• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse identification method of extracting hybrid energy harvesting system from observed data

    2022-12-28 09:52:16YaHuiSun孫亞輝YuanHuiZeng曾遠輝andYongGeYang楊勇歌
    Chinese Physics B 2022年12期

    Ya-Hui Sun(孫亞輝) Yuan-Hui Zeng(曾遠輝) and Yong-Ge Yang(楊勇歌)

    1School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510520,China

    2State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: data-driven,hybrid energy harvester,harmonic excitation,Gaussian white noise

    1. Introduction

    The vibration energy harvester(VEH)can produce electric energy from ambient vibrations[1–3]to provide wireless sensors with sustaining energy. There are many types of energy harvesting techniques, such as piezoelectric,[4,5]electromagnetic,[6]etc.[7,8]Among them, combining piezoelectric components and electromagnetic elements,hybrid energy harvesters were investigated and widely applied due to the advantage of improving the harvesting efficiency.[9]Panyam and Daqaq[10]studied a tri-stable hybrid energy harvester under harmonic excitation by using multi-scales method. Karami and Inman[11]proposed an approximation method to explore the hybrid energy harvester under harmonic excitation. Xiaet al.[12]investigated the performances of the energy harvesters with different boundary conditions. Moreover, noises exist in the real environment and result in different dynamical behaviors.[13,14]Therefore, hybrid energy harvesters under random excitation were studied in previous researches.[15–20]For example,Zhouet al.[15]showed that the performance of hybrid energy harvesters under Gaussian excitation is improved by adding nonlinear components. Senghaet al.[16]modeled a hybrid energy harvesting system driven by harmonic excitation and colored noise. Foupouapouognigniet al.[17]indicated that the performance of the hybrid VEH,which was influenced by Gaussian white noise (GWN) and harmonic excitation, was improved. Sunet al.[18]used the stochastic averaging technique to analyze the stochastic responses of a fractional-order hybrid VEH driven by GWN.The influences of colored noise excitation on hybrid VEH were investigated by Yang and Cao.[20]

    Stochastic responses of hybrid VEH in the above articles were studied in the condition that the governing equations were firstly known. However,for a complex system,it is trouble to model the governing equations precisely in practical applications. To overcome this difficulty, in recent years, datadriven modeling[21,22]was presented and applied in different areas,such as fluid dynamics,meteorology,finance,etc.[23–26]With the developments of machine learning and data science,some methods were proposed to identify elusive dynamical systems. For deterministic differential equations, Bruntonet al.[27]proposed a data-driven method called sparse identification of nonlinear dynamics (SINDy), and demonstrated that the method is well agreement in the deterministic differential equations by using the iterative threshold algorithm. Boninsegnaet al.[28]modified the SINDy to avoid the adjustment of the threshold parameter in Ref.[27]. However,stochastic differential equations widely exist in practical applications. For stochastic differential equations (SDEs), the methods which were devised in Refs. [27,28] were also used to model SDEs driven by GWN. Rudyet al.[29]presented a deep neural network approach to estimate the coefficients and the measurement noise simultaneously, and showed good robustness of the method by increasing the noise level. Daiet al.[30]proposed the maximum likelihood estimation to learn the SDE under fractional Brownian motion, and the results showed a good accuracy for true values. Lu and Lermusiaux[31]devised a Bayesian learning technique to model stochastic dynamical systems. Huang and Li[32]used the SINDy to discover the equations of a four-dimensional stochastic projectile system. Wuet al.[33]obtained the mean residence time and escape probability of SDEs from data by using the devised approach.Additionally,based on the Koopman generator,Zhanget al.[34]developed an approach to extract SDEs influenced by L′evy noise from data on mean exit time, and indicated that this method can also apply to dynamical systems under GWN. Lu and Duan[35]discovered the SDEs from data with L′evy noise by utilizing extended dynamic mode decomposition, and acquired the transition probability density functions by solving the Fokker–Planck equations. Together with the Kramers–Moyal formulas and SINDy, governing laws under different L′evy noise were extracted from the observed data of stochastic dynamics equations.[36–38]Among these methods,SINDy has been widely applied in discovering governing equations from massive datasets. The method combines the least-squares and compressed-sensing to solve the sparse coefficients of the equations, so that the approximate governing equations can be obtained. It is useful to analyze the subsequent dynamical behavior of the system.

    To the best of our knowledge, few authors pay attention to discovering the equations from data for the hybrid energy harvester in present. In this paper,we develop a sparse identification approach to identify the equations for the hybrid VEH.The framework of this paper is organized as follows. In Section 2, the mathematical model of the hybrid VEH with nondimensional form is given.In Section 3,a sparse identification process is developed to solve the sparse coefficients for the hybrid VEH. In Sections 4 and 5, two examples of the hybrid VEH are taken to examine the validity of the devised method.In Section 6,some conclusions are remarked.

