• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated spatial transmission signals in the photonic bandgap

    2022-12-28 09:53:32WenqiXu許文琪HuiWang王慧DaohongXie謝道鴻JunlingChe車俊嶺andYanpengZhang張彥鵬
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王慧

    Wenqi Xu(許文琪) Hui Wang(王慧) Daohong Xie(謝道鴻) Junling Che(車俊嶺) and Yanpeng Zhang(張彥鵬)

    1School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    2School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    3Key Laboratory for Physical Electronics and Devices of the Ministry of Education&Shaanxi Key Laboratory of Information Photonic Technique,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: electromagnetically induced transparency, nonlinear Kerr effect, four-wave mixing, photonic bandgap

    1. Introduction

    For a long time, light field modulation — which mainly uses lasers to modulate various mesoscopic systems — has been a key area of optics research. In this modulation process,the interaction between laser light and materials and the resulting effects shed light on the workings of mesoscopic systems.[1]In addition, the related phenomena and effects have potential applications in light fields. Optical lattices constructed using artificial light fields are very important for light field modulation due to their unique periodic structure.[2]A periodic refractive index is formed when laser beams are transmitted in a periodic structure.[3]By periodically modulating the refractive index of the medium, the way in which a light field is transmitted by the medium can be adjusted to control and manipulate the light field. In this paper, we describe the implementation of an artificially tunable one-dimensional optical bandgap lattice that uses enhanced optical nonlinear effects based on electromagnetically induced transparency and the interactions of nonperiodically structured atoms.[4–6]Tunable spatial transmissions of light fields were implemented in such an optical bandgap lattice, and its transmission patterns were investigated by modulating the nonlinear Kerr effect. This provides another way to observe the spatial transmission properties of light fields, which provides a basis for better controlling and manipulating lasers to modulate the refractive indices of media. Such research has potential applications in all-optical communications,[7,8]as it enables the spatial transmission mode,logic,and relevance of a light field to be modulated.

    The electromagnetically induced transparency effect offers great value for applications in nonlinear optics. In particular, when based on the multienergy atomic structure,electromagnetically induced transparency can not only drastically change the nonlinear refractive index of an atomic medium, which leads to a slower velocity of the probe beam,but can also enhance the nonlinear effect of the atomic medium and thus improve the intensity of the four-wave mixing signal.[9–11]In addition, the electromagnetically induced transparency effect can also enhance the nonlinear self-Kerr effect as well as the nonlinear cross-Kerr effect.[12,13]Furthermore, an electromagnetically induced grating can be created using the electromagnetically induced transparency phenomenon under certain spatial light field conditions,[14,15]causing the medium to form a periodic photonic bandgap structure.[16,17]In our experiment,we investigated the optical nonlinear Kerr effect generated by the electromagnetically induced transparency signal and the four-wave mixing signal in a one-dimensional photonic band structure. In this process,we observed the nonlinear Kerr effect and the corresponding transmission spot changes of two signals under different conditions, in particular, under the effect of interaction between different light fields. In addition,regulation of specific physical phenomena in the spatial images of the probe signal and the four-wave mixing signal was observed, including focusing, defocusing,[18]shifting,[19]and spatial splitting.[20]The experimental results show that the interaction between the light field and the medium can regulate the spatial transmission of the light field by changing the refractive index of the medium. These results provide experimental technology support for all-optical communications and open up potential research prospects for all-optical signal processing.

