• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5

    2022-12-28 09:53:30ShuyuanLv呂淑媛XinhuiLi李新慧WenfengLuo羅文峰andJieJia賈潔
    Chinese Physics B 2022年12期
    關鍵詞:淑媛文峰

    Shuyuan Lv(呂淑媛), Xinhui Li(李新慧), Wenfeng Luo(羅文峰), and Jie Jia(賈潔)

    Xi’an University of Posts&Telecommunications,School of Electronic Engineering,Xi’an 710121,China

    Keywords: metasurface,optical device,phase-change material,achromatic

    1. Introduction

    So far, transmission-type[1,2]and reflection-type[3,4]metasurface devices have gradually replaced bulky and huge traditional optics devices, due to the compact and easy-tomanufacture characteristics, as well as for flexible and effective control of electromagnetic wave polarization, amplitude,phase,and propagation mode,[5–11]by adjusting the geometric parameters of the nanopillar. With these advantages, metasurface devices are extensively used in such fields as invisibility cloaks,[12]high-dimensional holograms,[13,14]ultra-thin metalenses,[15–19]and vortex beams.[20,21]At the same time,metasurface devices have obvious dispersion problems mainly due to the intrinsic dispersion of the material itself. Intrinsic dispersion is caused by many factors,like the resonance phase of the metasurface nanopillars,different refractive index at different wavelengths and the difference of the propagation phase in free space,which leads to the decline of imaging quality. In a word,it is still a major challenge to realize achromatic metasurface devices.

    In order to solve the chromatic aberration problem, researchers used different methods to realize various achromatic devices based on different materials. For instance, in 2017,Wang Shuminget al.[22]used Au as a nanopillar unit,SiO2/Au as a substrate, designed a metasurface integration unit with smooth linear phase dispersion, and combined with geometric phase to achieve broadband achromatic optics device. It is proved that the designed metalenses and beam deflector metasurface can achieve achromatic effect within the near-infrared waveband of 1.2 μm–1.68 μm. In 2018, Sajan Shresthaet al.[23]used positive squares, hollow squares, concentric squares, cross-positive squares, and inner-cut squares to increase the dispersion of the metasurface, resulting in higher passivity of nanopillar.In the transmission mode,polarizationindependent achromatic devices can be realized in the nearinfrared waveband 1.2 μm–1.65 μm, and the focusing efficiency can reach 50%. This method is an important step in the practical application of metalens.

    In recent years, the unique characteristics of the phasechange materials have been developed by researchers and achromatic metasurface devices have been implemented with phase-change material. With appropriate stimulation of light, electricity or temperature, the phase-changing material can alter between the crystalline state and the amorphous state. Optical devices, like optical switch and achromatic metalenses,[24–26]have been realized based on these phasechanging material. In 2020, Ding Xiyaet al.[26]proposed a chromatic aberration compensation metasurface scheme based on phase-changing materials, and designed corresponding achromatic metalenses and beam deflector metasurface within the continuous waveband 8 μm–11 μm by uniformly adjusting the crystallization fraction of the phase-change material Ge2Sb2Te5(GST). This literature used the incident wavelength of 8.5μm as the basic wavelength, and the size of the nanopillars is obtained by scanning when the phase-change material crystal fractionmis 0.6.Finally,the achromatic function of the metasurface device was realized by adjusting the crystalline fraction of the phase-change material.

    Combined with the design method in this article, the phase-change material GST is selected as the material of the nanopillar,because it has the characteristics of obvious phase change, significant refractive index change between amorphous and crystalline states,and fast switching speed.[27]Both crystalline and amorphous states in the longer-infrared band have low absorptivity, which makes it possible to achieve achromatic design in the longer-infrared band. In this article,the corresponding phase is obtained by changing the radius of the nanopillars,so linearly polarized light is used as thexpolarization state to realize the achromatic function.

    In order to realize a wider bandwidth of achromatic metasurface optical device, a lot of work needs to be done on the resonant unit. In this article,we use the linear phase gradient combined with the crystalline fraction of the phase-changing material GST to design an achromatic metasurface optical device within the continuous wavelength range of 9.5 μm–13 μm. Simulation results demonstrated that this achromic metalenses is well realized with focus to the same focal plane in the working waveband,and the diffraction limit is reached.In addition, to further demonstrate the practicability of this method, the method is used to realize a beam deflector metasurface with a deflection angle of 19?in the working waveband. Our study not only provides a way to the realization of broadband achromatic metasurface, but also has potential application in fields,like communication technology,medical equipment,and holographic technology,and so on.