    2. Hybrid VEH under noise excitation

    A family of hybrid electromagnetic and piezoelectric energy harvesters are considered as shown in Fig.1. The model is simplified as a mass–spring–damper system in Fig.1(a)coupled with a piezoelectric circuit in Fig.1(b)and an electromagnetic circuit in Fig.1(c)under base acceleration.

    Fig.1. (a)Simplified diagram of a hybrid VEH coupled with(b)a piezoelectric energy harvesting circuit and(c)an electromagnetic circuit.

    The coupling equations of the hybrid energy harvesting system are given by

    Here, ˉX, ˙ˉXand ¨ˉXbdenote the displacement, the velocity and the base acceleration of the massM,respectively. ˉVis the electric voltage measured across the equivalent resistance loadRp.Cpand ˉζ1are the the piezoelectric capacitance and the piezoelectric coupling coefficient.L, ˉIand ˉζ2denote the inductance of the coil, the output current and the electromagnetic coupling coefficient, respectively.RcandResuccessively denote the load resistances of the electromagnetic and the resistance of the coil.f(ˉX)andg(ˉX)represent the damping term and the stiffness term.

    Then,we make the equations dimensionless by means of a transformation[18,39]Here,f(x) andg(x) are the non-dimensional damping force and stiffness term.ζ1,ζ2,λ1andλ2are the non-dimensional coupling coefficients in Eq. (1).μ1is the reciprocal of the product of resistance and capacitance.μ2represents the ratio of resistance and inductance.

    As examples of different external excitation, harmonic excitation and GWN[18,40]are considered in Sections 4 and 5. With the method of stepwise sparse regressor(SSR),[28,41]we devise the method of identified sparse regression to discover the governing equations by learning the coefficients of the formula.

    3. Sparse identification for hybrid VEH

    Drawing on the ideas of machine learning, we combine the least-square sense, SSR algorithm and cross-validation(CV). A sparse identification process is developed to learn the unknown coefficients in the equations. Assume that we have observedNdata points of system state time series of displacement, voltage and output current denoted byX,VandI, respectively. Meanwhile, data pointsX,VandIhave been dimensionless to [x1,x2,x3,...,xN], [v1,v2,v3,...,vN]and[i1,i2,i3,...,iN]at[t1,t2,t3,...,tN]. We transform Eq.(3)into the following differential equations:

    3.1. Learned process of drift term

    In this subsection, we introduce the sparse identification of drift termb=[b1,b2,b3,b4]T. Firstly, we approximate the first-order derivative by using the first-order difference,i.e.,

    The learned results will be better if we select an abundant type of basis functions, while the real workload is enormous and polynomial basis functions are enough precise for most cases.

    By referring to Ref.[42],b2,b3andb4are estimated by using the Kramers–Moyal formula,i.e.,

    where

    However,Eq.(11)may have no solutions due to the equations more than variables. Based on this, we use the least square sense,i.e.,

    whereρ>0 is called as the penalty factor applied in restricting the weight of the sparsity constraint. Due to the meaning of theL1regular,some terms in the solutions will be equal to zero.

    The approach we used to solve Eq. (15) is iterative algorithm SSR together with CV. Compared with the iterative threshold algorithm,[21,27]Lasso,[43]elastic net[44]and matching pursuit,[45]SSR not only can adaptively select the number of iterations and the sparsity level,but also does not needlessly adjust the external parameters like threshold parameterλ. The purposes of CV[46]are the division of data and the selection of optimal parameter. The pipeline works are summarized in Table 1.

    Table 1. The algorithm for sparse identification.

    3.2. Learned process of diffusion term

    For GWN,the diffusion terma22in Eq.(4)is calculated as 2D. Analogously, we construct the basis functionΨ(X).Then,the diffusion term is approximated as

    According to the steps in Table 1, we strengthen the sparse level of the solutionqand the sparse solution ^qis obtained.

    4. Discover equations for a hybrid VEH under harmonic excitation

    4.1. A hybrid VEH under harmonic excitation

    Letf(x) =c4x4+c2x2+c0,g(x) =δ1x+δ3x3+δ5x5[47,48]andD=0. The equations of the system can be expressed as

    4.2. Sparse learning of the system under harmonic excitation

    We set parameters asc0=?0.5,c2=0.5,c4=?0.1,δ1=1,δ3=?3,δ5=1,ζ1=0.5,ζ2=0.5,F=1,μ1=1,λ1=1,μ2=0.5,λ2=1.