    2. Experimental scheme

    As shown in Fig. 1(a1), the energy levels in this experiment are designed based on an inverted Y-type four-energy atomic structure consisting of 5S1/2(F=3)(|0〉),5S1/2(F=2) (|3〉), 5P3/2(|1〉), and 5D5/2(|2〉) in a rubidium (85Rb)atomic four-energy system. The probe laser beamE1excites|0〉to|1〉, the coupling laser beamsE3andE′3connect|3〉and|1〉from two opposite directions, and the external dressing laser beamE2excites|1〉to|2〉. As the light field excites the atoms to their respective energy levels, the mutual dressing effect between the energy levels causes individual energy levels to split and form the dark state, which results in the electromagnetically induced transparency phenomenon. Figure 1(a2) shows the relationship between the mutual dressing effects of individual energy levels. The light fieldE3splits energy level|1〉into two dressed states denoted by|G3(z)+〉and|G3(z)?〉. When the external dressing field laser beamE2is injected, the energy level|G3(z)+〉is further split into two dressed states denoted by|G3(z)+G2+〉and|G3(z)+G2?〉due to the dressing effect between the energy levels. Figure 1(b)shows a schematic diagram of the experimental beam structure. The experimental setup is shown in Fig. 1(c); it consists of the probe laser beamE1together with the coupling laser beamsE3andE′3. In addition, the oval part of the figure represents the rubidium medium inside a heated cavity. The laser beam is divided into multiple beams through different polarizing beam splitters (PBSs), and is focused into the atomic medium in different directions. After passing through the atomic medium, the laser beam is then injected into the charge-coupled device (CCD) and the oscilloscope through the optical attenuator. The evolution of the spatial beam and its regulation are observed using the signals in the CCD and the oscilloscope. First, different laser beams are injected into the system under different experimental conditions.PBS2 and PBS3 transmit the refracted probe transmission signal (EP) to receiver D1, while the four-wave mixing signal(EF)is transmitted in the other direction through PBS1 and also through PBS4 to receiver D2and the CCD.The light fieldsE1andE3are injected in different directions, forming a small angle between them;E′3is transmitted in the opposite direction to that ofE1,while the dressing fieldE2propagates at a small angle in the opposite direction to that ofE1. In this process,the excitation energy levels of the periodic beam form a periodic split energy level structure,enabling a periodic polarization rate to be obtained, thus creating a periodic refractive index in the medium that finally constructs the photonic bandgap structure. The spectral signal in the detector and the spot image signal in the CCD are then observed and analyzed by changing the light field to adjust various parameters.

    Fig.1. (a1)Model of a four-energy atomic system and the energy level structure of the light field, (a2) diagram of the energy levels splitting under the effect of the dressing light field,(b)schematic diagram of the optical path design and the atomic medium, (c) diagram of the simple experimental setup,including PBS(a polarizing beam splitter),D1 (detector 1),D2 (detector 2),Rb cell(a rubidium cell),and CCD(a charge-coupled device).

    3. Theoretical model

    The self-Kerr and cross-Kerr effects are mainly generated by the interaction of the light field with the atomic medium.In order to help the reader to understand the nonlinear dispersion in the medium and physical phenomena such as the focusing,defocusing,splitting,and shifting of the light transmission,we present the spatial light propagation equations for the probe transmission signal and the four-wave mixing signal that result from self-phase modulation and cross-phase modulation. The propagation equation corresponding to the probe transmission signal is shown below:

    In the left-hand sides of Eqs. (1) and (2), the first terms describe the longitudinal propagation process of the probe signal and the four-wave mixing signal,respectively. The second terms reflect the diffraction phenomena of the two different laser fields during the propagation process. In the right-hand sides of the two equations, the first terms describe the nonlinear self-Kerr effect, and the second through the fifth terms describe the nonlinear cross-Kerr effect.

    For the specific application of the Kerr effect in this experiment,all nonlinear Kerr effects can be expressed in a generalized form as

    In addition, when the nonlinear refractive index is large and the field strength is low, we can also use Eq. (7) to theoretically approximate the nonlinear phase shift and strong spatial focusing or defocusing phenomenon in order to simplify this complex problem.

    4. Experimental results

    Fig.2. Probe transmission spectra(a1), four-wave mixing spectra(a2), and refractive index(a3)with scanning detuning ?1 in the range of ?800 MHz to 800 MHz. Spatial image of the probe transmission signal(b1)and a spatial image of the four-wave mixing signal(b2)with scanning detuning ?1 in the range of ?800 MHz to 800 MHz. In the above figures, the coupling field detuning ?3 and the dressing field detuning ?2 are both 400 MHz,the power of E1 is 1.5 mW,the power of E3 is 15 mW,the power of E′3 is 15 mW,and the power of E2 is 30 mW.

    We now focus on the modulation of the spatial images by narrowing?1in the vicinity of the generated EIT and fourwave mixing under the cross-Kerr effect of the four beams interacting with each other.To ensure the symmetry of the study,we change the frequency detuning?3to?400 MHz and observe the variation of both signals under different experimental conditions by controlling a single variable.Figure 3(a1)shows the spectrum of the probe transmission signal for the scanning frequency detuning?1. On comparing this with Fig.2(a1),it can clearly be observed that when?3changes from positive to negative, the spectrum of the probe signal generates electromagnetically induced transparency at the scanning frequency detuning of?1=430 MHz. Figure 3(a2)shows the spectrum of the four-wave mixing signal for the scanning frequency detuning?1. Similarly, comparing Fig. 3(a2) with Fig. 2(a2),one can see that the spectra of both figures show basically the same pattern at symmetric frequencies. The theoretical variation curve of the Kerr nonlinear refractive index under the effect of light fieldE1alone is shown in Fig. 3(a3), which demonstrates that the variation in the Kerr nonlinear refractive index only occurs with the scanning frequency detuning.