    2. Design principles and method

    Two types of metasurface devices, a transmissive achromatic metalenses and a beam deflector metasurface with the same deflection angle, are designed by the phase-change material GST. The working wavelength is 9.5 μm–13 μm, and the minimum wavelength is 9.5 μm used as the basic wavelength. The basic unit structure of the device consists of two parts shown in Figs. 1(a) and 1(b). The top part of the unit consists of concentric solid and hollow cylindrical nanopillar with the high refractive index material of GST.The substrate is CaF2with low refractive index of 1.34. The near-field distributions of these two structures are shown in Figs. 1(c) and 1(d), and both nanopillars support the waveguide cavity resonance. Whenh=6.5 μm, it can be seen that the phases of both nanopillars cover 0–2π.

    Periodic boundary conditions are used in thexandydirections,perfect matching layer(PML)is used in thezdirection, and the thickness of the PML is set to 2π/k0, wherek0is the wave vector in vacuum. The periodsPxandPyof the basic unit are set to be 2.3μm in order to satisfy the Nyquist sampling lawP<λ/2NA,whereλis the wavelength andNAis the numerical aperture with the value of 0.584.

    In order to achieve high-efficiency and wide-bandwidth achromatic metasurface devices, two types of nanopillars are used in this article,as shown in Fig.1.The device is composed of solid cylinders and hollow cylinders of different diameters,through the combination of linear phase gradient and phasechange material fraction to realize an achromatic metasurface device.

    Fig. 1. (a) Front view of nanopillars unit. (b) Top view of nanopillars unit. Solid nanopillar is GST with height h and radius r1. Hollow nanopillar have outer radius r2 and inner radius r3, and the substrate is CaF2. (c) The near-field image of a hollow cylinder, r2 =0.96 μm,r3=0.4μm,λ =9.5μm. (d)The near-field image of a solid cylinder,r1=0.88μm,λ =9.5μm.

    At the operating wavelength, the phase distribution formula required by the achromatic device is

    wherecandfare the speed and frequency in vacuum, respectively,Frepresents the focal length of the metalenses,and (x,y) are the position coordinates of the lens unit in the plane lens. In order to realize the achromatic metalenses, an additional phase shift is introduced shown in Fig. 2, and the corresponding formula is written as

    where?shift(f)is a reference phase function that has nothing to do with (x,y). After interacting with the metalens, only the spatial phase difference has an effect on the focal point of the lens. So we only need to consider the phase shift, that is,when (x,y)=0, the phase difference between the phase and the reference phase(9.5μm). And the phase shift distribution equation of the vertically incident wave is

    wherem(x,y)is the slope of the phase shift frequency. From Eqs. (3) and (4), it is concluded that the phase shift of the broadband achromatic metalenses at all positions has a linear relationship with frequency. In this work, hollow cylinders and solid cylinders are used as nanopillars to increase the dispersion of nanopillars. Since the phase distribution of each wavelength is completely independent, each GST nanopillar unit should provide a unique phase response. Each nanopillar is designed by changing the diameterr1of the cylinder and the diametersr2andr3of the hollow cylinder. Therefore,this work uses the linear phase gradients dispersion of the nanopillar to realize the achromatic device of 9.5μm–13μm,as shown in Fig.3(a). The size and shape of its 12 nanopillars are shown in Table 1.

    Fig.2. Phase distribution of wide-band achromatic metalenses at working wavelengths.

    Figure 3(a) shows the linear relationship with 12 GST nanopillars as a representative. The slope from unit 1 to unit 7 increases, but the slope from unit 8 to unit 12 decreases slightly compared to unit 1 and unit 7. Considering the problem of craftsmanship, the size of the hollow and solid cylinders selected in this article cannot be accurate to 1 nm,so the size searched by the slope cannot be a perfect match. There is a certain deviation, and the achromatic effect cannot reach the ideal state. Therefore, a wider achromatic effect can be achieved by adjusting the crystalline fractionmof the phasechange material.

    Table 1. Data of dimensions of unit structures.

    Figure 3(b) is a metalenses composed of 49 GST solid cylinders and hollow cylinders. Since metalenses are symmetrically arranged in the simulation design,there are 25 nanopillars in the designed metalenses a linear relationship. And Fig. 3(b) shows that there is still chromatic aberration within the bandwidth of 9.5 μm–13 μm, and it can be seen that the larger the wavelength,the more the derivative focus.

