• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5

    2022-12-28 09:53:30ShuyuanLv呂淑媛XinhuiLi李新慧WenfengLuo羅文峰andJieJia賈潔
    Chinese Physics B 2022年12期
    關鍵詞:淑媛文峰

    Shuyuan Lv(呂淑媛), Xinhui Li(李新慧), Wenfeng Luo(羅文峰), and Jie Jia(賈潔)

    Xi’an University of Posts&Telecommunications,School of Electronic Engineering,Xi’an 710121,China

    Keywords: metasurface,optical device,phase-change material,achromatic

    1. Introduction

    So far, transmission-type[1,2]and reflection-type[3,4]metasurface devices have gradually replaced bulky and huge traditional optics devices, due to the compact and easy-tomanufacture characteristics, as well as for flexible and effective control of electromagnetic wave polarization, amplitude,phase,and propagation mode,[5–11]by adjusting the geometric parameters of the nanopillar. With these advantages, metasurface devices are extensively used in such fields as invisibility cloaks,[12]high-dimensional holograms,[13,14]ultra-thin metalenses,[15–19]and vortex beams.[20,21]At the same time,metasurface devices have obvious dispersion problems mainly due to the intrinsic dispersion of the material itself. Intrinsic dispersion is caused by many factors,like the resonance phase of the metasurface nanopillars,different refractive index at different wavelengths and the difference of the propagation phase in free space,which leads to the decline of imaging quality. In a word,it is still a major challenge to realize achromatic metasurface devices.

    In order to solve the chromatic aberration problem, researchers used different methods to realize various achromatic devices based on different materials. For instance, in 2017,Wang Shuminget al.[22]used Au as a nanopillar unit,SiO2/Au as a substrate, designed a metasurface integration unit with smooth linear phase dispersion, and combined with geometric phase to achieve broadband achromatic optics device. It is proved that the designed metalenses and beam deflector metasurface can achieve achromatic effect within the near-infrared waveband of 1.2 μm–1.68 μm. In 2018, Sajan Shresthaet al.[23]used positive squares, hollow squares, concentric squares, cross-positive squares, and inner-cut squares to increase the dispersion of the metasurface, resulting in higher passivity of nanopillar.In the transmission mode,polarizationindependent achromatic devices can be realized in the nearinfrared waveband 1.2 μm–1.65 μm, and the focusing efficiency can reach 50%. This method is an important step in the practical application of metalens.

    In recent years, the unique characteristics of the phasechange materials have been developed by researchers and achromatic metasurface devices have been implemented with phase-change material. With appropriate stimulation of light, electricity or temperature, the phase-changing material can alter between the crystalline state and the amorphous state. Optical devices, like optical switch and achromatic metalenses,[24–26]have been realized based on these phasechanging material. In 2020, Ding Xiyaet al.[26]proposed a chromatic aberration compensation metasurface scheme based on phase-changing materials, and designed corresponding achromatic metalenses and beam deflector metasurface within the continuous waveband 8 μm–11 μm by uniformly adjusting the crystallization fraction of the phase-change material Ge2Sb2Te5(GST). This literature used the incident wavelength of 8.5μm as the basic wavelength, and the size of the nanopillars is obtained by scanning when the phase-change material crystal fractionmis 0.6.Finally,the achromatic function of the metasurface device was realized by adjusting the crystalline fraction of the phase-change material.

    Combined with the design method in this article, the phase-change material GST is selected as the material of the nanopillar,because it has the characteristics of obvious phase change, significant refractive index change between amorphous and crystalline states,and fast switching speed.[27]Both crystalline and amorphous states in the longer-infrared band have low absorptivity, which makes it possible to achieve achromatic design in the longer-infrared band. In this article,the corresponding phase is obtained by changing the radius of the nanopillars,so linearly polarized light is used as thexpolarization state to realize the achromatic function.

    In order to realize a wider bandwidth of achromatic metasurface optical device, a lot of work needs to be done on the resonant unit. In this article,we use the linear phase gradient combined with the crystalline fraction of the phase-changing material GST to design an achromatic metasurface optical device within the continuous wavelength range of 9.5 μm–13 μm. Simulation results demonstrated that this achromic metalenses is well realized with focus to the same focal plane in the working waveband,and the diffraction limit is reached.In addition, to further demonstrate the practicability of this method, the method is used to realize a beam deflector metasurface with a deflection angle of 19?in the working waveband. Our study not only provides a way to the realization of broadband achromatic metasurface, but also has potential application in fields,like communication technology,medical equipment,and holographic technology,and so on.