    Fig.3. Probe transmission spectra(a1),four-wave mixing spectra(a2),and refractive index(a3)with scanning frequency detuning ?1 in the range of ?500 MHz to 500 MHz. Spatial images of the probe transmission signal (b1) and the four-wave mixing signal (b2) with scanning frequency detuning ?1 in the range of 400 MHz to 440 MHz. In the above figures,the coupling field frequency detuning ?3 and the dressing field frequency detuning ?2 are both ?400 MHz,the E1 power is 1.5 mW,the E3 power is 15 mW,and the E′3 power is 15 mW.All spectral vertical axis units are normalized units(arb.units).

    This section describes the modulation effect of the nonlinear cross-Kerr effect on the signal, which was observed by scanning the frequency detuning?2and altering the intensity of the probe field. Fixing?1=200 MHz allows the frequency detuning?2to be scanned while changes in the images are located within the defocused area,which facilitates a more intuitive observation of the effect of the external dressing field. Figures 4(a1)and 4(a2)show the spectral variations and the spatial images of the probe transmission signal for a dressing fieldE2power of 30 mW. Theoretically, when the probe transmission signal satisfies the resonance condition of?1+?2=0 MHz,it should generate an EIT peak. However,when the probe fieldE1power is large,its interaction with the dressing fieldE2is strong,so thatE2has a suppressing effect on the energy level|1〉. Therefore, at a scanning frequency detuning of?2=0 MHz, a suppression phenomenon occurs in the middle of the EIT peak, because the|G2|2/d2term in Eq.(5)causes the dressing fieldE2to produce a dressing effect on the probe transmission signal. As we can see from the spatial image of the probe transmission signal in Fig.4(a2),theE2field has a clear suppressive effect on the probe transmission signal. Figures 4(a1′) and 4(a2′) show this phenomenon after only reducing the power ofE1and keeping all the other conditions constant.The probe transmission signal at this time shows a typical single-peak spectrum,because the field power ofE1is too small and the interaction withE2is weak. Therefore, the suppressive effect ofE2onE1cannot be reflected in the figure. On comparing Fig.4(a2′)with Fig.4(a2),it can be seen more obviously that with a continuous change of the scanning frequency detuning?2, the intensities of the probe transmission signal, spot area, and spot brightness decrease when the intensity of the probe field diminishes. In addition,hardly any obvious change can be seen in the spatial image in the weak signal case. Correspondingly, the strong probe field case shows significant transverse and longitudinal splitting of the probe transmission image,for the same reasons as explained above.

    Fig.4. (a)Scanning of the frequency detuning ?2 in the range of ?300 MHz to 300 MHz: the probe transmission spectrum (a1) and the corresponding spatial images(a2)at a probe field E1 power of 2 mW;the probe transmission spectrum(a1′)and the corresponding spatial images(a2′)at an E1 power of 1 mW, (b) scanning frequency detuning ?2 in the range of ?300 MHz to 300 MHz:the four-wave mixing spectrum(b1)and the corresponding spatial images(b2)at a probe field E1 power of 2 mW;the four-wave mixing signal spectrum(b1′)and the corresponding spatial images(b2′)at an E1 power of 1 mW.All spectral vertical axis units are normalized units(arb.units).

    The spectral and spatial image changes of the four-wave mixing signal are shown in Figs.4(b1)and 4(b2),respectively,for anE1field power of 2 mW. In the spectrum of the fourwave mixing signal, it can clearly be seen that the four-wave mixing signal is also affected by the dressing effect ofE2,which results in a suppression pit at?2=0 MHz in the spectrum. From Fig.4(b2),it can be observed that due to the cooperative effect of the nonlinear phase shifts?1and?2caused byE1andE2, the spatial image of the four-wave mixing signal exhibits a splitting phenomenon. Additionally,the variation of the frequency detuning ofE2changes the combined nonlinear refractive index of the two light fields. It turns out that if the change in the intensity is weak, the degree of splitting does not change with?2, indicating that the nonlinear modulation is subject to a smallerE2effect.

    The spectral and spatial image changes of the four-wave mixing signal after decreasing the power ofE1to 1 mW are shown in Figs.4(b1′)and 4(b2′),respectively. In comparison with Fig. 4(b1), we still see a suppression pit, but its depth is smaller than in Fig. 4(b1′). Figure 4(b2′) shows the corresponding spatial image of the four-wave mixing signal. On compared this with Fig. 4(b2), it can be seen that the image does not split longitudinally after theE1power is reduced.This indicates that the image of the four-wave mixing signal splits longitudinally due to the high power ofE1. Furthermore,the main reason for this is they-axis component of the nonlinear phase shift caused by the interaction betweenE1and the atomic medium. This demonstrates that different probe field powers play a crucial role in the splitting modulation of the probe transmission and four-wave mixing images.