    According to Eq.(22),five independent system state trajectories ofNh=105steps each are generated as the observed data by using the method of the fourth order Runge–Kutta.We compute the derivatives ˙X, ˙Y, ˙Vand ˙Iby applying Eq.(6)with the time step ?t=0.001,where the smaller ?t,the higher the accuracy. Then,Kh=27 basis function dictionaryφh(t,X,˙X,V,I)is considered. The specific composition of the dictionary reads as

    The matricesAandBcan be obtained by Eqs.(9),(10)and (12). To avoid under-fitting and over-fitting, 7-fold CV is utilized to select the specific number of iterations on which SSR needs to be run. We have a family of models with the number of iterations as parameter(SSR(0),...,SSR(27)). By performing the algorithm in Table 1,we select the one model that is best to fit the observed datasets. Figures 2(a), 2(b)and 2(c) respectively demonstrate MSE of coefficients learning from Eqs. (22b), (22c) and (22d), wherendenotes the number of non-zero coefficients.

    From Fig.2(a),we can see that whenn<8,the MSE vibrates firstly and then decreases slowly.Subsequently,the part ofn ≥8 is magnified in the upper right of Fig.2(a).The results show that whennchanges from 8 to 9,the mean square error plummets, and then slowly decreases untiln=11. We hold the opinion that the model is under-fitting inn<8 and overfitting inn>11.[28]Analogously,Figs.2(b)and 2(c)show that the number of non-zero coefficients in Eqs.(22c)and(22d)is 2. Thus, for Eq. (22b), we focus onn=9 andn=10. For Eqs.(22c)and(22d),n=2 is the best parameter value.

    Fig.2. MSE from applying SSR algorithm is plotted as a function of solution size n. (a)Eq.(22b);(b)Eq.(22c);(c)Eq.(22d).

    Table 2. Identified coefficients for Eq.(22b).

    The sparse solutions ?uhcan be learned as listed in Tables 2–4. The results indicate that the coefficients learned from the algorithm are similar to the true values,andn=9 is more suitable for Eq.(22b).Furthermore,Figs.3(a)and 3(b)demonstrate the comparisons of learned values and true values with regard to damping forcef(x)and stiffness termg(x),respectively. Figure 4 shows the comparison of time-varying displacement and time-varying voltage from the original system and the learned system.The results show that the true system and the learning system are in good agreement.

    Table 3. Identified coefficients for Eq.(22c).

    Table 4. Identified coefficients for Eq.(22d).

    Fig.3. Comparisons between the learned values and true values of(a)f(x)and(b)g(x).

    Fig. 4. Comparisons of (a) time-varying displacement and (b) timevarying voltage.

    Fig.5. Comparisons between true values and learned values of the b2h. (a)and(b)y=0.5,I=0.5;(c)and(d)y=0.5,V =0.5.

    Fig.6. Comparisons between true and learned functions. (a)and(b)b3h;(c)and(d)b4h.

    Table 5. The learned results of 10 sets data with different ?t and different Nh.

    Since Eq. (23b) is four-dimensional, the figure of equation is impossible to plot intuitively. Thus, we plot the equation as two-dimensional by fitting two state variables. In Figs.5 and 6,comparisons of the true and learnedb2h,b3handb4hare shown to indicate the learning results. Here,Figs.5(a)and 5(c) represent the true functionb2h; Figs. 5(b) and 5(d)represent the learning functionb2h. The two rows of the figures denote the case with(i)y=0.5 andI=0.5; (ii)y=0.5 andV=0.5, respectively. Figures 6(a) and 6(b) are the true functions ofb3handb4h, respectively. Figures 6(c) and 6(d)are the learning functions ofb3handb4h,respectively. The results show that the learning functions agree well with the true functions.

    By referring to Refs.[49–51],we know that as the fluctuations of the estimated parameters are small with the increase of data length,the estimated parameters converge approximately to the true value of the parameters. Then, 10 sets data with different ?tandNhare learned by the sparse identification algorithm. The results from Table 5 demonstrate that for the same time step ?t, the longer the data length, the smaller the standard (Std.) deviation. For the same data lengthNh, the standard deviation decreases as the ?tdecreases. Thus, with an increase of data length and a small time step,the identified coefficients can be close to the true values of the coefficients.

    5. Discover equations for a hybrid VEH under GWN and harmonic excitation

    5.1. A hybrid VEH under GWN and harmonic excitation

    In this section,the parameter values are the same as those in Subsection 4.2, except for the parameter 2D=0.01. We consider a hybrid energy harvester under both GWN and harmonic excitation,i.e.,

    Accordingly, the diffusion terma22=2D, and the drift termbof Eq.(26)can be obtained as

    5.2. Pre-processing of drift term and diffusion term

    For the drift termb,KG=18 basis function dictionaryφG(t,X,˙X,V,I)is given by

    By using the sparse identification algorithm in Table 1,the drift coefficients ?uGcan be solved by

    whereAandBare obtained by Eqs.(9),(10)and(12).

