven modeling[21,22]was presented and applied in different areas,such as fluid dynamics,meteorology,finance,etc.[23–26]With the developments of machine learning and data science,some methods were proposed to identify elusive dynamical systems. For deterministic differential equations, Bruntonet al.[27]proposed a data-driven method called sparse identification of nonlinear dynamics (SINDy), and demonstrated that the method is well agreement in the deterministic differential equations by using the iterative threshold algorithm. Boninsegnaet al.[28]modified the SINDy to avoid the adjustment of the threshold parameter in Ref.[27]. However,stochastic differential equations widely exist in practical applications. For stochastic differential equations (SDEs), the methods which were devised in Refs. [27,28] were also used to model SDEs driven by GWN. Rudyet al.[29]presented a deep neural network approach to estimate the coefficients and the measurement noise simultaneously, and showed good robustness of the method by increasing the noise level. Daiet al.[30]proposed the maximum likelihood estimation to learn the SDE under fractional Brownian motion, and the results showed a good accuracy for true values. Lu and Lermusiaux[31]devised a Bayesian learning technique to model stochastic dynamical systems. Huang and Li[32]used the SINDy to discover the equations of a four-dimensional stochastic projectile system. Wuet al.[33]obtained the mean residence time and escape probability of SDEs from data by using the devised approach.Additionally,based on the Koopman generator,Zhanget al.[34]developed an approach to extract SDEs influenced by L′evy noise from data on mean exit time, and indicated that this method can also apply to dynamical systems under GWN. Lu and Duan[35]discovered the SDEs from data with L′evy noise by utilizing extended dynamic mode decomposition, and acquired the transition probability density functions by solving the Fokker–Planck equations. Together with the Kramers–Moyal formulas and SINDy, governing laws under different L′evy noise were extracted from the observed data of stochastic dynamics equations.[36–38]Among these methods,SINDy has been widely applied in discovering governing equations from massive datasets. The method combines the least-squares and compressed-sensing to solve the sparse coefficients of the equations, so that the approximate governing equations can be obtained. It is useful to analyze the subsequent dynamical behavior of the system.

    To the best of our knowledge, few authors pay attention to discovering the equations from data for the hybrid energy harvester in present. In this paper,we develop a sparse identification approach to identify the equations for the hybrid VEH.The framework of this paper is organized as follows. In Section 2, the mathematical model of the hybrid VEH with nondimensional form is given.In Section 3,a sparse identification process is developed to solve the sparse coefficients for the hybrid VEH. In Sections 4 and 5, two examples of the hybrid VEH are taken to examine the validity of the devised method.In Section 6,some conclusions are remarked.

    2. Hybrid VEH under noise excitation

    A family of hybrid electromagnetic and piezoelectric energy harvesters are considered as shown in Fig.1. The model is simplified as a mass–spring–damper system in Fig.1(a)coupled with a piezoelectric circuit in Fig.1(b)and an electromagnetic circuit in Fig.1(c)under base acceleration.

    Fig.1. (a)Simplified diagram of a hybrid VEH coupled with(b)a piezoelectric energy harvesting circuit and(c)an electromagnetic circuit.

    The coupling equations of the hybrid energy harvesting system are given by

    Here, ˉX, ˙ˉXand ¨ˉXbdenote the displacement, the velocity and the base acceleration of the massM,respectively. ˉVis the electric voltage measured across the equivalent resistance loadRp.Cpand ˉζ1are the the piezoelectric capacitance and the piezoelectric coupling coefficient.L, ˉIand ˉζ2denote the inductance of the coil, the output current and the electromagnetic coupling coefficient, respectively.RcandResuccessively denote the load resistances of the electromagnetic and the resistance of the coil.f(ˉX)andg(ˉX)represent the damping term and the stiffness term.

    Then,we make the equations dimensionless by means of a transformation[18,39]Here,f(x) andg(x) are the non-dimensional damping force and stiffness term.ζ1,ζ2,λ1andλ2are the non-dimensional coupling coefficients in Eq. (1).μ1is the reciprocal of the product of resistance and capacitance.μ2represents the ratio of resistance and inductance.

    As examples of different external excitation, harmonic excitation and GWN[18,40]are considered in Sections 4 and 5. With the method of stepwise sparse regressor(SSR),[28,41]we devise the method of identified sparse regression to discover the governing equations by learning the coefficients of the formula.