    Finally, we further investigated the relationship between the intensity of the external dressing field and the nonlinear refractive index by fixing?1=200 MHz in the defocused area.The spatial evolution patterns of the four-wave mixing images are shown in Fig. 5(a). Spatial images are shown in detail in Figs. 5(a1), 5(a2), and 5(a3), for different powers of the external dressing fieldE2of 30 mW, 20 mW, and 10 mW, respectively. In the transverse view,the optical spot area of the four-wave mixing decreases near?2=0 MHz,which is consistent with the intensity magnitude of the spectral signals in Figs.5(b1),5(b2),and 5(b3).In the longitudinal view,the suppression effect of the light fieldE2on the four-wave mixing signal is smaller away from the resonant frequency of 0 MHz.In the other words, for the same scanning frequency detuning, the smaller the power, the smaller the area of the optical spot that appears. Moreover, the farther?2is from 0 MHz,the more apparent this pattern becomes. When?2is closer to resonant frequency of 0 MHz, the larger theE2power becomes, and the spot area shows the opposite pattern. To be precise,the closer?2is to 0 MHz,the larger theE2light-field power becomes, and the smaller the spot appears due to the suppression effect.This is because when?2=0 MHz,the resonance effect betweenE2and the atomic energy level is at its strongest,and the dressing effect ofE2on the four-wave mixing signal exhibits stronger suppression.Figure 5(b)shows the pattern of variation in the spectrum intensity of the four-wave mixing signal for various powers. The larger theE2power,the more significant the suppression effect on the four-wave mixing spectrum becomes,and the deeper the suppression pit.In Figs. 5(a1) and 5(b1), it can be seen that the power ofE2is 30 mW. Under these conditions, with a changing scanning frequency detuning?2,the suppression pit created by the fourwave mixing signal at?2=0 MHz corresponds to the smallest spot in Fig.5(a1). As the power ofE2decreases,the suppression of the four-wave mixing signal byE2diminishes,and the suppression pit depth becomes smaller,as shown in Figs.5(b2)and 5(b3). In Figs.5(a2)and 5(a3),when?2=0 MHz and the dressing effect is the strongest, the smaller the power ofE2,the larger the optical spot. For a more intuitive observation of the relationship between the intensity of the dressing field and the variation of the optical spot, we have added a red dashed line as a reference in Fig. 5(a). The dashed line corresponds to the location of the maximum intensity of the dressing field.It can be seen that when theE2power is constant, the area of the optical spot shrinks to its minimum when the dressing effect reaches its maximum. Moreover,the optical spot is increasingly less suppressed byE2as theE2power decreases.At the same time,the spot area gradually increases at the same scanning frequency detuning. Figure 5(c) shows the trend of the nonlinear Kerr refractive index at different dressing intensities. As the scanning frequency detuning?2changes, the refractive index gradually changes from zero to less than zero and then back to its initial position. In addition,the larger the power ofE2,the larger the change in the Kerr refractive index becomes, and the greater the variations of the curves corresponding to Fig.5(c1),5(c2),and 5(c3).

    Fig.5. (a)Spatial images of the four-wave mixing signal with a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz,an E1 power of 1.5 mW,and dressing field intensities of (a1) 30 mW, (a2) 20 mW, and (a3) 10 mW,respectively. (b)Spectra of the four-wave mixing with a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz and dressing field intensities of(b1)30 mW,(b2)20 mW,and(b3)10 mW,respectively.(c)Nonlinear refractive index variation for a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz and dressing field intensities of (c1) 30 mW, (c2) 20 mW, and(c3)10 mW,respectively. The power of E3 is 15 mW,and the power of E′3 is 15 mW.

    Based on Figs. 5(a)–5(c) it can be seen that the external dressing field has a modulating effect on the nonlinear Kerr refractive index. Furthermore, it may also modulate the intensity and spatial spot area of the four-wave mixing signal.When the intensity of the external dressing field is larger, the nonlinear Kerr refractive index changes at a faster rate, and the nonlinear modulating effect of the four-wave mixing signal becomes stronger. Conversely, when the intensity of the external dressing field is smaller,the nonlinear Kerr refractive index changes more slowly, and the modulating effect of the four-wave mixing signal becomes weaker.