    In addition, the unique properties of the phase-change material are also used to increase the working bandwidth of the achromatic metalenses by the adjustment of crystalline fraction of the phase-change material. The dielectric constant of GST under different crystalline fraction conditions can be realized by the effective medium theory. The Lorentz–Lorenz[28]relationship is used to define the crystalline fraction formula of GST as

    whereεaGSTandεcGSTare the dielectric constants related to the frequency of crystalline and amorphous GST, respectively. The dielectric constant of the phase-change material is obtained from the literature.[29]mis the crystalline fraction,ranging from 0 (amorphous) to 1 (crystalline). In this work,the refractive index of GST in the amorphous and crystalline states is used within the waveband of 9.5μm–13μm,and the corresponding refractive index varies from 4.27 (amorphous state) to 6.3 (crystalline state). The simulation result of the metalenses designed by the change of themvalue of GST is shown in Fig.4.

    Fig.3. (a)The output phase of some unit selected in the metalenses varies with frequency. (b)Distribution of the electric field intensity of the metalenses at each wavelength.

    Fig.4. The m-tuned achromatic metalenses. By adjusting the crystalline fraction m of the phase-change material, the distribution of electric field intensity of achromatic metalens is studied.

    In the experiment, the pulse energy can be controlled by the local heating of femtosecond laser pulses.[30]The crystallization fraction of GST is adjusted by the pulse energy after heating, so as to achieve the achromatic effect of the phasechange material.[31,32]

    The metalenses are designed with the size of GST nanopillars at 9.5μm. The types of nanopillars used are solid cylinders. After simulation calculation, only by adjusting the crystalline fractionmvalue of the phase-change material, the achromatic effect will be achieved in the wavelength range of 9.5 μm–10.5 μm, when the wavelength is greater than 10.5 μm, the focal length is significantly reduced, so further adjustment and optimization are still needed to realize achromatic lenses in a larger wavelength range.

    3. Results and discussion

    Without any phase compensation, the result of incident wave is shown in Fig.5(a). The focal length decreases as the incident wavelength increases, which is due to the inherent chromatic aberration of the material. If the cell size data is only found by the slope of the relationship between the phase and frequency, the achromatic bandwidth of the metalens is limited. In addition, due to the variable characteristics of the phase-change material between the crystalline and the amorphous, the metalens can exhibit a certain achromatic effect.The simulation result of only adjusting the crystalline fractionmof the phase-change material is shown in Fig.4. Although there is achromatic effect, the achromatic effect is not ideal,and the wavelength range is small.

    Therefore, two methods are combined together to compensate for the chromatic aberration and realize the achromatic metasurface device. Firstly, hollow cylinders and solid cylinders are chosen as nanopillars and their sizes are selected according to the linear relationship between phase and frequency. However, considering the problem of craftsmanship,some practical sizes of the nanopillars do not match the required sizes. Therefore, the achromatic effect can be realized only within the small bandwidth. In order to realize the achromatic device with a larger bandwidth, we can change the refractive index of the phase-change material between the crystalline and the amorphous, and the achromatic effect can be realized correspondingly. With the combination of these two methods,the achromatic effect of the metalens with larger bandwidth is realized.

    Through simulation calculations,this method realizes an achromatic metalenses with a larger bandwidth,increasing the original bandwidth of 9.5μm–10.5μm to 9.5μm–13μm,with the increase of the bandwidth of 2.5μm.The electric field distribution in itsx–zplane is shown in Fig.5(b),the focal lengthf=80μm remains almost unchanged,and the result is as expected. The relationship between the achromatic focal length and the incident wavelength is shown in Fig. 5(c). The focal length oscillates at 80μm in the bandwidth of the incident wavelength from 9.5 μm to 13 μm, and it shows that the designed achromatic metalens is feasible.

    The corresponding FWHMs are 7.428 μm, 7.442 μm,7.231 μm, 7.338 μm, 8.074 μm, 8.737 μm, 8.742 μm, and 9.122μm,respectively. According to the diffraction limit formula FWHMlim=λ/2NA,whereλis the incident wavelength andNAis the numerical aperture of 0.584,and the calculation results show that the FWHM of the metalenses are close to the diffraction limit. The wavelength dependence of the FWHM spot size and focusing efficiency is shown in Fig.5(d). It can be seen from the figure that the focusing efficiency is above 60%. It is proved that the achromatic metalens designed in this article has a good focusing effect.

