• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel hyperchaotic map with sine chaotification and discrete memristor

    2022-12-28 09:52:50QiankunSun孫乾坤ShaoboHe賀少波KehuiSun孫克輝andHuihaiWang王會海
    Chinese Physics B 2022年12期
    關(guān)鍵詞:乾坤

    Qiankun Sun(孫乾坤), Shaobo He(賀少波), Kehui Sun(孫克輝), and Huihai Wang(王會海)

    School of Physics and Electronics,Central South University,Changsha 410083,China

    Keywords: discrete memristor,hyperchaotic map,cascade,pseudo-random number generator

    1. Introduction

    Memristor was proposed by Professor Chua in 1971 according to the completeness of circuit theory.[1]It represents the relationship between charge and magnetic flux.Later, Professor Chua put forward the concept of generalized memristor.[2]However, since it only stayed at the theoretical level at that time,the memristor had not made much progress.Until 2008, HP laboratory firstly reported the real memristor device,[3]which ignited an upsurge of research. Memristor is a nonlinear element with internal state that is completely different from the traditional circuit element,and it can be used to construct circuits with complex chaotic oscillations.[4]Moreover, memristor attracted extensive attention in the scientific community,and was applied in nanotechnology,[5,6]electrical engineering,[7,8]neural network,[9,10]image processing,[11,12]and so on.

    It should be noticed that most studies on memristive chaotic systems are limited to the continuous-time domain.[13–17]Comparing with continues memristor, the discrete memristor is more suitable for digital circuits and discrete chaotic maps,which is easily implemented by hardware circuits, and the discrete chaotic maps avoid the disadvantage that the results are difficult to repeat due to the sensitivity of chaos. The design of discrete memristive chaotic maps is a new topic. Heet al.designed an integer-order discrete memristor model and introduced it into several typical chaotic maps.[18,19]Meanwhile,a fractional-order discrete memristor was proposed based on the fractional difference theory and it was added to the Sine function.[20]In 2022, Zhuet al. reviewed the existing memristive elements, including integerorder and fractional-order memristive systems, and analyzed their similarities and differences.[21]Baoet al.reported a new second-order discrete memristive hyperchaotic map.[22]Wanget al. constructed a memristor model and used it to simulate a synaptic connection in a Hopfield neural network.[23]In 2021, Fuet al. established the Simulink model of discrete memristive chaotic map and furtherly verified the feasibility of discrete memristor.[24]In addition,many interesting phenomena, such as coexisting attractors,[25–27]hidden attractors,[28]and multistability,[29]were discovered in memristive chaotic maps and the chaotic maps were used in secure communication successfully.[30,31]

    Over the past few years, many people were devoted to the work of enhancing chaos. Huaet al. designed several new chaotic maps by cascading and coupling methods.[32–34]Theoretical verification and experimental results showed that the Lyapunov exponent and chaotic interval were much larger than that of subsystems. Moreover, Huaet al. obtained a high-dimensional Cat map by using a one-dimensional Cat map.[35]Zhenget al. studied chaos by adding a state feedback controller.[36]Yuanet al. designed a cascade memristive chaotic map,[37]but they did not make the internal variables store in the system, and with the increase of cascade times, the total dimension of the generated map did not increase.Inspired by the above discussions,we focus on designing high-dimensional hyperchaotic maps by using the discrete memristor. The rest of this paper is arranged as follows. In Section 2, the quadratic discrete memristor and the memristive chaotic map is presented. In Section 3,the chaotification method and the higher dimensional hyperchaotic map are designed. In Section 4,the dynamical behaviors are analyzed. In Section 5, the NIST test is presented. Finally, we summarize this paper and indicate the future work.

    2. The quadratic memristive hyperchaotic map

    2.1. The quadratic discrete memristor

    According to the definition of continuous-time memristor,the charge controlled memristor is defined by[35]

    wherev(t) andi(t) are the voltage and the current respectively.M(q(t))represents the resistance function, andq(t)is the amount of charge. The relationship betweenq(t)andi(t)is defined by

    By introducing the difference theory,the discrete memristor is designed as

    wherevnandqnrepresent the values ofv(t)andq(t)at then-th iteration,and the equationqn+1=qn+kinis deduced as

    Thus, it demonstrates that the current state of the discrete memristor depends on all of the past states. Here, we chooseM(qn) as the quadratic functionq2n ?1, and equation (3) becomes to

    wherekis the internal control parameter.Here,we setk=0.8.