    2. Design principles and method

    Two types of metasurface devices, a transmissive achromatic metalenses and a beam deflector metasurface with the same deflection angle, are designed by the phase-change material GST. The working wavelength is 9.5 μm–13 μm, and the minimum wavelength is 9.5 μm used as the basic wavelength. The basic unit structure of the device consists of two parts shown in Figs. 1(a) and 1(b). The top part of the unit consists of concentric solid and hollow cylindrical nanopillar with the high refractive index material of GST.The substrate is CaF2with low refractive index of 1.34. The near-field distributions of these two structures are shown in Figs. 1(c) and 1(d), and both nanopillars support the waveguide cavity resonance. Whenh=6.5 μm, it can be seen that the phases of both nanopillars cover 0–2π.

    Periodic boundary conditions are used in thexandydirections,perfect matching layer(PML)is used in thezdirection, and the thickness of the PML is set to 2π/k0, wherek0is the wave vector in vacuum. The periodsPxandPyof the basic unit are set to be 2.3μm in order to satisfy the Nyquist sampling lawP<λ/2NA,whereλis the wavelength andNAis the numerical aperture with the value of 0.584.

    In order to achieve high-efficiency and wide-bandwidth achromatic metasurface devices, two types of nanopillars are used in this article,as shown in Fig.1.The device is composed of solid cylinders and hollow cylinders of different diameters,through the combination of linear phase gradient and phasechange material fraction to realize an achromatic metasurface device.

    Fig. 1. (a) Front view of nanopillars unit. (b) Top view of nanopillars unit. Solid nanopillar is GST with height h and radius r1. Hollow nanopillar have outer radius r2 and inner radius r3, and the substrate is CaF2. (c) The near-field image of a hollow cylinder, r2 =0.96 μm,r3=0.4μm,λ =9.5μm. (d)The near-field image of a solid cylinder,r1=0.88μm,λ =9.5μm.

    At the operating wavelength, the phase distribution formula required by the achromatic device is

    wherecandfare the speed and frequency in vacuum, respectively,Frepresents the focal length of the metalenses,and (x,y) are the position coordinates of the lens unit in the plane lens. In order to realize the achromatic metalenses, an additional phase shift is introduced shown in Fig. 2, and the corresponding formula is written as

    where?shift(f)is a reference phase function that has nothing to do with (x,y). After interacting with the metalens, only the spatial phase difference has an effect on the focal point of the lens. So we only need to consider the phase shift, that is,when (x,y)=0, the phase difference between the phase and the reference phase(9.5μm). And the phase shift distribution equation of the vertically incident wave is

    wherem(x,y)is the slope of the phase shift frequency. From Eqs. (3) and (4), it is concluded that the phase shift of the broadband achromatic metalenses at all positions has a linear relationship with frequency. In this work, hollow cylinders and solid cylinders are used as nanopillars to increase the dispersion of nanopillars. Since the phase distribution of each wavelength is completely independent, each GST nanopillar unit should provide a unique phase response. Each nanopillar is designed by changing the diameterr1of the cylinder and the diametersr2andr3of the hollow cylinder. Therefore,this work uses the linear phase gradients dispersion of the nanopillar to realize the achromatic device of 9.5μm–13μm,as shown in Fig.3(a). The size and shape of its 12 nanopillars are shown in Table 1.

    Fig.2. Phase distribution of wide-band achromatic metalenses at working wavelengths.

    Figure 3(a) shows the linear relationship with 12 GST nanopillars as a representative. The slope from unit 1 to unit 7 increases, but the slope from unit 8 to unit 12 decreases slightly compared to unit 1 and unit 7. Considering the problem of craftsmanship, the size of the hollow and solid cylinders selected in this article cannot be accurate to 1 nm,so the size searched by the slope cannot be a perfect match. There is a certain deviation, and the achromatic effect cannot reach the ideal state. Therefore, a wider achromatic effect can be achieved by adjusting the crystalline fractionmof the phasechange material.

    Table 1. Data of dimensions of unit structures.