    Fig. 5. (a) Chromatic metalenses. The distribution of electric field intensity at each wavelength using a metalenses designed with a solid cylinder at λ =9.5 μm. (b) Achromatic metalenses. The distribution of electric field intensity of achromatic metalenses at each wavelength and its FWHM distribution at each wavelength. (c)The relationship between wavelength and focal length. (d)The relationship between FWHM,focusing efficiency and wavelength.

    In addition, Table 2 summarizes some of the work on achromatic metalenses, comparing materials, working bands,and focusing efficiency. Compared with literature,[18,22,26]the achromatic metalens designed in this paper not only has a larger working bandwidth,but also has a higher focusing efficiency. Moreover,the achromatic method used in this paper is relatively novel,which brings new ideas for the realization of achromatic lenses with larger bandwidth in the future.

    Table 2. Comparison of the work in this article and other work of the same type.

    An achromatic beam deflector metasurface with the same deflection angle is also designed and analyzed with the combination of these two methods mentioned above. According to the generalized Snell’s law, the phase gradient distribution formula of the achromatic beam deflector metasurface is designed as

    whereλis the incident wavelength,θ1andθ2are the incident angle and refraction angle,andn1andn2the refractive indices of the incident medium and output medium, respectively. In the air with normal incidence,the generalized Snell’s law can be rewritten as

    whereωrepresents the angular frequency, andcrepresents the speed of light in vacuum. The term d?/dxrepresents the phase gradient required to guide the beam to a certain angle at a certain frequency,and there should be a certain linear relationship between the phase gradient?and the positionxof the beam deflector along the air–metasurface interface. Therefore,the relationship between the required transmission phase of the unit and its positionxand angular frequencyωcan be written as the following formula:

    In order to construct the beam deflector with the same refractive angle at different frequencies,the nanopillar unit needs to satisfy the linear dispersion d?/dω,which can be obtained by changing the radius of the nanopillars to control the dispersion shown in Fig.6(a).

    In this work, the deflection angle 19?of the achromatic beam deflector metasurface is designed by combining the linear phase gradients with the crystalline fractionmvalue of the GST. In order to satisfy the linear relationship between the phase and frequency of each nanopillar within the designed waveband, the phase difference is ??=π/6 with the incident wavelength 9.5μm,and ??=2π/15 with 12.5μm. Figure 6(b)shows that the deflection angle of the designed beam deflector at 9.5μm wavelength is 19?,which has obvious chromatic aberration in the working waveband. Through the individual design of the nanopillar unit and the calculation of themvalue of the phase-change material, the achromatic beam deflector metasurface is realized with the incident at wavelengths of 9.5μm,10μm,10.5μm,11μm,11.5μm,12μm,12.5μm,and 13μm,and the corresponding crystal fractionmare 0,0,0,0,0,0.3,0.5,and 0.7,respectively. And the deflection angles are 19.35?,19.05?,19.89?,19.98?,19.61?,20.07?,20.24?, and 21.25?, respectively, which are all within the acceptable error range. In addition,it can also be seen from the output electric field diagram of the deflector in Fig. 7(a) that the deflection angle is about 19?. The functional relationship between the transmission field strength, deflection angle and wavelength of the achromatic deflector is shown in Fig.7(b).

    Fig.6.(a)The output phase of some unit selected in the beam deflector metasurface varies with frequency.(b)Chromatic beam deflector.Beam deflector designed with a hollow cylinder is used atλ=9.5μm,and its deflection angle changes with the increase of wavelength,and there is obvious chromatic aberration. (c)Achromatic beam deflector metasurface. After optimization,the beam deflector metasurface deflection angle is almost unchanged,which is about 19?.

    Fig.7. (a)Output electric field diagram at each wavelength. (b)3D plot of transmitted field strength versus deflection angle,incident wavelength.

    4. Conclusion

    This article proposes and simulates an achromatic metalenses and beam deflector metasurface device based on a phasechange material GST. The metasurface consisting of hollow cylinders and solid cylinders, is designed with the method of linear phase gradients relationship of the nanopillars, as well as the method related to the change of the crystalline fractionmvalue of GST. The size of the nanopillar reduces or even eliminates chromatic aberration in the longer-infrared wavelength range of 9.5 μm–13 μm, and realizes the achromatic beam deflector metasurface with the same deflection angle of 19?. The simulation results demonstrate the FWHM of the metalens is close to the diffraction limit. The combination design method provides a new way for realizing phase-change material achromatic metasurface devices.