    Analogously,for the diffusion terma22=2D,L=4 basis function dictionaryψ(X)is constructed as

    According to Subsection 3.2,the sparse solution ^qcan be calculated.

    5.3. Sparse learning of the system under GWN and harmonic excitation

    On the basis of Eq. (26), the fourth-order Runge–Kutta[52]is utilized to generate one hundred independent system state trajectories ofNG=105steps. Then, ˙X, ˙Y, ˙Vand ˙Iare approximated numerically by Eq.(6).Through Eqs.(28)and (29),AandBin Eq. (29) are established. Similarly, ^Aand ^Bare obtained via Eqs.(30)and(19).

    Fig.7. The mean MSE of CV for fifty trajectories and each non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Likewise,we use 10-fold CV to find the optimal number of iterations of SSR.For the one hundred trajectories and each the number of non-zero coefficientsn, the mean MSE of 10-fold CV is calculated by performing the algorithm in Table 1.Here,Figs.7(a),7(b),7(c)and 7(d)show the mean MSE of the functionb2G,b3G,b4Ganda22with every trajectories and the number of iterations. Then,to judge the number of iterations,we choose the optimal trajectory which has a minimum MSE in all average MSE. Figures 8(a), 8(b), 8(c) and 8(d) are the MSE of the functionsb2G,b3G,b4Ganda22. From Fig.8(a),the MSE has large fluctuations inn<4 and small fluctuations inn ≥4. The part ofn ≥7 is amplified in the upper right of Fig.8(a). It can be seen that the MSE decreases sharply fromn=8 ton=9 and fluctuates aftern>10. Meanwhile, the minimum MSE of the trajectory is acquired inn=10. Thus,we conclude that the best number of iterations isKG?9 orKG?10 in drift functionb2G,i.e.,n=9 orn=10. Due to the feature ofb2G,we only considern=9. Similarly according to the above analysis,because of the minimum MSE corresponding to then, the number of optimal non-zeros coefficients of the functionsb3G,b4Ganda22aren=2,n=2 andn=1,respectively. Differently,in Fig.8(d),we choosen=1 becausen=0 does not satisfy the existence of white noise in Eq.(25).

    In the following,from the sparse identification algorithm in Table 1, we learn the coefficients ofb2G,b3G,b4Ganda22usingKG?9,KG?2,KG?2 andL?1 iterations,respectively.With the application of the optimal trajectory and 10-fold CV,the learned results are shown in Tables 6,7,8 and 9 correspond tob2G,b3G,b4Ganda22,respectively.

    Fig.8. The MSE of optimal trajectory with non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Table 6. Identified coefficients for b2G.

    Table 7. Identified coefficients for b3G.

    Table 8. Identified coefficients for b4G.

    Table 9. Identified coefficients for a22.

    We show intuitively the learned results in Figs.9–11. Figure 9 demonstrates the fitting situation of the functionsf(x)andg(x). Figure 10 represents the comparison of the original system and the learned system in time-varying displacementx(t)and voltageV(t). It can be seen that compared with the true coefficients, the learned coefficients have slight deviation within an acceptable range.

    Fig.9. Comparisons between the learned values and true values of(a) f(x)and(b)g(x).

    Fig.10. Comparisons of(a)time-varying displacement and(b)time-varying voltage.

    Fig.11. Comparisons between true and learned functions. (a)and(b)b3G;(c)and(d)b4G.

    Then, the results of comparison between true values and learned values with respect tob3Gandb4Gare shown in Fig.11.Figures 11(a) and 11(b) are the true functions ofb3Gandb4G, respectively. Figures 11(c) and 11(d) are the learning functions ofb3Gandb4G, respectively. The true and learned results of functionb2Gare displayed in three partsx–V,x–Iandx–t. We demonstrate the equation in two-dimensional due to the dimension ofb2Gmore than two. Figures 12(a)–12(e)represent the true results. Figures 12(b)–12(f)represent the learned results. The three rows of the figures describe the case with(i)y=0.5,I=0.5 andt=10;(ii)y=0.5,V=0.5 andt=10;(iii)y=0.5,V=0.5 andI=0.5,respectively. It can be seen that the coefficients learned from the sparse identification algorithm have good enough accuracy.

    Fig. 12. Comparisons between true values and learned values of the b2G. (a) and (b) y=0.5, I =0.5,t =10; (c) and (d) y=0.5,V =0.5,t=10;(e)and(f)y=0.5,V =0.5,I=0.5.

    Above all,the hybrid energy harvesting system identified by sparse identification is consistent enough with the real system.