    To verify whether the memristor satisfies the definition of a memristor,we add a sinusoidal voltage signalIn=Asin(ωn)to it. The changes of the voltage and the current sequences are shown in Fig. 1(a). The phase diagrams ofvn–inwith the variation ofA,ω, and the initial valuem0are shown in Figs.1(b),1(c),and 1(d)respectively.It indicates that this discrete memristor meets the three fingerprints of a generalized memristor.[39]

    Fig.1. The sequences of vn,in,and the three fingerprints of the memristor: (a)the sequences of vn,in,A=0.01,ω=3,m0=1.3 and the three fingerprints of the memristor when(b)ω =5,m0=0.01,A=0.12,0.2,0.3,and(c)A=0.3,m0=0.01,ω =1,2,3 and(d)ω =1,A=0.1,m0=0.01,2,5.

    2.2. The quadratic memristive chaotic map

    In the discrete memristor, denoteinas the input for then-th iteration andvnas the output and the next input of the iteration. The quadratic memristive chaotic map (QMCM)[40]is presented as

    whereμandkare the control parameters.xn+1is the output variable,andyn+1is the internal state variable. The block diagram of QMCM is presented in Fig. 2(a). When the parameters are set asμ= 1.76,k= 0.8 with the initial values (x1,y1)=(?0.5,0.3), the maximum Lyapunov exponent(MLE)is 0.2384,which indicates it is in the chaotic state. The attractor is plotted in Fig.2(b).

    Fig. 2. The block diagram and the attractor of QMCM. (a) The block diagram and(b)the attractor whenμ =1.76,k=0.8.

    3. The cascaded memristive hyperchaotic map

    3.1. The chaotification methods

    Sine chaotification method(SCM)has been proven to be effective in expanding the chaotic range and increasing the chaotic complexity.[34,41]The principle of SCM is to transform the output of a chaotic map with the sine function, and the mathematical equation of SCM is expressed as

    whereλis the control parameter.

    Cascade chaotification method (CCM) which connects two chaotic maps in series is shown to make the chaotic map be more unpredictable and have larger parameter interval. The output ofG(x)is used as the input ofF(x). The mathematical expression is

    Finally,we delay the output of the previous seed mapxn+1to getxn, and then takexnas the input of the next seed map.The state variableyn+1is stored in the memristor. It is worth mentioning that the functions of the resistance can be the same or different to generate different maps.

    According to SCM, we takexn+1in Eq. (8) as the input of the sine function,and get the sine-quadratic memristive hyperchaotic map(S-QMHM).Thus,the seed map is expressed as

    whereεandμare the external control parameters,andkis the internal control parameter. We set them toμ=1.78,k=0.8,and get the attractors with differentε,which is shown in Fig.3.Whenε= 2.1131, the MLE is?0.2338, and the map exhibits a periodic state. Asε=2.3755, the map has one positive Lyapunov exponent equal to 0.3014, which means it is in the chaotic state, and it is in the hyperchaotic state whenε=2.2801 with two positive Lyapunov exponents.

    Fig.3. Different attractors of S-QMHM:(a)ε =2.1131,period;(b)ε =2.3755,chaos;and(c)ε =2.2801,hyperchaos.

    The structure of the cascaded S-QMHM is presented in Fig.4. For thei-th iteration,xi(0)is input into DM1,and then goes through the sine function and the delay unit to getxi(1).The obtained sequencexi(1)is used as the input of the second memristor DM2, and then goes through the sine function and the delay unit to getxi(2). In the same way, we finally getxi(m). So far, a complete iteration is completed. In the next iteration,xi(m) will be used as the initial valuexi+1(0). Besides,yi(n)(n=1,2,3,...,m)is stored in each memristor as an internal variable.

    Fig.4. The block diagram of the cascaded S-QMHM.

    3.2. The higher dimensional hyperchaotic map

    Whenmseed maps are cascaded,the mathematical model is defined by

    whereε1,ε2, ...,εm,μ1,μ2, ...,μmare the output control parameters,andk1,k2,...,kmare the internal control parameters.Mi(yi(n))depends on the different resistance functions of the memristor.It exhibits that the cascaded chaotic map withmseed maps can produce a 2m-dimensional hyperchaotic map,which shows great potential of building high-dimensional hyperchaotic maps.