    Acknowledgement

    Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466).

    猜你喜歡
    淑媛文峰
    利用BRDF模型改進PRI反演水稻光能利用率
    “一軸兩翼、雙發(fā)驅動”的數字化轉型模型與應用
    好慘好慘的事
    胡文峰博士簡介
    美人靠(短篇小說)
    作品(2019年10期)2019-09-10 07:22:44
    Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak?
    蓑衣草展姿
    文峰街
    重慶與世界(2016年6期)2016-10-09 06:27:10
    油庫是我家
    洗腦
    色综合色国产| 亚洲av成人av| 国产日本99.免费观看| 老司机影院成人| 不卡一级毛片| 麻豆久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | 午夜精品一区二区三区免费看| 国产精品美女特级片免费视频播放器| 日韩欧美精品免费久久| 婷婷色综合大香蕉| 此物有八面人人有两片| 国产三级在线视频| 美女免费视频网站| 黄色日韩在线| 熟妇人妻久久中文字幕3abv| 精品欧美国产一区二区三| 99在线人妻在线中文字幕| 免费看a级黄色片| 欧美日韩在线观看h| av福利片在线观看| 国产精品一区二区三区四区免费观看 | 最新在线观看一区二区三区| 午夜福利在线观看吧| 又粗又爽又猛毛片免费看| 男人舔奶头视频| 12—13女人毛片做爰片一| 男人舔奶头视频| 最新中文字幕久久久久| 白带黄色成豆腐渣| 老司机午夜福利在线观看视频| 麻豆国产97在线/欧美| 久久久久久久久久黄片| 美女黄网站色视频| 色吧在线观看| av国产免费在线观看| 午夜a级毛片| 国产高清视频在线观看网站| 91久久精品国产一区二区三区| 亚洲av一区综合| videossex国产| 乱系列少妇在线播放| 成熟少妇高潮喷水视频| 又黄又爽又刺激的免费视频.| 97超碰精品成人国产| av天堂中文字幕网| 国产乱人视频| 内射极品少妇av片p| 亚洲,欧美,日韩| 99久久九九国产精品国产免费| 欧美日韩综合久久久久久| 尾随美女入室| 精品久久久久久久人妻蜜臀av| 一个人看视频在线观看www免费| 国产熟女欧美一区二区| 日本与韩国留学比较| 亚洲av.av天堂| 美女黄网站色视频| 久久久久久久久大av| 天堂√8在线中文| 亚州av有码| 国产国拍精品亚洲av在线观看| 一级毛片电影观看 | 一本一本综合久久| 久久久色成人| 亚洲一区高清亚洲精品| 精品人妻一区二区三区麻豆 | 国内精品一区二区在线观看| 欧美潮喷喷水| av黄色大香蕉| 99久久精品一区二区三区| 久久久久国产网址| 欧美区成人在线视频| 91午夜精品亚洲一区二区三区| 亚洲美女黄片视频| 五月伊人婷婷丁香| 国产精品一区二区三区四区久久| 国国产精品蜜臀av免费| 97在线视频观看| 黄色视频,在线免费观看| 激情 狠狠 欧美| 久久久久久国产a免费观看| 国产精品精品国产色婷婷| 欧美性猛交黑人性爽| 美女cb高潮喷水在线观看| 91精品国产九色| 中文字幕av在线有码专区| 成年女人看的毛片在线观看| av国产免费在线观看| 91久久精品国产一区二区三区| 最近在线观看免费完整版| 蜜桃久久精品国产亚洲av| 麻豆一二三区av精品| 91狼人影院| 国产精品久久久久久久电影| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 亚洲综合色惰| 亚洲精品一卡2卡三卡4卡5卡| 国内精品一区二区在线观看| 国产女主播在线喷水免费视频网站 | 免费看光身美女| 免费无遮挡裸体视频| 欧美区成人在线视频| 大型黄色视频在线免费观看| 亚洲av中文av极速乱| av在线观看视频网站免费| 3wmmmm亚洲av在线观看| 国产成人福利小说| av视频在线观看入口| 国产成人aa在线观看| 老女人水多毛片| av在线亚洲专区| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 欧美一区二区国产精品久久精品| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 淫妇啪啪啪对白视频| 国内精品一区二区在线观看| 2021天堂中文幕一二区在线观| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 亚洲av免费高清在线观看| 成年女人毛片免费观看观看9| 中文字幕久久专区| 伦理电影大哥的女人| 国产免费一级a男人的天堂| 欧美日韩在线观看h| 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx在线观看| 午夜福利在线观看吧| 干丝袜人妻中文字幕| a级一级毛片免费在线观看| 色综合色国产| 午夜福利高清视频| 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 亚洲精品456在线播放app| 