    Figure 3(b) is a metalenses composed of 49 GST solid cylinders and hollow cylinders. Since metalenses are symmetrically arranged in the simulation design,there are 25 nanopillars in the designed metalenses a linear relationship. And Fig. 3(b) shows that there is still chromatic aberration within the bandwidth of 9.5 μm–13 μm, and it can be seen that the larger the wavelength,the more the derivative focus.

    In addition, the unique properties of the phase-change material are also used to increase the working bandwidth of the achromatic metalenses by the adjustment of crystalline fraction of the phase-change material. The dielectric constant of GST under different crystalline fraction conditions can be realized by the effective medium theory. The Lorentz–Lorenz[28]relationship is used to define the crystalline fraction formula of GST as

    whereεaGSTandεcGSTare the dielectric constants related to the frequency of crystalline and amorphous GST, respectively. The dielectric constant of the phase-change material is obtained from the literature.[29]mis the crystalline fraction,ranging from 0 (amorphous) to 1 (crystalline). In this work,the refractive index of GST in the amorphous and crystalline states is used within the waveband of 9.5μm–13μm,and the corresponding refractive index varies from 4.27 (amorphous state) to 6.3 (crystalline state). The simulation result of the metalenses designed by the change of themvalue of GST is shown in Fig.4.

    Fig.3. (a)The output phase of some unit selected in the metalenses varies with frequency. (b)Distribution of the electric field intensity of the metalenses at each wavelength.

    Fig.4. The m-tuned achromatic metalenses. By adjusting the crystalline fraction m of the phase-change material, the distribution of electric field intensity of achromatic metalens is studied.

    In the experiment, the pulse energy can be controlled by the local heating of femtosecond laser pulses.[30]The crystallization fraction of GST is adjusted by the pulse energy after heating, so as to achieve the achromatic effect of the phasechange material.[31,32]

    The metalenses are designed with the size of GST nanopillars at 9.5μm. The types of nanopillars used are solid cylinders. After simulation calculation, only by adjusting the crystalline fractionmvalue of the phase-change material, the achromatic effect will be achieved in the wavelength range of 9.5 μm–10.5 μm, when the wavelength is greater than 10.5 μm, the focal length is significantly reduced, so further adjustment and optimization are still needed to realize achromatic lenses in a larger wavelength range.

    3. Results and discussion

    Without any phase compensation, the result of incident wave is shown in Fig.5(a). The focal length decreases as the incident wavelength increases, which is due to the inherent chromatic aberration of the material. If the cell size data is only found by the slope of the relationship between the phase and frequency, the achromatic bandwidth of the metalens is limited. In addition, due to the variable characteristics of the phase-change material between the crystalline and the amorphous, the metalens can exhibit a certain achromatic effect.The simulation result of only adjusting the crystalline fractionmof the phase-change material is shown in Fig.4. Although there is achromatic effect, the achromatic effect is not ideal,and the wavelength range is small.

    Therefore, two methods are combined together to compensate for the chromatic aberration and realize the achromatic metasurface device. Firstly, hollow cylinders and solid cylinders are chosen as nanopillars and their sizes are selected according to the linear relationship between phase and frequency. However, considering the problem of craftsmanship,some practical sizes of the nanopillars do not match the required sizes. Therefore, the achromatic effect can be realized only within the small bandwidth. In order to realize the achromatic device with a larger bandwidth, we can change the refractive index of the phase-change material between the crystalline and the amorphous, and the achromatic effect can be realized correspondingly. With the combination of these two methods,the achromatic effect of the metalens with larger bandwidth is realized.

    Through simulation calculations,this method realizes an achromatic metalenses with a larger bandwidth,increasing the original bandwidth of 9.5μm–10.5μm to 9.5μm–13μm,with the increase of the bandwidth of 2.5μm.The electric field distribution in itsx–zplane is shown in Fig.5(b),the focal lengthf=80μm remains almost unchanged,and the result is as expected. The relationship between the achromatic focal length and the incident wavelength is shown in Fig. 5(c). The focal length oscillates at 80μm in the bandwidth of the incident wavelength from 9.5 μm to 13 μm, and it shows that the designed achromatic metalens is feasible.

    The corresponding FWHMs are 7.428 μm, 7.442 μm,7.231 μm, 7.338 μm, 8.074 μm, 8.737 μm, 8.742 μm, and 9.122μm,respectively. According to the diffraction limit formula FWHMlim=λ/2NA,whereλis the incident wavelength andNAis the numerical aperture of 0.584,and the calculation results show that the FWHM of the metalenses are close to the diffraction limit. The wavelength dependence of the FWHM spot size and focusing efficiency is shown in Fig.5(d). It can be seen from the figure that the focusing efficiency is above 60%. It is proved that the achromatic metalens designed in this article has a good focusing effect.