    4. Dynamics analysis

    4.1. Dynamics in the cascaded hyperchaotic map with two seed maps

    4.1.1. The system model

    Using the chaotification method proposed in Subsection 3.1 and the seed map in Subsection 3.2, we design the cascaded 2-sine-quadratic memristive hyperchaotic map(2-SQMHM) which contains two seed maps. The mathematical model is

    and the block diagram is shown in Fig.5.

    We set the parameters toε1=1.9,ε2=2.28,μ1=μ2=1.78,k1=k2=0.8,and the initial values(x1(1),x2(1),y1(1),y2(1)) = (0.3,?0.1,0.5,0.2). The number of iterationnis set to 4×105,and the numerical results show that the MLE is 8.8272.The attractor is shown in Fig.6,and it exhibits that the sequence has a wide distribution in three-dimensional space.

    Fig.5. The block diagram of 2-S-QMHM.

    Fig.6. The attractor of 2-S-QMHM.

    4.1.2. Fixed point analysis

    According to the Jacobian matrix and the fixed points expressionF=(0,yi)of 2-S-QMHM(i=1,2,andyiis an arbitrary real constant). The characteristic matrix of 2-S-QMHM is

    The eigenvalues are thereby calculated asλ1=1,λ2=1,λ3=(ε1ε2μ1μ2(y12?1)(y22?1))1/2,λ4=?λ3. Therefore,these eigenvalues are related to the parametersε1,ε2,μ1,μ2and the initial statey1andy2. Sinceλ1andλ2always lie on the unit circle,the fixed point is critical stable when the absolute value ofλ3andλ4are not greater than 1. Otherwise,the fixed point is unstable.

    4.1.3. Lyapunov exponent and bifurcation

    To show the dynamics of the proposed maps clearly, bifurcation diagram and Lyapunov exponents spectra(LEs)are used. We analyze the dynamical behaviors of the seed map and 2-S-QMHM. Noting that all LEs are iterated calculated 4×105times.

    When the initial values are set to(x0,y0)=(0.3,0.5)andk=0.8,the LEs and bifurcation diagram of the seed map varying withε,μare shown in Fig.7. It shows that whenε ∈(2.1,2.4) andμ ∈(0.5, 2.5), the map shows chaotic and hyperchaotic behavior. However,the length of the interval is small and there are many periodic windows. In practical applications,the value of the parameters that make the system appear periodic state should be avoided.

    Similarly, the initial values of 2-S-QMHM are set to(x1(0), x2(0), y1(0), y2(0)) = (0.3, ?0.1,0.5,0.2), andk1=k2=0.8. The LEs and bifurcation diagram varying withε1,μ1are shown in Fig. 8. At the range of (0, 5), there are three positive Lyapunov exponent within most of the interval,and two of them reach around 10. It is worth mentioning that the value of Lyapunov exponents still tends to become larger as the parameter increases. The other positive Lyapunov exponent oscillates around 0.01. Although the value is relatively small,it remains positive. Besides,the number of period window is reduced comparing to the seed map,making the system more stable.

    Fig.7. LEs and bifurcation diagram of the seed map. When μ =1.78, (a)LEs versus ε ∈(2.1, 2.4), (b)bifurcation diagram versus ε ∈(2.1, 2.4)and when ε =2.28,(c)LEs versusμ ∈(0.5,2.5),(d)bifurcation diagram versusμ ∈(0.5,2.5).

    Fig.8. LEs and bifurcation diagram of 2-S-QMHM.When ε2=2.9,μ1=μ2=1.78,(a)LEs versus ε1 ∈(0,5),(b)bifurcation diagram versus ε1 ∈(0,5)and when ε1=3,ε2=2.28,μ2=1.78,(c)LEs versusμ1 ∈(0,5),(d)bifurcation diagram versusμ1 ∈(0,5).

    4.2. Dynamics in the higher-order cases

    When 5 seed maps are cascaded,the LEs and bifurcation diagram varying withε1,μ1are shown in Fig.9. Comparing with Fig.8 for 2-S-QMHM,we see that 5-S-QMHM has more positive LEs and a larger hyperchaotic interval.

    Table 1. the number of positive LEs and the MLE with cascade times.