    6. Conclusion

    In this paper,a sparse identification approach was developed to acquire the governing equations of the hybrid energy harvesting system from the simulated sample state data. Two examples were taken to verify the feasibility and effectiveness of the method.

    To begin with,a hybrid energy harvester under harmonic excitation was the first example. Through approximating derivatives by the first-order difference and constructing the basis functions dictionary,we obtained the expressions of differential equations of the system,which are equal to the linear combination of basis functions. Then,for the number of nonzero coefficientsnand each sample trajectory, 7-fold crossvalidation(CV)was applied to prevent under-fitting and overfitting by observing the variations of MSE.Removing the situations of under-fitting and over-fitting,we selectedn=9,n=2 andn=2 for the differential equations ˙y, ˙Vand ˙I,respectively.After solvingAu=Bby using the sparse identification algorithm,we learned the unknown coefficients,and discussed the degree of fitting.The results showed that the method is applied to solve the coefficients which are sufficiently accurate to the true functions,and all the learned coefficients are greatly converge to the true coefficients with the increase of data length under a small time step.Thus,this method can be well utilized to the deterministic hybrid energy harvesting system.

    A hybrid energy harvester under both harmonic excitation and Gaussian white noise was the second example. Firstly,we received the approximated equations of the drift term and diffusion term based on the Kramers–Moyal formulas. According to the basis function dictionary,we calculated the iterative expressions of the drift term and diffusion term, respectively.Together with the 10-fold CV, the sparse identification algorithm was used to obtain the number of optimal non-zero coefficientsn=9,n=2,n=2 andn=1 corresponding to the functions ofb2G,b3G,b4Ganda22, respectively. According to the comparison of learned functions and true functions,the results demonstrated that the method is well applied to the hybrid energy harvesting system with an acceptable deviation.Meanwhile, compared with the first example, the second example depends on more sufficient data to reduce the effect of the noise.

    Thus,measuring the time-series data of the system state,we can build the equations for the hybrid energy harvester.Then,the learned system can be applied to explore the subsequent dynamical behavior with the aim of the improvement of performance of the energy harvester.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12002089 and 11902081) and Project of Science and Technology of Guangzhou (Grant No.202201010326).