中文字幕av在线有码专区| 婷婷精品国产亚洲av| av在线观看视频网站免费| 国产av不卡久久| 九色成人免费人妻av| 成人特级av手机在线观看| 久99久视频精品免费| 欧美另类亚洲清纯唯美| 亚洲国产精品久久男人天堂| 久久久久免费精品人妻一区二区| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 18禁在线播放成人免费| av女优亚洲男人天堂| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频国产福利| 黄色配什么色好看| 日韩在线高清观看一区二区三区| 日本三级黄在线观看| 美女被艹到高潮喷水动态| 日韩在线高清观看一区二区三区| 国产午夜精品论理片| 青春草视频在线免费观看| 欧美不卡视频在线免费观看| 国产精品亚洲美女久久久| 欧美日韩国产亚洲二区| 欧美潮喷喷水| 老熟妇乱子伦视频在线观看| 欧美绝顶高潮抽搐喷水| 九九在线视频观看精品| 身体一侧抽搐| 美女大奶头视频| 国产成人91sexporn| 一区福利在线观看| 日韩欧美三级三区| 日韩欧美三级三区| 日韩强制内射视频| 嫩草影院精品99| 国产精品三级大全| 国产精品三级大全| 嫩草影院入口| 99久国产av精品国产电影| 亚洲av不卡在线观看| 久久精品国产鲁丝片午夜精品| 国产乱人偷精品视频| 国产大屁股一区二区在线视频| 国产久久久一区二区三区| 九九爱精品视频在线观看| 久久久a久久爽久久v久久| 亚洲美女搞黄在线观看 | 99久久久亚洲精品蜜臀av| 18禁在线无遮挡免费观看视频 | 久久热精品热| 久久精品国产亚洲av香蕉五月| 亚洲国产精品sss在线观看| 99久久中文字幕三级久久日本| 黄色视频,在线免费观看| 欧美成人a在线观看| 性色avwww在线观看| 亚洲精品久久国产高清桃花| 男女视频在线观看网站免费| 夜夜夜夜夜久久久久| 国内精品久久久久精免费| .国产精品久久| 日日啪夜夜撸| 亚洲国产欧洲综合997久久,| 在线观看美女被高潮喷水网站| 国产淫片久久久久久久久| 99热这里只有精品一区| 国产精品一区二区免费欧美| 老司机影院成人| 成年女人毛片免费观看观看9| 校园人妻丝袜中文字幕| 午夜亚洲福利在线播放| 日韩欧美精品免费久久| 亚洲国产精品成人久久小说 | 欧美丝袜亚洲另类| 日本一二三区视频观看| 国产欧美日韩一区二区精品| 韩国av在线不卡| 亚洲人成网站高清观看| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 国产熟女欧美一区二区| 日韩欧美 国产精品| 久久久午夜欧美精品| 欧美日韩在线观看h| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 亚洲av免费在线观看| 亚洲内射少妇av| АⅤ资源中文在线天堂| 听说在线观看完整版免费高清| 亚洲高清免费不卡视频| 久久久国产成人免费| 亚洲成人久久爱视频| 亚洲精品456在线播放app| 级片在线观看| 国产精品野战在线观看| 国产在线男女| 国内久久婷婷六月综合欲色啪| 91在线观看av| .国产精品久久| 日韩欧美 国产精品| 日韩中字成人| 长腿黑丝高跟| 亚洲aⅴ乱码一区二区在线播放| 欧美色视频一区免费| 日本欧美国产在线视频| 亚洲不卡免费看| 国产综合懂色| 婷婷精品国产亚洲av| 男女啪啪激烈高潮av片| 国产精品一及| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 99riav亚洲国产免费| 午夜精品在线福利| 成年女人毛片免费观看观看9| 亚洲精品乱码久久久v下载方式| 黄色欧美视频在线观看| 欧美不卡视频在线免费观看| 美女免费视频网站| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| 国产精品嫩草影院av在线观看| 成人鲁丝片一二三区免费| 亚洲在线自拍视频| 亚洲电影在线观看av| 黄片wwwwww| 搡女人真爽免费视频火全软件 | 深爱激情五月婷婷| 久99久视频精品免费| 又黄又爽又刺激的免费视频.| 国产亚洲精品av在线| 精品熟女少妇av免费看| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 中文字幕精品亚洲无线码一区| 校园春色视频在线观看| 免费人成在线观看视频色| 一个人看视频在线观看www免费| 97碰自拍视频| 噜噜噜噜噜久久久久久91| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添av毛片| 亚洲乱码一区二区免费版| 岛国在线免费视频观看| 国产精品一二三区在线看| 国产色爽女视频免费观看| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 亚洲国产欧洲综合997久久,| 夜夜爽天天搞| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 日韩制服骚丝袜av| 国产一区二区三区在线臀色熟女| 亚洲精品影视一区二区三区av| aaaaa片日本免费| 