    As analyzed above, a 2m-dimensional chaotic map is generated by cascadingmseed maps. We set the parameters here to be the same as the seed map. By the simulation experimental research, the cascaded hyperchaotic map hasm+[(m+1)/2] positive LEs ([(m+1)/2] represents the largest integer no more than(m+1)/2). Among these LEs,mexponents oscillate around 10,and the remaining[(m+1)/2]exponents keep positive despite their small values. Table 1 lists the number of positive Lyapunov exponent and the MLE with cascade times. Moreover,in the chaotic interval,changes in the parameters and the initial values do not affect the number of positive Lyapunov exponents.

    Fig.9. LEs and bifurcation diagram of 5-S-QMHM.(a)LEs versus ε1∈(0,5)and(b)bifurcation diagram versus ε1∈(0, 5)and(c)LEs versus μ1∈(0,5)and(d)bifurcation diagram versusμ1∈(0,5).

    4.3. Sample entropy complexity analysis

    Complexity is an indicator to measure the proximity of the chaotic sequence to the random sequence. The higher the complexity, the more random the chaotic sequence. We use the sample entropy algorithm to measure the complexity of these chaotic maps due to its high accurate in the statistical assessment of complexity.[42]

    Fig. 10. Sample entropy of 2-S-QMHM with ε1, μ1, k1: (a) ε2 =2.9, μ1 =μ2 =1.78, k1 =k2 =0.8, ε1 ∈(0,5); (b) ε1 =3, ε2 =2.28, μ2 =1.78,k1=k2=0.8,μ1 ∈(0,5);and(c)ε1=3,ε2=2.9,μ1=μ2=1.78,k2=0.8,k1 ∈(0,5).

    Fig.11. Sample entropy of the seed map,2-S-QMHM,and 3-S-QMHM:(a)the seed map(ε,μ)and(b)2-S-QMHM(ε1,μ1),and(c)3-S-QMHM(ε1,μ1).

    In the following experiments, sample entropy of 2-SQMHM is calculatedversus ε,μ, andk. As it is shown in Fig. 10, sample entropy holds a small value in periodic windows and it remains greater than 2.2 in most range. In addition,the complexity of the seed map,2-S-QMHM,and 3-SQMHM are shown in Fig.11,and it shows that the region with high complexity of the seed map is small. With the increase of cascade times,the high-complexity range gradually expands.

    The sample entropy of the seed map, 2-S-QMHM,3-S-QMHM, DM-based H′enon map,[18]DM-based cosine map,[43]and DM-based logistic map[33]are shown in Fig.12.Obviously,3-S-QMHM has larger sample entropy than that of other memristive chaotic maps.

    Fig. 12. Sample entropy of seed map(ε), 2-S-QMHM (ε1), 3-S-QMHM(ε1), DM-based H′enon map(a/2+0.5), DM-based cosine map(γ/2), and DM-based logistic map(k/2).

    5. Pseudo-random sequence generator

    Pseudo-random sequence generator is one of the main applications of chaotic map. It is worth noting that the quantization algorithm is an important factor which affects the operation efficiency. For a chaotic sequencebgenerated by 2-SQMHM, the quantization algorithm we adopt is described as follows:[44]

    In this way,a sequence with a length of 8Nis obtained afterniterations. In addition,two different quantization methods are adopted to switch,which increases the complexity and further improves the performance on the basis of little impact on the time efficiency.

    As for 2-S-QMHM, we set the parameters toε1= 2,ε2=2.28,μ1=μ2=1.78,k1=k2=0.8,and the initial values(x1(0), x2(0), y1(0), y2(0))=(0.3, ?0.1,0.5,0.2),then assess the randomness of the generated chaotic sequences by the NIST test. It includes 15 test indicators,and each indicator has two judgment bases, namely, pass rate andp-value. We set the significant levelα=0.01,and number of test sequence groupβ=100,and the length of each test sequence to 64. If the results meet the following two conditions at the same time,the sequences pass the NIST test.

    (i)The pass rate of the test results is all within the confidence interval.

    (ii)Thep-value is greater than 0.0001.

    In addition, the larger thep-value, the better the random performance. The test results are shown in Table 2. It shows that the sequences pass the NIST test successfully.

    Table 2. NIST test result.

    6. Conclusion

    In this paper,we introduced a discrete memristive chaotic map generated by the combination of a quadratic discrete memristor with the sine function. To increase the complexity,we applied a chaotification method.Numerical analysis shows that the generated map has rich dynamical behaviors including more positive Lyapunov exponents and larger hyperchaotic range. As an application,we used the map cascaded with two seed maps to generate pseudo-random sequences. The NIST test results demonstrated it has good randomness and unpredictability. Next, we will focus on studying fractional-order discrete memristors and their applications.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61901530, 62071496, and 62061008).