    午夜福利在线观看吧| 欧美区成人在线视频| 国产黄频视频在线观看| xxx大片免费视频| 好男人视频免费观看在线| 免费看日本二区| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 亚洲精品视频女| 国产精品一及| 午夜免费激情av| 九九爱精品视频在线观看| 国产精品99久久久久久久久| 街头女战士在线观看网站| 床上黄色一级片| 欧美成人a在线观看| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 亚洲va在线va天堂va国产| 国产黄色视频一区二区在线观看| 嘟嘟电影网在线观看| 黄色欧美视频在线观看| 大话2 男鬼变身卡| 亚洲av福利一区| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 天天一区二区日本电影三级| 国产三级在线视频| 校园人妻丝袜中文字幕| 国产乱来视频区| a级一级毛片免费在线观看| 国产精品一区二区性色av| 亚洲精品乱久久久久久| 午夜福利在线观看吧| 日本三级黄在线观看| 免费无遮挡裸体视频| 美女大奶头视频| 成人漫画全彩无遮挡| 一级黄片播放器| 国产午夜精品一二区理论片| 22中文网久久字幕| 激情五月婷婷亚洲| 欧美3d第一页| 色5月婷婷丁香| 中文天堂在线官网| 狂野欧美激情性xxxx在线观看| 能在线免费观看的黄片| 亚洲精华国产精华液的使用体验| 神马国产精品三级电影在线观看| 国产综合精华液| a级毛色黄片| kizo精华| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 日日啪夜夜爽| 久久久久久久亚洲中文字幕| 中文字幕av在线有码专区| 在线播放无遮挡| 久久久久免费精品人妻一区二区| 十八禁网站网址无遮挡 | 在线a可以看的网站| 中文天堂在线官网| 亚洲成人中文字幕在线播放| 九九久久精品国产亚洲av麻豆| 夫妻午夜视频| 日本免费a在线| 精品久久久精品久久久| 免费看av在线观看网站| 国产成人a区在线观看| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 国产成人精品婷婷| 精品欧美国产一区二区三| 国产日韩欧美在线精品| 国产永久视频网站| 亚洲精品国产成人久久av| 国产乱来视频区| 亚洲,欧美,日韩| 国产午夜精品久久久久久一区二区三区| 欧美性感艳星| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 亚州av有码| 五月天丁香电影| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区性色av| 2018国产大陆天天弄谢| 国产69精品久久久久777片| 麻豆成人av视频| 久久国产乱子免费精品| 亚洲综合精品二区| 中文字幕av在线有码专区| 免费高清在线观看视频在线观看| 嫩草影院新地址| 中文字幕亚洲精品专区| 成年女人看的毛片在线观看| 一级片'在线观看视频| 熟女人妻精品中文字幕| 久久久久久久久中文| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 久热久热在线精品观看| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影| 大香蕉97超碰在线| 亚洲精品一二三| 午夜福利在线在线| 久久午夜福利片| 日本一本二区三区精品| 汤姆久久久久久久影院中文字幕 | 精品久久久噜噜| 两个人的视频大全免费| 免费大片18禁| 极品少妇高潮喷水抽搐| 日韩一本色道免费dvd| 激情 狠狠 欧美| 成年免费大片在线观看| 全区人妻精品视频| or卡值多少钱| 别揉我奶头 嗯啊视频| 国产av码专区亚洲av| 中文精品一卡2卡3卡4更新| 国产人妻一区二区三区在| 国产又色又爽无遮挡免| www.色视频.com| 一本一本综合久久| 99re6热这里在线精品视频| 26uuu在线亚洲综合色| 精品久久久精品久久久| 波多野结衣巨乳人妻| av播播在线观看一区| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 色综合站精品国产| 午夜免费激情av| 成人美女网站在线观看视频| 国产老妇女一区| 高清日韩中文字幕在线| 日韩 亚洲 欧美在线| 久久久久久久久久成人| 日韩欧美三级三区| 一级av片app| 人人妻人人澡人人爽人人夜夜 | 亚洲av男天堂| 久久人人爽人人片av| 国内精品一区二区在线观看| 亚洲精品色激情综合| 最近的中文字幕免费完整| 伦精品一区二区三区| 婷婷六月久久综合丁香| 午夜激情福利司机影院| 精品国产露脸久久av麻豆 | 蜜桃久久精品国产亚洲av| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 天堂俺去俺来也www色官网 | 国产成人a∨麻豆精品| av在线老鸭窝| 蜜臀久久99精品久久宅男| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频| 午夜福利网站1000一区二区三区| 一区二区三区四区激情视频| 美女被艹到高潮喷水动态| 久久国产乱子免费精品| 亚洲欧美中文字幕日韩二区| 欧美激情久久久久久爽电影| 丰满乱子伦码专区| 又爽又黄a免费视频| 中文天堂在线官网| 国产免费视频播放在线视频 | or卡值多少钱| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 亚洲内射少妇av| 美女高潮的动态| 精品国产一区二区三区久久久樱花 | 可以在线观看毛片的网站| 国产黄频视频在线观看| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 又大又黄又爽视频免费| 亚洲国产精品成人久久小说| 亚洲av二区三区四区| 九色成人免费人妻av| 干丝袜人妻中文字幕| 亚洲成人av在线免费| 一级a做视频免费观看| 国产精品蜜桃在线观看| 国产爱豆传媒在线观看| 一级毛片我不卡| 可以在线观看毛片的网站| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 欧美日韩视频高清一区二区三区二| 国产综合懂色| 街头女战士在线观看网站| 亚洲欧美清纯卡通| 久久亚洲国产成人精品v| 亚洲怡红院男人天堂| 