    5. Conclusion

    In summary, we have presented a theoretical and experimental study of the spatial image and spectral signal evolution patterns of the probe transmission and the four-wave mixing signal based on an inverted Y-type four-energy level atomic system by changing the adjustable parameters of the light field. The refractive index of the medium was modulated by the nonlinear Kerr effect of the interaction between the light field and the atomic medium. In addition,the nonlinear phase shift of the probe transmission and the four-wave mixing signal was modulated. Spatial shifting and splitting patterns of the probe transmission and the four-wave mixing signals were obtained by manipulating the light fields. In this process, it was observed that frequency detuning and the power of the light fields play a decisive role in the spatial image change of the probe transmission and four-wave mixing signals. These modulating patterns provide experimental technology support for all-optical communications and open up potential research prospects for nonlinear optical communications networks.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 61705182) and the Natural Science Foundation of Shaanxi Province, China (Grant No.2017JQ6024).

    猜你喜歡
    王慧
    翹首遠望
    綠色天府(2021年11期)2021-12-06 02:46:18
    情深深雨蒙蒙
    金秋(2021年24期)2021-04-01 10:05:44
    浮光掠影
    思維與智慧(2021年9期)2021-03-23 03:16:24
    粒粒皆辛苦
    童年色彩
    金秋(2019年10期)2019-01-13 13:05:55
    花枝俏
    暮之剪影
    王慧攝影作品二幅
    純真童趣
    金秋(2017年14期)2017-10-24 09:14:43
    Two Allusions in Sense and Sensibility
    99久久精品热视频| 亚洲精品久久久久久婷婷小说 | 女的被弄到高潮叫床怎么办| 女人被狂操c到高潮| 欧美成人精品欧美一级黄| 麻豆av噜噜一区二区三区| 99热全是精品| 欧美成人精品欧美一级黄| 一本精品99久久精品77| 啦啦啦观看免费观看视频高清| 久久久精品大字幕| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久人妻蜜臀av| 伦精品一区二区三区| 久久久久免费精品人妻一区二区| 欧美另类亚洲清纯唯美| 美女黄网站色视频| av免费在线看不卡| 日韩欧美精品v在线| 91av网一区二区| 神马国产精品三级电影在线观看| 国产亚洲5aaaaa淫片| 2022亚洲国产成人精品| 天堂√8在线中文| 日韩高清综合在线| 久久久精品大字幕| 日本免费一区二区三区高清不卡| 99在线人妻在线中文字幕| 成人无遮挡网站| 欧美色欧美亚洲另类二区| 亚洲av不卡在线观看| 欧美高清性xxxxhd video| 国产久久久一区二区三区| 女的被弄到高潮叫床怎么办| 老师上课跳d突然被开到最大视频| 日韩大尺度精品在线看网址| 国产伦一二天堂av在线观看| 亚洲欧美日韩东京热| 婷婷亚洲欧美| 国产成人精品久久久久久| 国产亚洲5aaaaa淫片| 国产精品久久久久久精品电影| 国产一区二区在线av高清观看| 综合色av麻豆| 免费人成视频x8x8入口观看| 禁无遮挡网站| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 午夜久久久久精精品| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放 | 人人妻人人看人人澡| 免费人成在线观看视频色| 国产日韩欧美在线精品| 中文字幕久久专区| 国产精品电影一区二区三区| 欧美日本视频| 一个人看的www免费观看视频| 亚洲一区二区三区色噜噜| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 久久精品影院6| 观看美女的网站| 午夜免费激情av| 在线免费观看不下载黄p国产| 成人二区视频| 