    猜你喜歡
    乾坤
    壁上乾坤
    都市(2023年6期)2023-12-28 07:56:32
    翰墨乾坤
    學習與研究(2023年1期)2023-01-31 08:09:18
    乾坤令、歲朝清供
    寶藏(2022年1期)2022-08-01 02:12:56
    本期主題:紙上乾坤
    牛轉(zhuǎn)乾坤
    寶藏(2021年2期)2021-03-14 11:58:28
    貧困的永和變了乾坤
    面膜里的新乾坤
    碗蓮
    靈韻乾坤
    寶藏(2017年2期)2017-03-20 13:16:46
    山路乾坤
    讀者(2015年18期)2015-05-14 11:41:08
    男人爽女人下面视频在线观看| 啦啦啦中文免费视频观看日本| √禁漫天堂资源中文www| 日韩制服骚丝袜av| 免费观看a级毛片全部| 两性夫妻黄色片| 美女大奶头黄色视频| 国产福利在线免费观看视频| 丝袜美腿诱惑在线| 90打野战视频偷拍视频| 亚洲,欧美精品.| 欧美97在线视频| av欧美777| 久热这里只有精品99| 一区二区日韩欧美中文字幕| 国产在线观看jvid| 精品人妻一区二区三区麻豆| 亚洲少妇的诱惑av| 亚洲精品一区蜜桃| 精品人妻1区二区| av在线app专区| 人人妻,人人澡人人爽秒播| 亚洲 国产 在线| 91字幕亚洲| 十八禁高潮呻吟视频| 嫩草影视91久久| av在线app专区| 巨乳人妻的诱惑在线观看| 搡老岳熟女国产| av在线老鸭窝| 久久精品aⅴ一区二区三区四区| 精品人妻在线不人妻| 蜜桃在线观看..| 99国产精品免费福利视频| 亚洲成av片中文字幕在线观看| 久久久水蜜桃国产精品网| 欧美日韩中文字幕国产精品一区二区三区 | 国产高清国产精品国产三级| 男女高潮啪啪啪动态图| 国产人伦9x9x在线观看| xxxhd国产人妻xxx| 日日爽夜夜爽网站| 男男h啪啪无遮挡| 99九九在线精品视频| 超碰成人久久| www日本在线高清视频| a级毛片黄视频| 日韩一区二区三区影片| 国产亚洲一区二区精品| 999精品在线视频| 嫩草影视91久久| 午夜影院在线不卡| 成年动漫av网址| 午夜福利,免费看| 老汉色av国产亚洲站长工具| 日韩三级视频一区二区三区| 狠狠狠狠99中文字幕| 在线永久观看黄色视频| 午夜福利,免费看| www.av在线官网国产| 中文字幕另类日韩欧美亚洲嫩草| 永久免费av网站大全| 一级片免费观看大全| 久久精品成人免费网站| 国产精品成人在线| 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 性少妇av在线| 日韩制服骚丝袜av| 亚洲第一欧美日韩一区二区三区 | 黄频高清免费视频| 精品福利永久在线观看| 丝袜人妻中文字幕| 男人操女人黄网站| 国产麻豆69| 91麻豆av在线| av天堂久久9| 久久99热这里只频精品6学生| 9191精品国产免费久久| 在线十欧美十亚洲十日本专区| 侵犯人妻中文字幕一二三四区| 精品国产超薄肉色丝袜足j| 亚洲 国产 在线| 欧美在线黄色| 国产一卡二卡三卡精品| av有码第一页| 香蕉丝袜av| 久久免费观看电影| 国产黄频视频在线观看| 久久这里只有精品19| 一本色道久久久久久精品综合| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 亚洲专区字幕在线| 欧美成人午夜精品| 国产欧美日韩一区二区三区在线| 午夜福利视频在线观看免费| 国产精品国产av在线观看| 捣出白浆h1v1| 成在线人永久免费视频| 久久精品成人免费网站| 热99re8久久精品国产| 亚洲第一欧美日韩一区二区三区 | 欧美日韩成人在线一区二区| bbb黄色大片| 人妻久久中文字幕网| 成人18禁高潮啪啪吃奶动态图| 91精品伊人久久大香线蕉| 老司机亚洲免费影院| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠躁躁| 国产真人三级小视频在线观看| 亚洲成人国产一区在线观看| 国产精品自产拍在线观看55亚洲 | 少妇 在线观看| 国产高清视频在线播放一区 | 久久久精品国产亚洲av高清涩受| 中文精品一卡2卡3卡4更新| 中文字幕最新亚洲高清| 99久久综合免费| 侵犯人妻中文字幕一二三四区| 嫩草影视91久久| 久久久精品免费免费高清| 国产在线视频一区二区| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲 丝袜 人妻 在线| 久久久精品国产亚洲av高清涩受| 欧美中文综合在线视频| 黄色怎么调成土黄色| 免费在线观看视频国产中文字幕亚洲 | 99久久人妻综合| 亚洲精品久久成人aⅴ小说| 黄片小视频在线播放| 亚洲性夜色夜夜综合| 亚洲人成电影观看| 日本wwww免费看| av一本久久久久| 99国产精品一区二区三区| 亚洲精品在线美女| 午夜福利视频在线观看免费| 人人妻人人爽人人添夜夜欢视频| 黄频高清免费视频| tocl精华| 亚洲综合色网址| 精品国内亚洲2022精品成人 | 久久久欧美国产精品| 老汉色av国产亚洲站长工具| 