久99久视频精品免费| 亚洲色图av天堂| 97在线视频观看| av线在线观看网站| 男女啪啪激烈高潮av片| 禁无遮挡网站| 白带黄色成豆腐渣| 18禁在线播放成人免费| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 最后的刺客免费高清国语| 国产成人午夜福利电影在线观看| 久久久久久久久久黄片| 精品久久久久久成人av| av播播在线观看一区| 毛片女人毛片| 国产黄片美女视频| 一夜夜www| 国产色婷婷99| 五月伊人婷婷丁香| 少妇熟女欧美另类| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 亚洲怡红院男人天堂| 99热全是精品| 一区二区三区高清视频在线| 久久久久九九精品影院| 成年版毛片免费区| 久久综合国产亚洲精品| 99久久精品一区二区三区| 国产不卡一卡二| 少妇人妻精品综合一区二区| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 91狼人影院| 97超视频在线观看视频| 熟妇人妻不卡中文字幕| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 最近最新中文字幕大全电影3| 美女大奶头视频| 国产人妻一区二区三区在| .国产精品久久| 美女xxoo啪啪120秒动态图| 国产高清三级在线| 亚洲综合色惰| 午夜精品国产一区二区电影 | 少妇丰满av| 国产精品熟女久久久久浪| 岛国毛片在线播放| 搡老妇女老女人老熟妇| 80岁老熟妇乱子伦牲交| 午夜激情久久久久久久| 真实男女啪啪啪动态图| 菩萨蛮人人尽说江南好唐韦庄| 美女高潮的动态| 欧美精品一区二区大全| 老司机影院成人| 少妇高潮的动态图| 国产黄色小视频在线观看| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 嘟嘟电影网在线观看| 日韩av在线免费看完整版不卡| 国产在视频线精品| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 欧美另类一区| 久久久精品免费免费高清| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 三级毛片av免费| 亚洲欧美一区二区三区黑人 | 看十八女毛片水多多多| 国产精品国产三级专区第一集| 日韩在线高清观看一区二区三区| 成人毛片60女人毛片免费| 精品午夜福利在线看| 人妻少妇偷人精品九色| 免费少妇av软件| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 午夜视频国产福利| 精品国产一区二区三区久久久樱花 | 国产不卡一卡二| 婷婷色综合www| 免费人成在线观看视频色| 只有这里有精品99| 毛片一级片免费看久久久久| 久久久久久久久久久丰满| 在线天堂最新版资源| 久久久精品94久久精品| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 亚洲成人久久爱视频| 国产成人freesex在线| 久久这里只有精品中国| 在线免费观看不下载黄p国产| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 精品国产一区二区三区久久久樱花 | 99视频精品全部免费 在线| 69av精品久久久久久| 人妻一区二区av| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 乱码一卡2卡4卡精品| 亚洲国产av新网站| 亚洲精品一区蜜桃| 高清日韩中文字幕在线| 观看免费一级毛片| 日韩三级伦理在线观看| 国产成人精品一,二区| 美女国产视频在线观看| videos熟女内射| 日韩制服骚丝袜av| 国产在视频线在精品| 婷婷六月久久综合丁香| 99热这里只有精品一区| 日本wwww免费看| 欧美日韩亚洲高清精品| 又大又黄又爽视频免费| 99久久人妻综合| 国产不卡一卡二| 成人av在线播放网站| 亚洲精品456在线播放app| 久久99热6这里只有精品| 一个人看视频在线观看www免费| 草草在线视频免费看| 久久国内精品自在自线图片| 免费人成在线观看视频色| 欧美日韩一区二区视频在线观看视频在线 | av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 99视频精品全部免费 在线| 国产成年人精品一区二区| 午夜激情福利司机影院| 九草在线视频观看| 男女国产视频网站| 麻豆乱淫一区二区| 国产乱人视频| 大香蕉97超碰在线| 国产又色又爽无遮挡免| 美女国产视频在线观看| 狠狠精品人妻久久久久久综合| 自拍偷自拍亚洲精品老妇| 国内精品宾馆在线| 尾随美女入室| 精品一区二区免费观看| 水蜜桃什么品种好| 人体艺术视频欧美日本| 69av精品久久久久久| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 中文字幕免费在线视频6| 在线观看av片永久免费下载| 精品久久久精品久久久| 久久久久久久久久成人| 免费不卡的大黄色大毛片视频在线观看 | 天堂影院成人在线观看| 国产精品福利在线免费观看| 简卡轻食公司| 亚洲欧美一区二区三区黑人 | 在线 av 中文字幕| av天堂中文字幕网| 一级毛片电影观看| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 久久精品夜色国产| 精品熟女少妇av免费看| av卡一久久| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| videos熟女内射| 街头女战士在线观看网站| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区 | 天堂网av新在线| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 一级片'在线观看视频| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 免费黄网站久久成人精品| 日韩中字成人| 亚洲精品中文字幕在线视频 | 街头女战士在线观看网站| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 男人和女人高潮做爰伦理| .