    Fig. 5. (a) Chromatic metalenses. The distribution of electric field intensity at each wavelength using a metalenses designed with a solid cylinder at λ =9.5 μm. (b) Achromatic metalenses. The distribution of electric field intensity of achromatic metalenses at each wavelength and its FWHM distribution at each wavelength. (c)The relationship between wavelength and focal length. (d)The relationship between FWHM,focusing efficiency and wavelength.

    In addition, Table 2 summarizes some of the work on achromatic metalenses, comparing materials, working bands,and focusing efficiency. Compared with literature,[18,22,26]the achromatic metalens designed in this paper not only has a larger working bandwidth,but also has a higher focusing efficiency. Moreover,the achromatic method used in this paper is relatively novel,which brings new ideas for the realization of achromatic lenses with larger bandwidth in the future.

    Table 2. Comparison of the work in this article and other work of the same type.

    An achromatic beam deflector metasurface with the same deflection angle is also designed and analyzed with the combination of these two methods mentioned above. According to the generalized Snell’s law, the phase gradient distribution formula of the achromatic beam deflector metasurface is designed as

    whereλis the incident wavelength,θ1andθ2are the incident angle and refraction angle,andn1andn2the refractive indices of the incident medium and output medium, respectively. In the air with normal incidence,the generalized Snell’s law can be rewritten as

    whereωrepresents the angular frequency, andcrepresents the speed of light in vacuum. The term d?/dxrepresents the phase gradient required to guide the beam to a certain angle at a certain frequency,and there should be a certain linear relationship between the phase gradient?and the positionxof the beam deflector along the air–metasurface interface. Therefore,the relationship between the required transmission phase of the unit and its positionxand angular frequencyωcan be written as the following formula:

    In order to construct the beam deflector with the same refractive angle at different frequencies,the nanopillar unit needs to satisfy the linear dispersion d?/dω,which can be obtained by changing the radius of the nanopillars to control the dispersion shown in Fig.6(a).

    In this work, the deflection angle 19?of the achromatic beam deflector metasurface is designed by combining the linear phase gradients with the crystalline fractionmvalue of the GST. In order to satisfy the linear relationship between the phase and frequency of each nanopillar within the designed waveband, the phase difference is ??=π/6 with the incident wavelength 9.5μm,and ??=2π/15 with 12.5μm. Figure 6(b)shows that the deflection angle of the designed beam deflector at 9.5μm wavelength is 19?,which has obvious chromatic aberration in the working waveband. Through the individual design of the nanopillar unit and the calculation of themvalue of the phase-change material, the achromatic beam deflector metasurface is realized with the incident at wavelengths of 9.5μm,10μm,10.5μm,11μm,11.5μm,12μm,12.5μm,and 13μm,and the corresponding crystal fractionmare 0,0,0,0,0,0.3,0.5,and 0.7,respectively. And the deflection angles are 19.35?,19.05?,19.89?,19.98?,19.61?,20.07?,20.24?, and 21.25?, respectively, which are all within the acceptable error range. In addition,it can also be seen from the output electric field diagram of the deflector in Fig. 7(a) that the deflection angle is about 19?. The functional relationship between the transmission field strength, deflection angle and wavelength of the achromatic deflector is shown in Fig.7(b).

    Fig.6.(a)The output phase of some unit selected in the beam deflector metasurface varies with frequency.(b)Chromatic beam deflector.Beam deflector designed with a hollow cylinder is used atλ=9.5μm,and its deflection angle changes with the increase of wavelength,and there is obvious chromatic aberration. (c)Achromatic beam deflector metasurface. After optimization,the beam deflector metasurface deflection angle is almost unchanged,which is about 19?.

    Fig.7. (a)Output electric field diagram at each wavelength. (b)3D plot of transmitted field strength versus deflection angle,incident wavelength.