    3. Sparse identification for hybrid VEH

    Drawing on the ideas of machine learning, we combine the least-square sense, SSR algorithm and cross-validation(CV). A sparse identification process is developed to learn the unknown coefficients in the equations. Assume that we have observedNdata points of system state time series of displacement, voltage and output current denoted byX,VandI, respectively. Meanwhile, data pointsX,VandIhave been dimensionless to [x1,x2,x3,...,xN], [v1,v2,v3,...,vN]and[i1,i2,i3,...,iN]at[t1,t2,t3,...,tN]. We transform Eq.(3)into the following differential equations:

    3.1. Learned process of drift term

    In this subsection, we introduce the sparse identification of drift termb=[b1,b2,b3,b4]T. Firstly, we approximate the first-order derivative by using the first-order difference,i.e.,

    The learned results will be better if we select an abundant type of basis functions, while the real workload is enormous and polynomial basis functions are enough precise for most cases.

    By referring to Ref.[42],b2,b3andb4are estimated by using the Kramers–Moyal formula,i.e.,

    where

    However,Eq.(11)may have no solutions due to the equations more than variables. Based on this, we use the least square sense,i.e.,

    whereρ>0 is called as the penalty factor applied in restricting the weight of the sparsity constraint. Due to the meaning of theL1regular,some terms in the solutions will be equal to zero.

    The approach we used to solve Eq. (15) is iterative algorithm SSR together with CV. Compared with the iterative threshold algorithm,[21,27]Lasso,[43]elastic net[44]and matching pursuit,[45]SSR not only can adaptively select the number of iterations and the sparsity level,but also does not needlessly adjust the external parameters like threshold parameterλ. The purposes of CV[46]are the division of data and the selection of optimal parameter. The pipeline works are summarized in Table 1.

    Table 1. The algorithm for sparse identification.

    3.2. Learned process of diffusion term

    For GWN,the diffusion terma22in Eq.(4)is calculated as 2D. Analogously, we construct the basis functionΨ(X).Then,the diffusion term is approximated as

    According to the steps in Table 1, we strengthen the sparse level of the solutionqand the sparse solution ^qis obtained.

    4. Discover equations for a hybrid VEH under harmonic excitation

    4.1. A hybrid VEH under harmonic excitation

    Letf(x) =c4x4+c2x2+c0,g(x) =δ1x+δ3x3+δ5x5[47,48]andD=0. The equations of the system can be expressed as

    4.2. Sparse learning of the system under harmonic excitation

    We set parameters asc0=?0.5,c2=0.5,c4=?0.1,δ1=1,δ3=?3,δ5=1,ζ1=0.5,ζ2=0.5,F=1,μ1=1,λ1=1,μ2=0.5,λ2=1.

    According to Eq.(22),five independent system state trajectories ofNh=105steps each are generated as the observed data by using the method of the fourth order Runge–Kutta.We compute the derivatives ˙X, ˙Y, ˙Vand ˙Iby applying Eq.(6)with the time step ?t=0.001,where the smaller ?t,the higher the accuracy. Then,Kh=27 basis function dictionaryφh(t,X,˙X,V,I)is considered. The specific composition of the dictionary reads as

    The matricesAandBcan be obtained by Eqs.(9),(10)and (12). To avoid under-fitting and over-fitting, 7-fold CV is utilized to select the specific number of iterations on which SSR needs to be run. We have a family of models with the number of iterations as parameter(SSR(0),...,SSR(27)). By performing the algorithm in Table 1,we select the one model that is best to fit the observed datasets. Figures 2(a), 2(b)and 2(c) respectively demonstrate MSE of coefficients learning from Eqs. (22b), (22c) and (22d), wherendenotes the number of non-zero coefficients.

    From Fig.2(a),we can see that whenn<8,the MSE vibrates firstly and then decreases slowly.Subsequently,the part ofn ≥8 is magnified in the upper right of Fig.2(a).The results show that whennchanges from 8 to 9,the mean square error plummets, and then slowly decreases untiln=11. We hold the opinion that the model is under-fitting inn<8 and overfitting inn>11.[28]Analogously,Figs.2(b)and 2(c)show that the number of non-zero coefficients in Eqs.(22c)and(22d)is 2. Thus, for Eq. (22b), we focus onn=9 andn=10. For Eqs.(22c)and(22d),n=2 is the best parameter value.

    Fig.2. MSE from applying SSR algorithm is plotted as a function of solution size n. (a)Eq.(22b);(b)Eq.(22c);(c)Eq.(22d).