久久久a久久爽久久v久久| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 色哟哟哟哟哟哟| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影| 久久久久久大精品| 美女内射精品一级片tv| 精品人妻熟女av久视频| 中文亚洲av片在线观看爽| 亚洲在久久综合| 99视频精品全部免费 在线| 亚洲中文字幕一区二区三区有码在线看| 日日啪夜夜撸| 国产伦精品一区二区三区视频9| 99久久中文字幕三级久久日本| 听说在线观看完整版免费高清| 在线观看午夜福利视频| 99热全是精品| 久久人妻av系列| 麻豆成人av视频| 国产高潮美女av| 在线观看一区二区三区| a级毛片免费高清观看在线播放| 亚洲五月天丁香| 国产美女午夜福利| 亚洲精品乱码久久久v下载方式| 国产精品电影一区二区三区| 久久久久久久久久久免费av| 亚洲精品自拍成人| 久久精品夜夜夜夜夜久久蜜豆| 色哟哟·www| 男女视频在线观看网站免费| 久久99热6这里只有精品| 观看免费一级毛片| 久久久久久久久久成人| 国内精品美女久久久久久| 日韩中字成人| 亚洲熟妇中文字幕五十中出| 91久久精品国产一区二区成人| 国产精品久久久久久精品电影小说 | 三级男女做爰猛烈吃奶摸视频| 男人舔奶头视频| www.色视频.com| 一级毛片电影观看 | 国产黄片视频在线免费观看| 亚洲国产精品成人久久小说 | 国产午夜精品久久久久久一区二区三区| 国产精品一及| 天美传媒精品一区二区| 国产真实乱freesex| 欧美另类亚洲清纯唯美| 午夜视频国产福利| 全区人妻精品视频| 少妇人妻一区二区三区视频| 午夜视频国产福利| 99热精品在线国产| 国产黄片美女视频| 2021天堂中文幕一二区在线观| 国产一区亚洲一区在线观看| 国产黄片视频在线免费观看| 毛片女人毛片| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频| 国产黄片美女视频| 国产三级在线视频| 国产av不卡久久| 亚洲高清免费不卡视频| 99热这里只有是精品在线观看| 午夜久久久久精精品| 日本熟妇午夜| 欧美+亚洲+日韩+国产| 爱豆传媒免费全集在线观看| 卡戴珊不雅视频在线播放| 在线免费观看不下载黄p国产| 国产精品麻豆人妻色哟哟久久 | 欧美激情在线99| 一级黄片播放器| 国产高清三级在线| 国产毛片a区久久久久| 男人舔奶头视频| 国产亚洲91精品色在线| 天天躁日日操中文字幕| 久久人人爽人人片av| 日本一本二区三区精品| 网址你懂的国产日韩在线| 中文字幕av成人在线电影| 99热只有精品国产| 性插视频无遮挡在线免费观看| 免费看av在线观看网站| 久久这里有精品视频免费| 亚洲成人av在线免费| 国产真实伦视频高清在线观看| 亚洲内射少妇av| 插阴视频在线观看视频| 嘟嘟电影网在线观看| 中文字幕av在线有码专区| 高清午夜精品一区二区三区 | 美女高潮的动态| 日韩视频在线欧美| 中文亚洲av片在线观看爽| 老师上课跳d突然被开到最大视频| 色5月婷婷丁香| 亚洲激情五月婷婷啪啪| 99久久中文字幕三级久久日本| av视频在线观看入口| 夜夜夜夜夜久久久久| 成人无遮挡网站| 中文字幕免费在线视频6| av在线亚洲专区| 欧美+亚洲+日韩+国产| 少妇的逼好多水| 老司机影院成人| 国产又黄又爽又无遮挡在线| 人妻制服诱惑在线中文字幕| 久久人人精品亚洲av| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影小说 | 免费看a级黄色片| 一边亲一边摸免费视频| 插阴视频在线观看视频| 成年av动漫网址| 日韩国内少妇激情av| 亚洲av中文av极速乱| 长腿黑丝高跟| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 又爽又黄无遮挡网站| 啦啦啦韩国在线观看视频| 波多野结衣巨乳人妻| 国产成人精品久久久久久| 国产精品免费一区二区三区在线| 美女内射精品一级片tv| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 亚洲国产精品sss在线观看| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区 | 国产亚洲5aaaaa淫片| 成人特级av手机在线观看| 亚洲国产精品成人久久小说 | 国产高清视频在线观看网站| 性色avwww在线观看| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 欧美日韩乱码在线| 免费看日本二区| 国产精品99久久久久久久久| av在线观看视频网站免费| 久久久精品94久久精品| 久久久久网色| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av| 国产成人影院久久av| 又爽又黄a免费视频| 久久久久久久久久久免费av| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| 高清毛片免费看| 岛国毛片在线播放| 亚洲av男天堂| 国产成人a∨麻豆精品| 欧美丝袜亚洲另类| 天堂av国产一区二区熟女人妻| 国产高潮美女av| 国产亚洲91精品色在线| 99在线视频只有这里精品首页| 大又大粗又爽又黄少妇毛片口| 欧美一区二区精品小视频在线| 有码 亚洲区| 亚洲成人久久爱视频| av专区在线播放| 亚洲精品亚洲一区二区| 亚洲最大成人av| 干丝袜人妻中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| av黄色大香蕉| 国内精品美女久久久久久| 亚洲国产欧美人成| 国产亚洲欧美98| 黄色配什么色好看| 成人国产麻豆网| 能在线免费看毛片的网站| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲av免费在线观看| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 国产亚洲5aaaaa淫片| 91在线精品国自产拍蜜月| 亚洲国产精品久久男人天堂| 你懂的网址亚洲精品在线观看 | 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 亚洲精华国产精华液的使用体验 | 毛片一级片免费看久久久久| 亚洲av不卡在线观看| 亚洲经典国产精华液单| 深夜精品福利| 少妇人妻精品综合一区二区 | 久久亚洲精品不卡| 春色校园在线视频观看| 成人欧美大片| 人人妻人人澡欧美一区二区| 日本爱情动作片www.