    4. Conclusion

    This article proposes and simulates an achromatic metalenses and beam deflector metasurface device based on a phasechange material GST. The metasurface consisting of hollow cylinders and solid cylinders, is designed with the method of linear phase gradients relationship of the nanopillars, as well as the method related to the change of the crystalline fractionmvalue of GST. The size of the nanopillar reduces or even eliminates chromatic aberration in the longer-infrared wavelength range of 9.5 μm–13 μm, and realizes the achromatic beam deflector metasurface with the same deflection angle of 19?. The simulation results demonstrate the FWHM of the metalens is close to the diffraction limit. The combination design method provides a new way for realizing phase-change material achromatic metasurface devices.

    Acknowledgement

    Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466).

    猜你喜歡
    淑媛文峰
    利用BRDF模型改進PRI反演水稻光能利用率
    “一軸兩翼、雙發(fā)驅動”的數字化轉型模型與應用
    好慘好慘的事
    胡文峰博士簡介
    美人靠(短篇小說)
    作品(2019年10期)2019-09-10 07:22:44
    Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak?
    蓑衣草展姿
    文峰街
    重慶與世界(2016年6期)2016-10-09 06:27:10
    油庫是我家
    洗腦
    在线免费观看不下载黄p国产 | 午夜免费成人在线视频| 白带黄色成豆腐渣| 91麻豆av在线| 成年免费大片在线观看| 99riav亚洲国产免费| 欧美一区二区亚洲| 精品午夜福利在线看| 午夜福利18| 自拍偷自拍亚洲精品老妇| 国产精品一区二区性色av| 99视频精品全部免费 在线| 黄色一级大片看看| 欧美日韩瑟瑟在线播放| 好看av亚洲va欧美ⅴa在| 欧美日韩国产亚洲二区| 日日摸夜夜添夜夜添av毛片 | 欧美成人免费av一区二区三区| aaaaa片日本免费| 午夜老司机福利剧场| 一夜夜www| 最近中文字幕高清免费大全6 | 国产午夜福利久久久久久| 999久久久精品免费观看国产| 熟女电影av网| 亚洲av二区三区四区| 欧美高清成人免费视频www| 国产亚洲精品av在线| 特级一级黄色大片| 国产免费男女视频| 久99久视频精品免费| 黄色视频,在线免费观看| 国产一区二区激情短视频| 亚洲自偷自拍三级| 一进一出好大好爽视频| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 精品国产三级普通话版| 麻豆成人午夜福利视频| 亚洲中文字幕日韩| 1024手机看黄色片| 免费搜索国产男女视频| 听说在线观看完整版免费高清| 国内毛片毛片毛片毛片毛片| 极品教师在线免费播放| 亚洲狠狠婷婷综合久久图片| av在线天堂中文字幕| 两个人视频免费观看高清| 亚洲五月天丁香| 久久性视频一级片| 1024手机看黄色片| 少妇人妻精品综合一区二区 | 最近中文字幕高清免费大全6 | 久久亚洲精品不卡| 国产高清激情床上av| 日本精品一区二区三区蜜桃| 国产一区二区在线av高清观看| 国产成年人精品一区二区| a级毛片免费高清观看在线播放| 最近视频中文字幕2019在线8| 岛国在线免费视频观看| 久久午夜福利片| a在线观看视频网站| 午夜精品久久久久久毛片777| 午夜精品久久久久久毛片777| 国产69精品久久久久777片| 久久精品国产99精品国产亚洲性色| 直男gayav资源| av黄色大香蕉| 久久人妻av系列| 日日摸夜夜添夜夜添小说| 成人精品一区二区免费| 免费看光身美女| 国产午夜精品论理片| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在 | 搡女人真爽免费视频火全软件 | 久久久色成人| 中国美女看黄片| 精品久久久久久久末码| 午夜福利视频1000在线观看| 十八禁人妻一区二区| 成人av在线播放网站| 免费在线观看亚洲国产| 51国产日韩欧美| 