国产精品久久| 午夜福利视频精品| 国产精品一区二区三区四区免费观看| 床上黄色一级片| 能在线免费观看的黄片| 亚洲色图av天堂| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 欧美bdsm另类| 建设人人有责人人尽责人人享有的 | 国产一区二区在线观看日韩| 成年免费大片在线观看| 日本免费在线观看一区| 色播亚洲综合网| 久久久欧美国产精品| 国产精品国产三级国产av玫瑰| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 精品久久久精品久久久| 国产伦在线观看视频一区| 亚洲av成人av| 久久久久久久久久久丰满| 欧美日韩在线观看h| 午夜激情欧美在线| 亚洲av日韩在线播放| 日韩欧美精品免费久久| 免费看光身美女| 欧美日韩视频高清一区二区三区二| 黄色配什么色好看| 性色avwww在线观看| 日本-黄色视频高清免费观看| 中国美白少妇内射xxxbb| 有码 亚洲区| 91狼人影院| 亚洲国产精品成人综合色| 国产熟女欧美一区二区| 国产麻豆成人av免费视频| 国产午夜精品久久久久久一区二区三区| 亚洲av电影不卡..在线观看| 黑人高潮一二区| 国产伦精品一区二区三区四那| 舔av片在线| 色综合色国产| 男人和女人高潮做爰伦理| 婷婷色麻豆天堂久久| 国产v大片淫在线免费观看| 黄片wwwwww| 精品人妻一区二区三区麻豆| 九色成人免费人妻av| 国产伦在线观看视频一区| 欧美激情在线99| 久久久久久久久久成人| 亚洲国产最新在线播放| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 久久久a久久爽久久v久久| 一级毛片电影观看| www.av在线官网国产| 亚洲精品国产av成人精品| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 亚洲av男天堂| 午夜免费男女啪啪视频观看| 两个人视频免费观看高清| 国产熟女欧美一区二区| 亚洲精品第二区| 少妇被粗大猛烈的视频| 午夜精品一区二区三区免费看| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 99久久精品国产国产毛片| 国产乱人视频| 久久久久久久国产电影| 久久久国产一区二区| 麻豆成人av视频| 日韩欧美精品免费久久| 亚洲av中文av极速乱| 国产精品蜜桃在线观看| 亚洲国产欧美在线一区| 久久久久免费精品人妻一区二区| 欧美成人一区二区免费高清观看| av网站免费在线观看视频 | 国产永久视频网站| 午夜福利成人在线免费观看| 欧美精品国产亚洲| 日韩国内少妇激情av| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 精品亚洲乱码少妇综合久久| 一级a做视频免费观看| 亚洲欧美日韩东京热| 毛片女人毛片| 国产一区二区三区av在线| 在线观看人妻少妇| 欧美性猛交╳xxx乱大交人| 波野结衣二区三区在线| 乱系列少妇在线播放| 久久国产乱子免费精品| 国产成人精品一,二区| 国产精品女同一区二区软件| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| 久久久久精品久久久久真实原创| 成人一区二区视频在线观看| 一区二区三区四区激情视频| 永久免费av网站大全| 婷婷色av中文字幕| 精品午夜福利在线看| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产精品无大码| 男女那种视频在线观看| 视频中文字幕在线观看| 亚洲欧美一区二区三区黑人 | 久久久久精品久久久久真实原创| 一级毛片aaaaaa免费看小| av在线播放精品| 大话2 男鬼变身卡| 女的被弄到高潮叫床怎么办| 九色成人免费人妻av| 欧美激情久久久久久爽电影| 成人av在线播放网站| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 免费观看性生交大片5| 成年女人看的毛片在线观看| 久久草成人影院| 国产男人的电影天堂91| 十八禁网站网址无遮挡 | 亚洲精品久久久久久婷婷小说| 九九爱精品视频在线观看| 国产亚洲午夜精品一区二区久久 | 免费看a级黄色片| 老女人水多毛片| 偷拍熟女少妇极品色| 精品熟女少妇av免费看| 99久国产av精品| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 51国产日韩欧美| 男女下面进入的视频免费午夜| 亚洲丝袜综合中文字幕| 色播亚洲综合网| 中文字幕av成人在线电影| 亚洲美女搞黄在线观看| 亚洲最大成人av| 在线天堂最新版资源| 99热这里只有是精品在线观看| 草草在线视频免费看| 亚洲欧美成人精品一区二区| 一级毛片我不卡| 91aial.com中文字幕在线观看| 99热这里只有是精品50| 亚洲精品久久午夜乱码| 1000部很黄的大片| 欧美成人午夜免费资源| 综合色av麻豆| 一级毛片黄色毛片免费观看视频| a级毛色黄片| 亚洲自偷自拍三级| 国产精品一区二区三区四区免费观看| 51国产日韩欧美| 我的女老师完整版在线观看| 精品少妇黑人巨大在线播放| 亚洲欧美中文字幕日韩二区| 日本wwww免费看| 亚洲无线观看免费| 国产老妇伦熟女老妇高清| 免费播放大片免费观看视频在线观看| 国产精品人妻久久久久久| 午夜福利视频1000在线观看| 久久国产乱子免费精品| 天堂av国产一区二区熟女人妻| 成人无遮挡网站| 亚洲欧美精品专区久久| 啦啦啦韩国在线观看视频| 毛片一级片免费看久久久久| av在线观看视频网站免费| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 神马国产精品三级电影在线观看| 亚洲人成网站高清观看| 国产免费视频播放在线视频 | 成年免费大片在线观看| 搡女人真爽免费视频火全软件| 国产一区有黄有色的免费视频 | 色尼玛亚洲综合影院| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 日本与韩国留学比较| 亚洲不卡免费看| 床上黄色一级片| 成人高潮视频无遮挡免费网站| 老司机影院成人| 哪个播放器可以免费观看大片| 久久久久久久亚洲中文字幕| 亚洲精品国产成人久久av| 白带黄色成豆腐渣| 国产淫片久久久久久久久|