在线看a的网站| 日韩有码中文字幕| 久久久国产一区二区| 我的亚洲天堂| www日本在线高清视频| 老熟妇仑乱视频hdxx| 一区福利在线观看| 国产精品九九99| 男女边摸边吃奶| 精品欧美一区二区三区在线| 看免费av毛片| 免费在线观看影片大全网站| 国产成人欧美| 久久亚洲精品不卡| 免费观看av网站的网址| 亚洲人成电影免费在线| 久久ye,这里只有精品| 王馨瑶露胸无遮挡在线观看| 精品少妇一区二区三区视频日本电影| 丁香六月天网| 在线精品无人区一区二区三| 国产成人精品无人区| 亚洲国产av新网站| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网 | 中文精品一卡2卡3卡4更新| 99久久综合免费| 欧美亚洲日本最大视频资源| 午夜免费观看性视频| 精品久久久久久久毛片微露脸 | 法律面前人人平等表现在哪些方面 | 国产精品免费视频内射| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 免费看十八禁软件| 大码成人一级视频| 热re99久久国产66热| 国产精品一二三区在线看| 国产精品麻豆人妻色哟哟久久| 欧美日本中文国产一区发布| 色精品久久人妻99蜜桃| 大码成人一级视频| 丝袜美足系列| 在线亚洲精品国产二区图片欧美| kizo精华| 欧美在线一区亚洲| 精品一区二区三区四区五区乱码| 两个人看的免费小视频| 下体分泌物呈黄色| tube8黄色片| 91成年电影在线观看| 亚洲熟女精品中文字幕| 一级毛片电影观看| 欧美精品啪啪一区二区三区 | 国产亚洲欧美在线一区二区| 久久性视频一级片| svipshipincom国产片| 热99国产精品久久久久久7| 女人高潮潮喷娇喘18禁视频| 人妻一区二区av| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 亚洲国产欧美网| 国产欧美日韩一区二区三区在线| 91麻豆精品激情在线观看国产 | 欧美成狂野欧美在线观看| 熟女少妇亚洲综合色aaa.| 日韩免费高清中文字幕av| 成年av动漫网址| 亚洲成人国产一区在线观看| 精品福利永久在线观看| 中文字幕色久视频| 男男h啪啪无遮挡| 亚洲精品中文字幕在线视频| 在线永久观看黄色视频| 天天操日日干夜夜撸| 两人在一起打扑克的视频| 丁香六月欧美| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看 | 黄色视频,在线免费观看| 69精品国产乱码久久久| 9色porny在线观看| 精品福利观看| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 后天国语完整版免费观看| 制服人妻中文乱码| 久久久久国产精品人妻一区二区| 午夜影院在线不卡| 91av网站免费观看| av片东京热男人的天堂| 日日夜夜操网爽| 国产成人欧美| 国产精品二区激情视频| 免费高清在线观看视频在线观看| svipshipincom国产片| 岛国在线观看网站| 丁香六月天网| 天天添夜夜摸| 菩萨蛮人人尽说江南好唐韦庄| av国产精品久久久久影院| 欧美亚洲日本最大视频资源| 深夜精品福利| 欧美成狂野欧美在线观看| 精品第一国产精品| 97精品久久久久久久久久精品| h视频一区二区三区| 51午夜福利影视在线观看| e午夜精品久久久久久久| 午夜福利视频精品| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 日韩有码中文字幕| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 老汉色av国产亚洲站长工具| 男人操女人黄网站| 久久青草综合色| 亚洲精品在线美女| 美女高潮喷水抽搐中文字幕| 两性夫妻黄色片| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 宅男免费午夜| 老司机靠b影院| 一区二区日韩欧美中文字幕| 国产成人精品无人区| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| 久久久精品免费免费高清| 久久天躁狠狠躁夜夜2o2o| av一本久久久久| 国产亚洲av高清不卡| 久久中文看片网| 成年人黄色毛片网站| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 亚洲人成77777在线视频| 亚洲国产av新网站| 亚洲欧美清纯卡通| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 高清黄色对白视频在线免费看| av网站在线播放免费| 午夜激情av网站| kizo精华| 最黄视频免费看| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 久久久精品区二区三区| 啦啦啦啦在线视频资源| 亚洲国产精品999| 别揉我奶头~嗯~啊~动态视频 | 久久天堂一区二区三区四区| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 