久久久国产成人精品二区| 午夜激情福利司机影院| 国产美女午夜福利| 亚洲人成电影免费在线| 午夜精品久久久久久毛片777| 男人狂女人下面高潮的视频| 国产aⅴ精品一区二区三区波| 啦啦啦韩国在线观看视频| 国产精品人妻久久久久久| 午夜免费男女啪啪视频观看 | 90打野战视频偷拍视频| 免费大片18禁| 最后的刺客免费高清国语| 日本一二三区视频观看| 亚洲欧美清纯卡通| 亚洲av免费高清在线观看| 午夜福利在线观看吧| 欧美色视频一区免费| 青草久久国产| 欧美色视频一区免费| 97超级碰碰碰精品色视频在线观看| 国产成人啪精品午夜网站| 亚洲天堂国产精品一区在线| 免费观看精品视频网站| netflix在线观看网站| 国产探花极品一区二区| 中文亚洲av片在线观看爽| 在线观看av片永久免费下载| 久久人人精品亚洲av| 欧美午夜高清在线| 精品久久国产蜜桃| 欧美黑人巨大hd| 精品人妻熟女av久视频| 久久精品人妻少妇| 亚洲经典国产精华液单 | 最近视频中文字幕2019在线8| 欧美激情在线99| 两个人视频免费观看高清| 中亚洲国语对白在线视频| 亚洲黑人精品在线| 在线观看午夜福利视频| a在线观看视频网站| 美女 人体艺术 gogo| 久久久国产成人免费| 免费观看的影片在线观看| 国产淫片久久久久久久久 | 久久人妻av系列| 搡老熟女国产l中国老女人| av福利片在线观看| 免费无遮挡裸体视频| 又紧又爽又黄一区二区| 老熟妇仑乱视频hdxx| 亚洲乱码一区二区免费版| 成人三级黄色视频| 亚洲av.av天堂| 亚洲熟妇中文字幕五十中出| 亚洲av一区综合| 欧美xxxx黑人xx丫x性爽| 日韩有码中文字幕| 性欧美人与动物交配| 亚洲第一电影网av| 成人欧美大片| 国产探花极品一区二区| 午夜两性在线视频| 国产高清视频在线播放一区| 波多野结衣高清无吗| 精品久久久久久久久亚洲 | 黄色女人牲交| 美女高潮喷水抽搐中文字幕| 久久精品影院6| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 在线观看午夜福利视频| 午夜激情欧美在线| 内地一区二区视频在线| 最近最新中文字幕大全电影3| 亚洲在线自拍视频| 激情在线观看视频在线高清| 波野结衣二区三区在线| 久久久久亚洲av毛片大全| 国产一区二区在线观看日韩| 精品午夜福利在线看| 我要搜黄色片| 成年人黄色毛片网站| 一级av片app| 又爽又黄a免费视频| 色5月婷婷丁香| 国产免费男女视频| 亚洲专区中文字幕在线| 男人舔女人下体高潮全视频| 床上黄色一级片| 嫩草影院入口| 亚洲人与动物交配视频| 国产综合懂色| 欧美日韩国产亚洲二区| 1000部很黄的大片| 亚洲成人精品中文字幕电影| 久久99热这里只有精品18| 精品一区二区免费观看| 欧美性感艳星| 啪啪无遮挡十八禁网站| 亚洲国产色片| 日本三级黄在线观看| 国产激情偷乱视频一区二区| 女同久久另类99精品国产91| 日本五十路高清| 国产蜜桃级精品一区二区三区| av在线天堂中文字幕| 午夜精品久久久久久毛片777| 亚洲不卡免费看| 国产在线男女| 成人特级黄色片久久久久久久| 成人国产一区最新在线观看| 国产伦精品一区二区三区视频9| 琪琪午夜伦伦电影理论片6080| 观看美女的网站| 麻豆成人午夜福利视频| 内地一区二区视频在线| 少妇的逼水好多| 麻豆成人av在线观看| 91字幕亚洲| 中文字幕人成人乱码亚洲影| 国产亚洲欧美在线一区二区| 亚洲精华国产精华精| 99热这里只有是精品在线观看 | 日韩人妻高清精品专区| 少妇丰满av| 露出奶头的视频| 久久久久久久精品吃奶| 无人区码免费观看不卡| 97超级碰碰碰精品色视频在线观看| 日本在线视频免费播放| 激情在线观看视频在线高清| 国产av在哪里看| 搡女人真爽免费视频火全软件 | 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 欧美日本视频| 伦理电影大哥的女人| 成年女人看的毛片在线观看| avwww免费| 一级毛片久久久久久久久女| 午夜老司机福利剧场| 又爽又黄无遮挡网站| 精品国内亚洲2022精品成人| 99视频精品全部免费 在线| 婷婷色综合大香蕉| 国产一区二区亚洲精品在线观看| 俺也久久电影网| 在线播放国产精品三级| 搞女人的毛片| av在线观看视频网站免费| 露出奶头的视频| 男插女下体视频免费在线播放| 老司机午夜福利在线观看视频| 久久久久久久亚洲中文字幕 | 最新中文字幕久久久久| 国产av不卡久久| 免费观看的影片在线观看| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 少妇丰满av| 一夜夜www| 美女高潮的动态| 午夜视频国产福利| 日韩人妻高清精品专区| 国产一区二区在线观看日韩| 亚洲无线在线观看| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 免费看光身美女| 村上凉子中文字幕在线| 国产一区二区亚洲精品在线观看| 一本一本综合久久| 国产精品永久免费网站| 久久久久久久久久成人| 亚洲精品在线美女| 无遮挡黄片免费观看| 亚洲熟妇熟女久久| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 国产激情偷乱视频一区二区| 国产一区二区三区视频了| 长腿黑丝高跟| a在线观看视频网站| 高清在线国产一区| .