    Table 2. Identified coefficients for Eq.(22b).

    The sparse solutions ?uhcan be learned as listed in Tables 2–4. The results indicate that the coefficients learned from the algorithm are similar to the true values,andn=9 is more suitable for Eq.(22b).Furthermore,Figs.3(a)and 3(b)demonstrate the comparisons of learned values and true values with regard to damping forcef(x)and stiffness termg(x),respectively. Figure 4 shows the comparison of time-varying displacement and time-varying voltage from the original system and the learned system.The results show that the true system and the learning system are in good agreement.

    Table 3. Identified coefficients for Eq.(22c).

    Table 4. Identified coefficients for Eq.(22d).

    Fig.3. Comparisons between the learned values and true values of(a)f(x)and(b)g(x).

    Fig. 4. Comparisons of (a) time-varying displacement and (b) timevarying voltage.

    Fig.5. Comparisons between true values and learned values of the b2h. (a)and(b)y=0.5,I=0.5;(c)and(d)y=0.5,V =0.5.

    Fig.6. Comparisons between true and learned functions. (a)and(b)b3h;(c)and(d)b4h.

    Table 5. The learned results of 10 sets data with different ?t and different Nh.

    Since Eq. (23b) is four-dimensional, the figure of equation is impossible to plot intuitively. Thus, we plot the equation as two-dimensional by fitting two state variables. In Figs.5 and 6,comparisons of the true and learnedb2h,b3handb4hare shown to indicate the learning results. Here,Figs.5(a)and 5(c) represent the true functionb2h; Figs. 5(b) and 5(d)represent the learning functionb2h. The two rows of the figures denote the case with(i)y=0.5 andI=0.5; (ii)y=0.5 andV=0.5, respectively. Figures 6(a) and 6(b) are the true functions ofb3handb4h, respectively. Figures 6(c) and 6(d)are the learning functions ofb3handb4h,respectively. The results show that the learning functions agree well with the true functions.

    By referring to Refs.[49–51],we know that as the fluctuations of the estimated parameters are small with the increase of data length,the estimated parameters converge approximately to the true value of the parameters. Then, 10 sets data with different ?tandNhare learned by the sparse identification algorithm. The results from Table 5 demonstrate that for the same time step ?t, the longer the data length, the smaller the standard (Std.) deviation. For the same data lengthNh, the standard deviation decreases as the ?tdecreases. Thus, with an increase of data length and a small time step,the identified coefficients can be close to the true values of the coefficients.

    5. Discover equations for a hybrid VEH under GWN and harmonic excitation

    5.1. A hybrid VEH under GWN and harmonic excitation

    In this section,the parameter values are the same as those in Subsection 4.2, except for the parameter 2D=0.01. We consider a hybrid energy harvester under both GWN and harmonic excitation,i.e.,

    Accordingly, the diffusion terma22=2D, and the drift termbof Eq.(26)can be obtained as

    5.2. Pre-processing of drift term and diffusion term

    For the drift termb,KG=18 basis function dictionaryφG(t,X,˙X,V,I)is given by

    By using the sparse identification algorithm in Table 1,the drift coefficients ?uGcan be solved by

    whereAandBare obtained by Eqs.(9),(10)and(12).

    Analogously,for the diffusion terma22=2D,L=4 basis function dictionaryψ(X)is constructed as

    According to Subsection 3.2,the sparse solution ^qcan be calculated.

    5.3. Sparse learning of the system under GWN and harmonic excitation

    On the basis of Eq. (26), the fourth-order Runge–Kutta[52]is utilized to generate one hundred independent system state trajectories ofNG=105steps. Then, ˙X, ˙Y, ˙Vand ˙Iare approximated numerically by Eq.(6).Through Eqs.(28)and (29),AandBin Eq. (29) are established. Similarly, ^Aand ^Bare obtained via Eqs.(30)and(19).