美女视频免费永久观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产av新网站| 9191精品国产免费久久| 免费黄频网站在线观看国产| 黄频高清免费视频| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 久久中文看片网| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区久久| 免费少妇av软件| 丝袜人妻中文字幕| 精品一区二区三区av网在线观看 | 99国产精品99久久久久| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 亚洲人成电影免费在线| 久久国产亚洲av麻豆专区| videos熟女内射| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 国产在线免费精品| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 亚洲精品国产av成人精品| 午夜福利一区二区在线看| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩高清在线视频 | 欧美 日韩 精品 国产| 精品久久久久久久毛片微露脸 | av电影中文网址| 精品一区二区三卡| 黄片大片在线免费观看| 少妇猛男粗大的猛烈进出视频| 国产亚洲av片在线观看秒播厂| 99国产精品一区二区蜜桃av | 国产又色又爽无遮挡免| 美女主播在线视频| 美国免费a级毛片| 午夜福利一区二区在线看| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 国产欧美日韩一区二区三 | 91老司机精品| 自线自在国产av| 亚洲国产精品一区二区三区在线| 成人影院久久| 国产在线一区二区三区精| 国产成人精品无人区| 国产成人av激情在线播放| 欧美+亚洲+日韩+国产| 男女下面插进去视频免费观看| 人人澡人人妻人| 无遮挡黄片免费观看| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 啦啦啦在线免费观看视频4| 蜜桃国产av成人99| 91麻豆精品激情在线观看国产 | 99精国产麻豆久久婷婷| 国产精品欧美亚洲77777| 久久久久久人人人人人| 中文字幕另类日韩欧美亚洲嫩草| 久久久久视频综合| 97精品久久久久久久久久精品| 五月开心婷婷网| 国产男女内射视频| 纯流量卡能插随身wifi吗| 男女免费视频国产| 黄色a级毛片大全视频| 国产野战对白在线观看| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 热99久久久久精品小说推荐| 三级毛片av免费| 一二三四在线观看免费中文在| 国产精品九九99| 日韩视频在线欧美| 最近最新中文字幕大全免费视频| 国产一区二区 视频在线| 男女午夜视频在线观看| 亚洲人成电影观看| 午夜91福利影院| 欧美老熟妇乱子伦牲交| e午夜精品久久久久久久| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲 | 久久av网站| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 俄罗斯特黄特色一大片| 久久午夜综合久久蜜桃| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频 | av在线老鸭窝| 亚洲熟女精品中文字幕| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 青草久久国产| 国产成人免费无遮挡视频| 亚洲精品久久成人aⅴ小说| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图| 亚洲成人免费av在线播放| 男人操女人黄网站| 丝袜脚勾引网站| 老司机影院毛片| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 丝袜脚勾引网站| 亚洲av电影在线进入| 精品第一国产精品| 免费少妇av软件| 视频区图区小说| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 美女中出高潮动态图| 欧美日韩成人在线一区二区| 精品第一国产精品| 十八禁高潮呻吟视频| 中国美女看黄片| 国产精品一区二区免费欧美 | 欧美日韩一级在线毛片| 九色亚洲精品在线播放| 国产精品av久久久久免费| 久久久久久久精品精品| 久久精品国产亚洲av香蕉五月 | 日本欧美视频一区| 久久精品久久久久久噜噜老黄| 黑人巨大精品欧美一区二区mp4| 香蕉丝袜av| 国精品久久久久久国模美| 后天国语完整版免费观看| 国产老妇伦熟女老妇高清| 天天添夜夜摸| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 亚洲综合色网址| 亚洲精品一区蜜桃| 男人操女人黄网站| 久热爱精品视频在线9| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 国产91精品成人一区二区三区 | 久久久久视频综合| 18禁观看日本| 国产黄频视频在线观看| 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片| 国产av国产精品国产| 亚洲,欧美精品.