在线观看| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 毛片女人毛片| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 熟女电影av网| 一边亲一边摸免费视频| 久久精品久久久久久久性| 伦理电影大哥的女人| 免费av毛片视频| 国产高清有码在线观看视频| 国产精品久久电影中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产精品伦人一区二区| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 午夜老司机福利剧场| 黄色欧美视频在线观看| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 成人二区视频| av天堂中文字幕网| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 特级一级黄色大片| 99久久精品热视频| 久久九九热精品免费| 日韩一区二区视频免费看| 日韩精品青青久久久久久| а√天堂www在线а√下载| 欧美高清性xxxxhd video| 99视频精品全部免费 在线| 国产成年人精品一区二区| 午夜爱爱视频在线播放| av在线亚洲专区| 国产精品av视频在线免费观看| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 1000部很黄的大片| 我要看日韩黄色一级片| 又爽又黄无遮挡网站| 国产老妇女一区| 变态另类丝袜制服| 99热全是精品| 伦理电影大哥的女人| 日韩欧美三级三区| 一进一出抽搐动态| 国产精品99久久久久久久久| 免费av毛片视频| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 老女人水多毛片| 成人毛片60女人毛片免费| 乱人视频在线观看| 亚洲不卡免费看| 成年女人看的毛片在线观看| 国国产精品蜜臀av免费| 如何舔出高潮| 亚洲人成网站在线播放欧美日韩| 国产亚洲91精品色在线| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱| 亚洲最大成人手机在线| 国产精品人妻久久久久久| 少妇丰满av| 午夜老司机福利剧场| 久久这里有精品视频免费| 91av网一区二区| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看| 男人舔女人下体高潮全视频| 好男人在线观看高清免费视频| 18+在线观看网站| 久久久成人免费电影| 99热6这里只有精品| 伦理电影大哥的女人| 少妇的逼好多水| 特大巨黑吊av在线直播| 天堂中文最新版在线下载 | 精品久久国产蜜桃| 桃色一区二区三区在线观看| 在线观看66精品国产| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 精品一区二区三区人妻视频| 乱人视频在线观看| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 免费人成视频x8x8入口观看| 大又大粗又爽又黄少妇毛片口| 91aial.com中文字幕在线观看| 日本一二三区视频观看| 人人妻人人看人人澡| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 尾随美女入室| 国产伦精品一区二区三区视频9| 日韩亚洲欧美综合| 看免费成人av毛片| 国产精品三级大全| 亚洲国产精品久久男人天堂| 九九久久精品国产亚洲av麻豆| 精品久久久久久成人av| 热99在线观看视频| 99久久人妻综合| 少妇丰满av| 一卡2卡三卡四卡精品乱码亚洲| 中文欧美无线码| 色视频www国产| 日日啪夜夜撸| 成人二区视频| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 看非洲黑人一级黄片| 欧美成人免费av一区二区三区| 18禁黄网站禁片免费观看直播| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 最近中文字幕高清免费大全6| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 午夜激情福利司机影院| 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 国产精品无大码| 99久国产av精品| 久久精品国产自在天天线| 精品久久久久久成人av| 在线免费观看的www视频| 99热这里只有是精品50| 亚洲自偷自拍三级| 看黄色毛片网站| 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 一级二级三级毛片免费看| 伦精品一区二区三区| 嫩草影院新地址| 久久久久久久久久久免费av| 中国美女看黄片| 在线观看66精品国产| 国产亚洲av嫩草精品影院| 