日韩大尺度精品在线看网址| 免费av不卡在线播放| 午夜福利在线在线| 亚洲av美国av| 欧美激情在线99| 国产麻豆成人av免费视频| 人妻丰满熟妇av一区二区三区| 国产亚洲精品av在线| 久久国产乱子免费精品| 国产一区二区亚洲精品在线观看| 禁无遮挡网站| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 99riav亚洲国产免费| 蜜桃亚洲精品一区二区三区| 欧美最黄视频在线播放免费| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 又黄又爽又免费观看的视频| 亚洲精品在线观看二区| 亚洲精品国产成人久久av| 给我免费播放毛片高清在线观看| 一级黄片播放器| 久久久a久久爽久久v久久| 伦理电影大哥的女人| www.色视频.com| 中国美女看黄片| 亚洲在线观看片| 亚洲av中文av极速乱| 丝袜美腿在线中文| 国产高清三级在线| 三级国产精品欧美在线观看| 欧美一区二区国产精品久久精品| 能在线免费观看的黄片| 久久久精品大字幕| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 99热6这里只有精品| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 黄片wwwwww| 性色avwww在线观看| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 丝袜喷水一区| 成人特级黄色片久久久久久久| 国产精品日韩av在线免费观看| 欧美色欧美亚洲另类二区| 不卡视频在线观看欧美| www日本黄色视频网| 亚洲最大成人手机在线| 国产亚洲精品av在线| 久久精品国产清高在天天线| 国产真实乱freesex| 亚洲欧美日韩东京热| 精品国产三级普通话版| 午夜福利在线观看吧| 久久久久久久亚洲中文字幕| 三级国产精品欧美在线观看| 久久精品综合一区二区三区| 国产欧美日韩一区二区精品| 男女那种视频在线观看| 精品熟女少妇av免费看| 一级毛片电影观看 | 亚洲图色成人| 欧美绝顶高潮抽搐喷水| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 内地一区二区视频在线| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 欧美一区二区精品小视频在线| 色哟哟·www| 97热精品久久久久久| 亚洲在线自拍视频| 寂寞人妻少妇视频99o| 色哟哟·www| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区免费观看 | 亚洲18禁久久av| 最近手机中文字幕大全| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区 | 99热这里只有精品一区| 精品不卡国产一区二区三区| 久久中文看片网| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 精品一区二区三区人妻视频| 女生性感内裤真人,穿戴方法视频| 国产美女午夜福利| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 午夜福利视频1000在线观看| 91狼人影院| 一a级毛片在线观看| 亚洲国产精品成人综合色| 成人亚洲精品av一区二区| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄 | 亚洲专区国产一区二区| 成人国产麻豆网| 国产成人影院久久av| 99热这里只有是精品50| 国产午夜福利久久久久久| or卡值多少钱| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 草草在线视频免费看| 禁无遮挡网站| 真人做人爱边吃奶动态| 日本 av在线| 日本欧美国产在线视频| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 日本免费a在线| 青春草视频在线免费观看| 欧美bdsm另类| 可以在线观看的亚洲视频| 91在线观看av| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜 | АⅤ资源中文在线天堂| 欧美另类亚洲清纯唯美| 日日啪夜夜撸| 亚洲欧美清纯卡通| 亚洲欧美日韩东京热| 在线免费观看的www视频| 桃色一区二区三区在线观看| 国产白丝娇喘喷水9色精品| 一级毛片电影观看 | 最近中文字幕高清免费大全6| 亚洲欧美日韩高清在线视频| 国产午夜精品久久久久久一区二区三区 | 99riav亚洲国产免费| 久久久久免费精品人妻一区二区| 97超视频在线观看视频| 人妻少妇偷人精品九色| 国语自产精品视频在线第100页| 麻豆国产97在线/欧美| 亚洲第一电影网av| 天天躁夜夜躁狠狠久久av| 午夜福利在线观看吧| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 