国产精品久久| 欧美bdsm另类| 亚洲av第一区精品v没综合| 蜜桃亚洲精品一区二区三区| 中文资源天堂在线| 亚洲乱码一区二区免费版| 露出奶头的视频| 久久九九热精品免费| 精品久久久久久久久久免费视频| 日本成人三级电影网站| 男女做爰动态图高潮gif福利片| 男女视频在线观看网站免费| 女人被狂操c到高潮| 日日摸夜夜添夜夜添av毛片 | 人妻制服诱惑在线中文字幕| 婷婷精品国产亚洲av在线| 亚洲最大成人av| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 成人国产一区最新在线观看| 噜噜噜噜噜久久久久久91| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人中文字幕在线播放| 床上黄色一级片| 欧美成狂野欧美在线观看| 国产色婷婷99| 精品不卡国产一区二区三区| 丰满的人妻完整版| 老鸭窝网址在线观看| 亚洲男人的天堂狠狠| 国语自产精品视频在线第100页| av欧美777| 欧美成人a在线观看| 精品99又大又爽又粗少妇毛片 | 国产精品不卡视频一区二区 | 禁无遮挡网站| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 欧美精品国产亚洲| 美女cb高潮喷水在线观看| 日韩欧美国产在线观看| 免费av不卡在线播放| 国产不卡一卡二| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品av在线| 亚洲美女黄片视频| or卡值多少钱| 99热6这里只有精品| 内射极品少妇av片p| 日韩精品青青久久久久久| 国产三级黄色录像| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 丁香欧美五月| 国产精品女同一区二区软件 | bbb黄色大片| 国产欧美日韩精品一区二区| 国产高潮美女av| av在线天堂中文字幕| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 国产真实伦视频高清在线观看 | 天堂动漫精品| a在线观看视频网站| 国产精品电影一区二区三区| av天堂在线播放| 亚洲av熟女| 国产又黄又爽又无遮挡在线| 国产免费一级a男人的天堂| 直男gayav资源| 脱女人内裤的视频| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 一本一本综合久久| 国产激情偷乱视频一区二区| ponron亚洲| 在线免费观看的www视频| 1024手机看黄色片| 国产亚洲精品av在线| 久久精品久久久久久噜噜老黄 | 老熟妇乱子伦视频在线观看| 中文字幕人成人乱码亚洲影| 午夜免费激情av| 日韩欧美国产在线观看| 小说图片视频综合网站| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 亚洲无线观看免费| 久久精品人妻少妇| 波多野结衣高清作品| 国内精品久久久久久久电影| 欧美高清成人免费视频www| 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 午夜视频国产福利| 色噜噜av男人的天堂激情| 日本 欧美在线| 免费黄网站久久成人精品 | av在线天堂中文字幕| 国产亚洲欧美98| 免费av不卡在线播放| 精品一区二区免费观看| 亚洲人成电影免费在线| 国产伦在线观看视频一区| 香蕉av资源在线| 国产欧美日韩一区二区精品| 中文字幕久久专区| 一进一出抽搐gif免费好疼| 午夜福利免费观看在线| 精品日产1卡2卡| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| 麻豆成人午夜福利视频| 亚洲在线自拍视频| ponron亚洲| 日本a在线网址| 国产大屁股一区二区在线视频| 午夜两性在线视频| 国产成人福利小说| 久久久国产成人精品二区| 在线a可以看的网站| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 免费av观看视频| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 国产大屁股一区二区在线视频| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 久久伊人香网站| 国产乱人视频| 九色成人免费人妻av| 欧美3d第一页| 两性午夜刺激爽爽歪歪视频在线观看| 美女高潮喷水抽搐中文字幕| 能在线免费观看的黄片| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 一级av片app| av福利片在线观看| 亚洲av日韩精品久久久久久密| 亚洲男人的天堂狠狠| 91字幕亚洲| 国产精华一区二区三区| 免费av观看视频| 国产高清激情床上av| 久99久视频精品免费| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 乱人视频在线观看| 欧美中文日本在线观看视频| 成人国产综合亚洲| 久久这里只有精品中国| 十八禁人妻一区二区| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 午夜免费激情av| 国产熟女xx| 他把我摸到了高潮在线观看| 国产精品亚洲av一区麻豆| 国产精品亚洲一级av第二区| 露出奶头的视频| 别揉我奶头 嗯啊视频| 男人舔奶头视频| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 1000部很黄的大片| 国模一区二区三区四区视频| 久久久久久久久中文| 国产一区二区在线观看日韩| 一级作爱视频免费观看| 国产精品99久久久久久久久| 一二三四社区在线视频社区8| 性欧美人与动物交配| 午夜两性在线视频| 欧美成人性av电影在线观看| av在线老鸭窝| 久久国产乱子免费精品| 亚洲精品成人久久久久久| www.