    Fig.7. The mean MSE of CV for fifty trajectories and each non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Likewise,we use 10-fold CV to find the optimal number of iterations of SSR.For the one hundred trajectories and each the number of non-zero coefficientsn, the mean MSE of 10-fold CV is calculated by performing the algorithm in Table 1.Here,Figs.7(a),7(b),7(c)and 7(d)show the mean MSE of the functionb2G,b3G,b4Ganda22with every trajectories and the number of iterations. Then,to judge the number of iterations,we choose the optimal trajectory which has a minimum MSE in all average MSE. Figures 8(a), 8(b), 8(c) and 8(d) are the MSE of the functionsb2G,b3G,b4Ganda22. From Fig.8(a),the MSE has large fluctuations inn<4 and small fluctuations inn ≥4. The part ofn ≥7 is amplified in the upper right of Fig.8(a). It can be seen that the MSE decreases sharply fromn=8 ton=9 and fluctuates aftern>10. Meanwhile, the minimum MSE of the trajectory is acquired inn=10. Thus,we conclude that the best number of iterations isKG?9 orKG?10 in drift functionb2G,i.e.,n=9 orn=10. Due to the feature ofb2G,we only considern=9. Similarly according to the above analysis,because of the minimum MSE corresponding to then, the number of optimal non-zeros coefficients of the functionsb3G,b4Ganda22aren=2,n=2 andn=1,respectively. Differently,in Fig.8(d),we choosen=1 becausen=0 does not satisfy the existence of white noise in Eq.(25).

    In the following,from the sparse identification algorithm in Table 1, we learn the coefficients ofb2G,b3G,b4Ganda22usingKG?9,KG?2,KG?2 andL?1 iterations,respectively.With the application of the optimal trajectory and 10-fold CV,the learned results are shown in Tables 6,7,8 and 9 correspond tob2G,b3G,b4Ganda22,respectively.

    Fig.8. The MSE of optimal trajectory with non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Table 6. Identified coefficients for b2G.

    Table 7. Identified coefficients for b3G.

    Table 8. Identified coefficients for b4G.

    Table 9. Identified coefficients for a22.

    We show intuitively the learned results in Figs.9–11. Figure 9 demonstrates the fitting situation of the functionsf(x)andg(x). Figure 10 represents the comparison of the original system and the learned system in time-varying displacementx(t)and voltageV(t). It can be seen that compared with the true coefficients, the learned coefficients have slight deviation within an acceptable range.

    Fig.9. Comparisons between the learned values and true values of(a) f(x)and(b)g(x).

    Fig.10. Comparisons of(a)time-varying displacement and(b)time-varying voltage.

    Fig.11. Comparisons between true and learned functions. (a)and(b)b3G;(c)and(d)b4G.

    Then, the results of comparison between true values and learned values with respect tob3Gandb4Gare shown in Fig.11.Figures 11(a) and 11(b) are the true functions ofb3Gandb4G, respectively. Figures 11(c) and 11(d) are the learning functions ofb3Gandb4G, respectively. The true and learned results of functionb2Gare displayed in three partsx–V,x–Iandx–t. We demonstrate the equation in two-dimensional due to the dimension ofb2Gmore than two. Figures 12(a)–12(e)represent the true results. Figures 12(b)–12(f)represent the learned results. The three rows of the figures describe the case with(i)y=0.5,I=0.5 andt=10;(ii)y=0.5,V=0.5 andt=10;(iii)y=0.5,V=0.5 andI=0.5,respectively. It can be seen that the coefficients learned from the sparse identification algorithm have good enough accuracy.

    Fig. 12. Comparisons between true values and learned values of the b2G. (a) and (b) y=0.5, I =0.5,t =10; (c) and (d) y=0.5,V =0.5,t=10;(e)and(f)y=0.5,V =0.5,I=0.5.

    Above all,the hybrid energy harvesting system identified by sparse identification is consistent enough with the real system.

    6. Conclusion

    In this paper,a sparse identification approach was developed to acquire the governing equations of the hybrid energy harvesting system from the simulated sample state data. Two examples were taken to verify the feasibility and effectiveness of the method.

    To begin with,a hybrid energy harvester under harmonic excitation was the first example. Through approximating derivatives by the first-order difference and constructing the basis functions dictionary,we obtained the expressions of differential equations of the system,which are equal to the linear combination of basis functions. Then,for the number of nonzero coefficientsnand each sample trajectory, 7-fold crossvalidation(CV)was applied to prevent under-fitting and overfitting by observing the variations of MSE.Removing the situations of under-fitting and over-fitting,we selectedn=9,n=2 andn=2 for the differential equations ˙y, ˙Vand ˙I,respectively.After solvingAu=Bby using the sparse identification algorithm,we learned the unknown coefficients,and discussed the degree of fitting.The results showed that the method is applied to solve the coefficients which are sufficiently accurate to the true functions,and all the learned coefficients are greatly converge to the true coefficients with the increase of data length under a small time step.Thus,this method can be well utilized to the deterministic hybrid energy harvesting system.