| 午夜成年电影在线免费观看| 午夜福利视频在线观看免费| 黄色片一级片一级黄色片| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 超碰成人久久| 咕卡用的链子| 十八禁网站免费在线| 男女国产视频网站| tube8黄色片| 精品一区二区三区四区五区乱码| 婷婷色av中文字幕| 亚洲精品自拍成人| 超碰成人久久| 国产在线视频一区二区| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| tocl精华| 亚洲中文字幕日韩| 天天操日日干夜夜撸| 两性午夜刺激爽爽歪歪视频在线观看 | www.熟女人妻精品国产| 国产精品久久久av美女十八| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产成人一精品久久久| 国产一区二区三区av在线| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 国产老妇伦熟女老妇高清| 中文字幕人妻丝袜制服| 99久久99久久久精品蜜桃| 国产精品.久久久| 久久99热这里只频精品6学生| 深夜精品福利| 91老司机精品| 亚洲第一青青草原| 国产片内射在线| 久久精品国产亚洲av香蕉五月 | 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 99热国产这里只有精品6| 免费在线观看影片大全网站| 青草久久国产| 亚洲精品在线美女| 一区二区三区精品91| 麻豆乱淫一区二区| 美女大奶头黄色视频| 美女国产高潮福利片在线看| 高清黄色对白视频在线免费看| 黄色a级毛片大全视频| 免费在线观看完整版高清| 青春草亚洲视频在线观看| 在线永久观看黄色视频| 伦理电影免费视频| 午夜免费观看性视频| 午夜久久久在线观看| 久久狼人影院| 国产精品免费大片| 精品视频人人做人人爽| 老司机福利观看| 国产淫语在线视频| 欧美国产精品一级二级三级| 精品一区在线观看国产| 日韩精品免费视频一区二区三区| 久久久国产一区二区| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区 | 不卡av一区二区三区| 免费观看人在逋| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 超碰成人久久| 在线看a的网站| 老熟妇乱子伦视频在线观看 | 成年女人毛片免费观看观看9 | 老司机亚洲免费影院| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | av国产精品久久久久影院| 美女高潮到喷水免费观看| 精品高清国产在线一区| 免费高清在线观看日韩| netflix在线观看网站| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| 日韩欧美免费精品| 国产精品熟女久久久久浪| 99国产精品一区二区蜜桃av | 一区二区三区精品91| 久久久久久免费高清国产稀缺| 欧美日韩视频精品一区| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美成人综合另类久久久| 精品亚洲乱码少妇综合久久| 免费不卡黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 777米奇影视久久| 人妻 亚洲 视频| 老司机福利观看| 国产免费av片在线观看野外av| av天堂久久9| 日本黄色日本黄色录像| 热re99久久国产66热| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区三区| 纵有疾风起免费观看全集完整版| 一二三四在线观看免费中文在| 国产成人影院久久av| 999久久久精品免费观看国产| 久9热在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 夜夜夜夜夜久久久久| 午夜影院在线不卡| 免费久久久久久久精品成人欧美视频| 精品人妻在线不人妻| 青春草亚洲视频在线观看| 一二三四社区在线视频社区8| 国产免费视频播放在线视频| 国产av精品麻豆| 色老头精品视频在线观看| av超薄肉色丝袜交足视频| 黄网站色视频无遮挡免费观看| 后天国语完整版免费观看| 久久人人97超碰香蕉20202| 国产97色在线日韩免费| 青春草视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 大片免费播放器 马上看| 天堂中文最新版在线下载| 国产精品1区2区在线观看. | 国产免费视频播放在线视频|