色视频.com| 国产淫片久久久久久久久 | 日韩中字成人| bbb黄色大片| 久久精品91蜜桃| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品成人综合色| 国产熟女xx| 99热只有精品国产| 男人狂女人下面高潮的视频| 午夜两性在线视频| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 成人av一区二区三区在线看| 69人妻影院| 看黄色毛片网站| 欧美bdsm另类| bbb黄色大片| 欧美日韩黄片免| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 少妇的逼好多水| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 69av精品久久久久久| 丁香六月欧美| 亚州av有码| 色av中文字幕| 亚洲专区中文字幕在线| 禁无遮挡网站| 久久久久久久久久成人| 亚洲无线在线观看| 天堂网av新在线| 欧美在线黄色| 中文字幕精品亚洲无线码一区| 在线天堂最新版资源| 极品教师在线免费播放| 天堂网av新在线| 日韩中字成人| 亚洲精品456在线播放app | 99视频精品全部免费 在线| 成年女人永久免费观看视频| 99久国产av精品| 国产男靠女视频免费网站| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 国产一区二区在线av高清观看| 日韩欧美在线二视频| 精品久久久久久,| 精品一区二区三区视频在线| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 国产伦精品一区二区三区四那| 一进一出好大好爽视频| 亚洲av不卡在线观看| 色在线成人网| 麻豆国产av国片精品| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 欧美一区二区精品小视频在线| 久久性视频一级片| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 国产精品不卡视频一区二区 | 亚洲欧美日韩高清在线视频| avwww免费| 中文字幕免费在线视频6| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| 国产三级中文精品| 可以在线观看的亚洲视频| 悠悠久久av| 1024手机看黄色片| 久久精品91蜜桃| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 天堂网av新在线| 91麻豆精品激情在线观看国产| 91麻豆av在线| 国产精品影院久久| 国产中年淑女户外野战色| 久久久久亚洲av毛片大全| 欧美xxxx性猛交bbbb| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 成人国产综合亚洲| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 级片在线观看| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 男人舔奶头视频| 99久久精品国产亚洲精品| 日本五十路高清| 美女 人体艺术 gogo| 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| 欧美日韩综合久久久久久 | av在线观看视频网站免费| 亚洲人成电影免费在线| 国产高清视频在线播放一区| bbb黄色大片| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 搞女人的毛片| 极品教师在线免费播放| 国产精品人妻久久久久久| 亚洲最大成人av| 国产精品99久久久久久久久| 日本a在线网址| 国产在线男女| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 天堂网av新在线| www.999成人在线观看| 亚洲三级黄色毛片| 宅男免费午夜| 欧美日韩亚洲国产一区二区在线观看| 国产伦精品一区二区三区视频9| www.熟女人妻精品国产| 亚州av有码| 男女那种视频在线观看| 久久中文看片网| 成人欧美大片| 有码 亚洲区| 中文字幕高清在线视频| 亚洲自偷自拍三级| 九色国产91popny在线| 十八禁网站免费在线| www.熟女人妻精品国产| 国产私拍福利视频在线观看|