    A hybrid energy harvester under both harmonic excitation and Gaussian white noise was the second example. Firstly,we received the approximated equations of the drift term and diffusion term based on the Kramers–Moyal formulas. According to the basis function dictionary,we calculated the iterative expressions of the drift term and diffusion term, respectively.Together with the 10-fold CV, the sparse identification algorithm was used to obtain the number of optimal non-zero coefficientsn=9,n=2,n=2 andn=1 corresponding to the functions ofb2G,b3G,b4Ganda22, respectively. According to the comparison of learned functions and true functions,the results demonstrated that the method is well applied to the hybrid energy harvesting system with an acceptable deviation.Meanwhile, compared with the first example, the second example depends on more sufficient data to reduce the effect of the noise.

    Thus,measuring the time-series data of the system state,we can build the equations for the hybrid energy harvester.Then,the learned system can be applied to explore the subsequent dynamical behavior with the aim of the improvement of performance of the energy harvester.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12002089 and 11902081) and Project of Science and Technology of Guangzhou (Grant No.202201010326).

    尾随美女入室| av国产精品久久久久影院| 99久久综合免费| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 男女无遮挡免费网站观看| 岛国毛片在线播放| 亚洲av国产av综合av卡| 日韩av免费高清视频| 啦啦啦在线免费观看视频4| 欧美 亚洲 国产 日韩一| 国产一级毛片在线| 19禁男女啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| xxx大片免费视频| 久久热在线av| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 看十八女毛片水多多多| 麻豆国产av国片精品| 国产高清国产精品国产三级| 天堂俺去俺来也www色官网| 免费少妇av软件| 成人免费观看视频高清| 欧美日韩福利视频一区二区| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 亚洲国产毛片av蜜桃av| 成人亚洲欧美一区二区av| 在线观看免费日韩欧美大片| 国产片内射在线| 欧美人与性动交α欧美软件| 亚洲第一av免费看| 黄频高清免费视频| 成人国语在线视频| 又黄又粗又硬又大视频| 免费黄频网站在线观看国产| 美女高潮到喷水免费观看| 丝袜喷水一区| 男女之事视频高清在线观看 | 国产精品国产三级国产专区5o| 天天影视国产精品| 欧美xxⅹ黑人| 精品欧美一区二区三区在线| 老司机亚洲免费影院| 精品人妻1区二区| 国产精品二区激情视频| 后天国语完整版免费观看| 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看 | 美女视频免费永久观看网站| 日韩,欧美,国产一区二区三区| 只有这里有精品99| 高潮久久久久久久久久久不卡| 欧美成人午夜精品| 欧美黑人欧美精品刺激| 精品免费久久久久久久清纯 | 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品久久久久久| 国产成人91sexporn| 国产1区2区3区精品| 亚洲av综合色区一区| 久久久欧美国产精品| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 亚洲国产最新在线播放| 丁香六月天网| 最近最新中文字幕大全免费视频 | a级片在线免费高清观看视频| 日韩一本色道免费dvd| 亚洲精品国产一区二区精华液| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 成人免费观看视频高清| 女人精品久久久久毛片| 国精品久久久久久国模美| 欧美日韩亚洲高清精品| 老司机影院毛片| 亚洲国产av影院在线观看| 99久久综合免费| 好男人电影高清在线观看| 亚洲国产日韩一区二区| 日本av免费视频播放| 国产一区二区 视频在线| 曰老女人黄片| 考比视频在线观看| 亚洲人成电影观看| 国产av国产精品国产| 国产成人欧美| 女人久久www免费人成看片| 69精品国产乱码久久久| 国产成人精品久久二区二区免费| 在线观看人妻少妇| 在线看a的网站| 熟女少妇亚洲综合色aaa.| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 黄色毛片三级朝国网站| 97在线人人人人妻| 欧美在线一区亚洲| 精品第一国产精品| 丝袜在线中文字幕| 亚洲中文av在线| 精品国产一区二区久久| 一区二区三区乱码不卡18| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 制服人妻中文乱码| 好男人电影高清在线观看| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 最新在线观看一区二区三区 | 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| 黄片播放在线免费| 午夜免费成人在线视频| 欧美精品人与动牲交sv欧美| 高潮久久久久久久久久久不卡| 18禁观看日本| 免费观看av网站的网址| 国产高清国产精品国产三级| 中文字幕制服av| 夫妻性生交免费视频一级片| av又黄又爽大尺度在线免费看| 9热在线视频观看99| 久热这里只有精品99| 国产精品偷伦视频观看了| 校园人妻丝袜中文字幕| 在线观看人妻少妇| 国产精品偷伦视频观看了| 久久 成人 亚洲| 涩涩av久久男人的天堂| 免费看十八禁软件| 免费在线观看日本一区| tube8黄色片| 日韩一本色道免费dvd| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 叶爱在线成人免费视频播放| 久久影院123| 午夜视频精品福利| 99精国产麻豆久久婷婷| 一边亲一边摸免费视频| 在线亚洲精品国产二区图片欧美| 久久精品国产亚洲av高清一级| 国产精品欧美亚洲77777| 久久久久久免费高清国产稀缺| av有码第一页| 久久久国产一区二区| 日韩中文字幕欧美一区二区 | 婷婷色综合www| 人妻 亚洲 视频| 成人手机av| 91精品国产国语对白视频| 男女午夜视频在线观看| 免费高清在线观看视频在线观看| 欧美乱码精品一区二区三区| 久久亚洲国产成人精品v| 日韩伦理黄色片| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区四区第35| 只有这里有精品99| 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免| 免费不卡黄色视频| 久久国产精品影院| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区四区五区乱码 | 免费不卡黄色视频| 亚洲欧美激情在线| 五月开心婷婷网| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 国产97色在线日韩免费| 亚洲三区欧美一区| 肉色欧美久久久久久久蜜桃| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 电影成人av| 午夜免费鲁丝| 男人添女人高潮全过程视频| 久久精品久久久久久噜噜老黄| 国产精品熟女久久久久浪| 午夜福利,免费看| 国产麻豆69| 老司机影院成人| 午夜福利,免费看| av片东京热男人的天堂| 国产精品免费视频内射| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 国产亚洲精品久久久久5区| 欧美另类一区| 少妇精品久久久久久久| 日本午夜av视频| 在现免费观看毛片| 91精品三级在线观看| 首页视频小说图片口味搜索 | 国产成人一区二区三区免费视频网站 | 国产xxxxx性猛交| 一区二区三区精品91| 王馨瑶露胸无遮挡在线观看| 91麻豆精品激情在线观看国产 | 免费一级毛片在线播放高清视频 | 18禁观看日本| 欧美精品人与动牲交sv欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成网站在线观看播放| 最新在线观看一区二区三区 | 人成视频在线观看免费观看| 精品一区二区三区av网在线观看 | 午夜91福利影院| h视频一区二区三区| 观看av在线不卡| 欧美性长视频在线观看| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 久久狼人影院| 国产一区二区在线观看av| 亚洲精品第二区| 午夜福利在线免费观看网站| 精品少妇久久久久久888优播| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 成人18禁高潮啪啪吃奶动态图| 国产在线一区二区三区精| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 熟女少妇亚洲综合色aaa.