欧美色欧美亚洲另类二区| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 美女cb高潮喷水在线观看| 春色校园在线视频观看| 婷婷精品国产亚洲av| 日本免费a在线| 免费一级毛片在线播放高清视频| 国产成人91sexporn| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 午夜视频国产福利| 亚洲国产欧洲综合997久久,| 国产91av在线免费观看| 精品人妻视频免费看| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 亚洲四区av| 久久精品91蜜桃| 国产成人影院久久av| 国产精品一区二区三区四区免费观看 | 在现免费观看毛片| 在线观看免费视频日本深夜| 欧美精品国产亚洲| 成年av动漫网址| 久久久久国产网址| 色哟哟·www| 日韩欧美国产在线观看| 亚洲精品日韩av片在线观看| 秋霞在线观看毛片| 午夜福利高清视频| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 露出奶头的视频| 国产在线男女| 精品久久久久久久久av| 精品久久久噜噜| 免费不卡的大黄色大毛片视频在线观看 | 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 少妇熟女欧美另类| 91午夜精品亚洲一区二区三区| 麻豆成人午夜福利视频| 免费观看在线日韩| 久久久久九九精品影院| 国产熟女欧美一区二区| 97热精品久久久久久| 亚洲经典国产精华液单| av视频在线观看入口| 国产精品亚洲美女久久久| 我要看日韩黄色一级片| 国产亚洲精品综合一区在线观看| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 天堂√8在线中文| 国内精品久久久久精免费| 色吧在线观看| 最近最新中文字幕大全电影3| 久久久久久久久大av| 精品人妻一区二区三区麻豆 | 国产淫片久久久久久久久| 国产精品一区二区性色av| 99在线视频只有这里精品首页| 国产成人精品久久久久久| 男插女下体视频免费在线播放| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧洲综合997久久,| 亚洲人成网站在线播| 婷婷精品国产亚洲av在线| 99久国产av精品国产电影| 亚洲av五月六月丁香网| 乱人视频在线观看| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件 | 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 一级黄片播放器| 最好的美女福利视频网| 国产亚洲欧美98| 亚洲美女黄片视频| 一级av片app| 蜜臀久久99精品久久宅男| 欧美色视频一区免费| 三级男女做爰猛烈吃奶摸视频| 亚洲av熟女| 亚洲无线观看免费| 成人特级av手机在线观看| av黄色大香蕉| 亚洲一级一片aⅴ在线观看| 亚洲第一电影网av| www.色视频.com| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| 国产伦精品一区二区三区视频9| 99久久成人亚洲精品观看| 在线免费观看的www视频| 日本一本二区三区精品| 国产成人福利小说| 91狼人影院| 日韩强制内射视频| 美女被艹到高潮喷水动态| 久久精品国产清高在天天线| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 日韩精品青青久久久久久| 美女cb高潮喷水在线观看| 日本成人三级电影网站| 色播亚洲综合网| 亚洲欧美日韩东京热| 日本免费a在线| 欧美日本视频| 有码 亚洲区| 久久久精品大字幕| 久久中文看片网| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 99久国产av精品| 2021天堂中文幕一二区在线观| 国产日本99.免费观看| 在线观看av片永久免费下载| 久久九九热精品免费| 22中文网久久字幕| 久久久久久久久大av| 直男gayav资源| 久久久久久伊人网av| 国产精品永久免费网站| 国产成人91sexporn| 色尼玛亚洲综合影院| 看非洲黑人一级黄片| 极品教师在线视频| 日本色播在线视频| 99久国产av精品| 97人妻精品一区二区三区麻豆| 日本黄色片子视频| 色在线成人网| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| aaaaa片日本免费| 日产精品乱码卡一卡2卡三| 特大巨黑吊av在线直播| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 久久久成人免费电影| 男人狂女人下面高潮的视频| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| 99在线人妻在线中文字幕| 午夜视频国产福利| 九九热线精品视视频播放| 麻豆一二三区av精品| 狂野欧美激情性xxxx在线观看|