精品一区二区三区人妻视频| 嫩草影院入口| 欧美人与善性xxx| 亚州av有码| 欧美3d第一页| 永久网站在线| 亚洲av熟女| 赤兔流量卡办理| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 国产午夜福利久久久久久| 一个人观看的视频www高清免费观看| 免费看光身美女| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 午夜精品在线福利| 蜜臀久久99精品久久宅男| 美女高潮的动态| 婷婷色综合大香蕉| av在线老鸭窝| 国产精品三级大全| 亚洲,欧美,日韩| 免费人成视频x8x8入口观看| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 亚洲av男天堂| 人妻系列 视频| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 中国美白少妇内射xxxbb| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 精品无人区乱码1区二区| 18禁黄网站禁片免费观看直播| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 国产精品电影一区二区三区| 一级二级三级毛片免费看| 国产亚洲精品av在线| 我要搜黄色片| 亚洲成人av在线免费| 午夜免费激情av| 欧美精品一区二区大全| 一级av片app| 国产伦精品一区二区三区视频9| 久久久a久久爽久久v久久| 久久精品综合一区二区三区| 91狼人影院| 日日摸夜夜添夜夜爱| 精品熟女少妇av免费看| 热99re8久久精品国产| 日韩欧美精品v在线| 亚洲国产精品国产精品| 亚洲内射少妇av| 中国美白少妇内射xxxbb| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 51国产日韩欧美| 日本色播在线视频| 国产综合懂色| 亚洲欧洲日产国产| 天天一区二区日本电影三级| 亚洲精品久久国产高清桃花| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 99久久精品热视频| 可以在线观看毛片的网站| 免费大片18禁| .国产精品久久| 一本一本综合久久| 亚洲欧美日韩无卡精品| 精品人妻一区二区三区麻豆| 亚洲精品粉嫩美女一区| 岛国毛片在线播放| 一本一本综合久久| 久久99蜜桃精品久久| 99久久人妻综合| 国产av不卡久久| 尾随美女入室| 午夜免费激情av| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 亚洲五月天丁香| 国产高潮美女av| 如何舔出高潮| 五月玫瑰六月丁香| 伊人久久精品亚洲午夜| 99久久精品国产国产毛片| 国产精品久久久久久亚洲av鲁大| 亚洲图色成人| 欧美一区二区国产精品久久精品| 九草在线视频观看| 国产人妻一区二区三区在| 久久人人精品亚洲av| 日本在线视频免费播放| 综合色av麻豆| 黄色日韩在线| 一级黄片播放器| 国产高清激情床上av| 精品国内亚洲2022精品成人| av视频在线观看入口| 永久网站在线| 如何舔出高潮| 中文精品一卡2卡3卡4更新| 亚洲欧美成人精品一区二区| 99riav亚洲国产免费| 日韩精品青青久久久久久| 中文字幕免费在线视频6| 精品久久国产蜜桃| 国产精品一区二区三区四区免费观看| 精品欧美国产一区二区三| 国产精品无大码| 国产 一区 欧美 日韩| 深爱激情五月婷婷| 三级男女做爰猛烈吃奶摸视频| 久99久视频精品免费| 男女下面进入的视频免费午夜| 亚洲在线观看片| 观看美女的网站| 日本黄大片高清| 免费看日本二区| 长腿黑丝高跟| 亚洲国产精品合色在线| 久久久国产成人免费| 26uuu在线亚洲综合色| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| ponron亚洲| 99热这里只有精品一区| 亚洲精品国产成人久久av| 人人妻人人澡人人爽人人夜夜 | a级毛片a级免费在线| 亚洲av二区三区四区| 好男人在线观看高清免费视频| 亚洲精品日韩av片在线观看| 亚洲欧美日韩高清在线视频| 观看美女的网站| 我的老师免费观看完整版| 国产精品蜜桃在线观看 | 又爽又黄a免费视频| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 久久精品国产亚洲网站| 菩萨蛮人人尽说江南好唐韦庄 | 国内精品一区二区在线观看| av女优亚洲男人天堂| 久久这里只有精品中国| 午夜免费男女啪啪视频观看| 六月丁香七月| 国产精品福利在线免费观看| 久久人妻av系列| 亚洲七黄色美女视频| 国产高潮美女av| 久久久久久久久久久丰满| 中文字幕熟女人妻在线| 亚洲中文字幕日韩| 亚洲欧美精品综合久久99| 亚洲内射少妇av| 欧美最新免费一区二区三区| 精品无人区乱码1区二区| 日日撸夜夜添| 两性午夜刺激爽爽歪歪视频在线观看| 一本一本综合久久| 久久亚洲精品不卡| 欧美高清成人免费视频www| 国产亚洲精品久久久com| 黄片无遮挡物在线观看| 成人美女网站在线观看视频| 99久久无色码亚洲精品果冻| 国产av在哪里看| av在线老鸭窝| 91久久精品国产一区二区成人| 久久精品人妻少妇| 久久人妻av系列| 99国产精品一区二区蜜桃av| 日韩av不卡免费在线播放| 久久人妻av系列| а√天堂www在线а√下载| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 校园人妻丝袜中文字幕| 人妻夜夜爽99麻豆av| 久久久久久久久久久丰满| 日韩成人av中文字幕在线观看| 日本黄大片高清| 国内久久婷婷六月综合欲色啪| 观看美女的网站| ponron亚洲|