| 三上悠亚av全集在线观看| 国产成人精品久久二区二区91| 啦啦啦视频在线资源免费观看| 国产在线观看jvid| 美女主播在线视频| 亚洲欧美激情在线| 纵有疾风起免费观看全集完整版| 美国免费a级毛片| 亚洲国产精品999| 日韩大片免费观看网站| 嫩草影视91久久| 亚洲激情五月婷婷啪啪| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| 久久ye,这里只有精品| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 一级黄片播放器| 丝袜美腿诱惑在线| 亚洲,一卡二卡三卡| 午夜福利乱码中文字幕| 成人国产av品久久久| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人看| 一级黄色大片毛片| 51午夜福利影视在线观看| 久久精品久久精品一区二区三区| 欧美激情 高清一区二区三区| 国产精品人妻久久久影院| 悠悠久久av| 久久久久久久久久久久大奶| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看| 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 99热国产这里只有精品6| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 午夜福利一区二区在线看| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 9热在线视频观看99| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 日韩精品免费视频一区二区三区| 各种免费的搞黄视频| 手机成人av网站| 日韩,欧美,国产一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲少妇的诱惑av| 视频区图区小说| 黄网站色视频无遮挡免费观看| 亚洲av日韩在线播放| 丝袜美足系列| 美女高潮到喷水免费观看| 久久国产精品人妻蜜桃| 国产精品国产av在线观看| 首页视频小说图片口味搜索 | 777米奇影视久久| 欧美亚洲日本最大视频资源| 久久精品亚洲av国产电影网| 午夜激情av网站| 香蕉丝袜av| 国产成人免费无遮挡视频| 国产91精品成人一区二区三区 | 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 19禁男女啪啪无遮挡网站| 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 国产在线免费精品| 人人澡人人妻人| 欧美黑人精品巨大| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av成人不卡在线观看播放网 | 亚洲欧美日韩高清在线视频 | 亚洲国产毛片av蜜桃av| 99热网站在线观看| 午夜免费成人在线视频| 国产成人一区二区三区免费视频网站 | 蜜桃在线观看..| 91麻豆av在线| 天天影视国产精品| 久久久久视频综合| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 老鸭窝网址在线观看| 国产精品熟女久久久久浪| 欧美激情高清一区二区三区| 一本大道久久a久久精品| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 波野结衣二区三区在线| 色播在线永久视频| 国产高清不卡午夜福利| 亚洲国产精品一区三区| 午夜福利,免费看| 成人影院久久| 国产又爽黄色视频| 精品久久蜜臀av无| av在线app专区| 久久久精品国产亚洲av高清涩受| 亚洲av成人不卡在线观看播放网 | 久久国产亚洲av麻豆专区| 精品少妇黑人巨大在线播放| 久久青草综合色| 久久亚洲国产成人精品v| 伦理电影免费视频| 国产伦理片在线播放av一区| 亚洲欧美日韩高清在线视频 | 亚洲第一av免费看| 国产男女内射视频| 赤兔流量卡办理| 免费av中文字幕在线| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 美女中出高潮动态图| 国产一区亚洲一区在线观看| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区 | 欧美人与善性xxx| 欧美久久黑人一区二区| 一二三四社区在线视频社区8| 亚洲国产精品一区三区| 99re6热这里在线精品视频| 青青草视频在线视频观看| 国产91精品成人一区二区三区 | 在线av久久热| 在线观看一区二区三区激情| 亚洲综合色网址| 久久狼人影院| 激情五月婷婷亚洲| a级片在线免费高清观看视频| 伦理电影免费视频| 在线精品无人区一区二区三| 国产99久久九九免费精品| 99国产精品免费福利视频| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 免费一级毛片在线播放高清视频 | 亚洲成人国产一区在线观看 | 99国产综合亚洲精品| 最近手机中文字幕大全| 国产成人精品久久二区二区91| 欧美性长视频在线观看| cao死你这个sao货| 亚洲五月色婷婷综合| 大香蕉久久成人网| 久久久久久久国产电影| 七月丁香在线播放| 久久狼人影院| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 十八禁网站网址无遮挡| 免费一级毛片在线播放高清视频 | 熟女av电影| 丰满迷人的少妇在线观看| 考比视频在线观看| 人人澡人人妻人| 欧美日本中文国产一区发布| 亚洲av片天天在线观看| 大话2 男鬼变身卡| 日韩 亚洲 欧美在线| 又大又爽又粗| 国产高清视频在线播放一区 | 亚洲中文日韩欧美视频| 人体艺术视频欧美日本| 美女国产高潮福利片在线看| 亚洲av国产av综合av卡| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 久久亚洲精品不卡| 两个人看的免费小视频| 看免费成人av毛片| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 在线亚洲精品国产二区图片欧美| 在线观看免费午夜福利视频| 日本91视频免费播放| 午夜激情久久久久久久| 亚洲成人国产一区在线观看 | 人体艺术视频欧美日本| netflix在线观看网站| 国产熟女欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| 91麻豆精品激情在线观看国产 | 中文字幕制服av| 老司机午夜十八禁免费视频| 男女无遮挡免费网站观看| 国产高清国产精品国产三级| 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 一级片免费观看大全| 国产精品国产三级国产专区5o| 中文字幕人妻熟女乱码| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 1024香蕉在线观看| 丁香六月欧美| 久久精品国产亚洲av高清一级| 97精品久久久久久久久久精品| 91国产中文字幕| 999久久久国产精品视频| 一本—道久久a久久精品蜜桃钙片| 午夜福利乱码中文字幕| 久久青草综合色| 国产精品av久久久久免费| 五月天丁香电影| 嫁个100分男人电影在线观看 | 色综合欧美亚洲国产小说| 国产一卡二卡三卡精品| 亚洲精品av麻豆狂野| 欧美激情高清一区二区三区| 秋霞在线观看毛片| 一区二区av电影网| 国产xxxxx性猛交| 亚洲av电影在线观看一区二区三区| 国产一区二区激情短视频 | 国产日韩欧美在线精品| 久久ye,这里只有精品| 大香蕉久久网| 欧美 亚洲 国产 日韩一| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 欧美日韩亚洲国产一区二区在线观看 | 成年av动漫网址| 欧美黄色淫秽网站| 蜜桃在线观看..| 真人做人爱边吃奶动态| 纵有疾风起免费观看全集完整版| 蜜桃国产av成人99| 首页视频小说图片口味搜索 | 中文字幕高清在线视频| 精品福利永久在线观看| 女人被躁到高潮嗷嗷叫费观| 国产男人的电影天堂91| www.999成人在线观看| 一本综合久久免费| 国产精品国产三级专区第一集| 自线自在国产av| 爱豆传媒免费全集在线观看| 尾随美女入室| 一本综合久久免费| 大香蕉久久成人网| 精品亚洲成国产av| 国产片内射在线| 久久久国产精品麻豆| 老司机影院成人| 欧美日韩视频精品一区| 精品亚洲成国产av| 欧美久久黑人一区二区| 一级毛片黄色毛片免费观看视频| 国产视频一区二区在线看| 国产成人av教育| h视频一区二区三区| 亚洲 欧美一区二区三区| 51午夜福利影视在线观看| 亚洲精品在线美女| 中文字幕色久视频| 欧美黑人欧美精品刺激| 免费在线观看视频国产中文字幕亚洲 | 欧美人与性动交α欧美精品济南到| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 精品国产一区二区三区久久久樱花| 亚洲精品第二区| 精品久久久久久电影网| 国产欧美日韩一区二区三 | 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 欧美黑人精品巨大| 男男h啪啪无遮挡| 日韩av不卡免费在线播放| 韩国精品一区二区三区| 男女国产视频网站| 国产成人精品在线电影| 又紧又爽又黄一区二区| 操美女的视频在线观看| a级片在线免费高清观看视频| 一级毛片我不卡| 嫁个100分男人电影在线观看 | 一边亲一边摸免费视频| 国产在线视频一区二区| a级毛片黄视频| 日韩伦理黄色片| 精品人妻在线不人妻| 亚洲成人手机| 免费高清在线观看视频在线观看| 午夜福利视频在线观看免费| 欧美日韩视频高清一区二区三区二| 精品国产乱码久久久久久男人| 在线观看www视频免费| 久久久久久亚洲精品国产蜜桃av| 人人妻人人爽人人添夜夜欢视频| av不卡在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩视频在线欧美| 啦啦啦在线免费观看视频4| 欧美精品人与动牲交sv欧美| 国产深夜福利视频在线观看| 国产高清国产精品国产三级| 国产有黄有色有爽视频| 国产成人欧美| www.精华液| 久久国产精品大桥未久av| 国产精品国产三级国产专区5o| 一本—道久久a久久精品蜜桃钙片| 国产精品二区激情视频| 一边摸一边抽搐一进一出视频| 国产极品粉嫩免费观看在线| 赤兔流量卡办理| 天天躁日日躁夜夜躁夜夜| 嫁个100分男人电影在线观看 | 久久国产精品人妻蜜桃| 欧美xxⅹ黑人| 999久久久国产精品视频| 激情五月婷婷亚洲| 免费观看人在逋| 欧美 日韩 精品 国产| 国产精品 欧美亚洲| 最近中文字幕2019免费版| 亚洲av综合色区一区| 亚洲精品国产一区二区精华液| 色94色欧美一区二区| 一边摸一边做爽爽视频免费| 中文字幕色久视频| 国产精品.久久久| 欧美成人午夜精品| 国产精品人妻久久久影院| av有码第一页| 午夜两性在线视频| 啦啦啦在线观看免费高清www| 视频区欧美日本亚洲| 建设人人有责人人尽责人人享有的| 777米奇影视久久| 看十八女毛片水多多多| 亚洲三区欧美一区| 久久久国产一区二区| 亚洲人成77777在线视频| 久久久精品区二区三区| 高清av免费在线| 大陆偷拍与自拍| 黄色 视频免费看| av一本久久久久| 国产伦人伦偷精品视频| 晚上一个人看的免费电影| 国产视频首页在线观看| 日本a在线网址| 天天躁夜夜躁狠狠躁躁| 中国国产av一级| 大型av网站在线播放| 人人妻,人人澡人人爽秒播 | 人妻 亚洲 视频| 夜夜骑夜夜射夜夜干| 免费在线观看黄色视频的|