• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Watt-level,green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency

    2022-12-28 09:53:10HangHangYu俞航航ZhiTaoZhang張志韜andHongWenXuan玄洪文
    Chinese Physics B 2022年12期

    Hang-Hang Yu(俞航航), Zhi-Tao Zhang(張志韜), and Hong-Wen Xuan(玄洪文)

    GBA Branch of Aerospace Information Research Institute,Chinese Academy of Sciences,Guangzhou 510700,China

    Keywords: SRO-OPO,PPKTP,build-up time

    1. Introduction

    In the past decades,visible laser has glorious applications in light communications,nonlinear spectroscopy and trace gas sensing.[1–3]Compact green-pumped optical parametric oscillators (OPOs) are proven way to generate short-pulse visible laser,which could also be as one of pumping sources for solid-state 193 nm laser generation. A green-pumped optical parametric oscillator (OPO) has the advantage of producing visible laser radiation directly as well as the tunability, owing to the current commercially available high-performance quasi-phase-matched (QPM) nonlinear materials such as periodically poled MgO-doped LiNbO3(MgO:PPLN), LiTaO3(PPLT), and KTiOPO4(PPKTP).[4–9]It provides broader solutions for realization of solid-state 193 nm laser or other deep ultraviolet lasers. Photorefractive effect and green-induced infrared absorption in PPLN and PPLT are inevitable, which hinder the OPO output power boosting, although the MgOdoped crystals have obtained extensive research due to their mature growth and poling technology.[10–12]Recently,PPKTP shows itself as a promising candidate for high power OPOs in visible and near-infrared range, not only for its high damage threshold but also for its high effective nonlinearity.[13,14]Notably, PPKTP has a higher photorefractive damage threshold and negligible green-induced infrared absorption compared to PPLN and PPLT. Table 1 summarizes the state-of-art OPOs based on PPKTP pumped by both CW-and pulsed-green laser.A CW green-pumped singly resonant oscillator OPO (SROOPO)based on PPKTP generated the signal at 946.4 nm with 28 mW under the pump power of 1.2 W,and the quantum efficiency was 13%.[15]For the dual-wavelength output by the green-pumped doubly resonant oscillator(DRO)OPOs based on PPKTP, the output power of the signal was from tens of mW to hundreds of mW.[16,17]Until now, the highest output signal power in the visible and near-infrared(below 1μm)region is~580 mW at 765 nm.[18]In a word,the thermal effect inside PPKTP limits the OPO performances at high pumping power. High-power visible laser with good beam quality is the cornerstone to generate the 193 nm by single-step operation of sum frequency. However, there have been no reports on the Watt-level visible signal laser generated by green-pumped PPKTP-based OPOs seen from Table 1. The realization of Watt-level visible signal laser by PPKTP-based OPOs is still of challenge.

    In this contribution, we demonstrate a Watt-level,nanosecond SRO-OPO employed a short cavity with a high conversion efficiency. A uniform grating-period PPKTP was applied to generate a signal light at 709 nm and an idler light at 2132 nm pumped by a 532 nm laser. The signal wavelength at 709 nm will be applied to the 193 nm generation by frequency mixing with the ultraviolet laser at 266 nm in further research, which is the second-harmonic wavelengths of the pump. Hence, the signal wavelength of 709 nm is fixed by keeping constant temperature and therefore the wavelengthtuning characteristic of crystal is needless. The average output power of the signal was 1.51 W with the repetition rate of 100 kHz and the pulse duration of~1 ns. To the best of our knowledge,this is the first report on Watt-level,nanosecond PPKTP-based SRO-OPO with a high pump extraction efficiency up to 59%. This system also has the potential for power scaling up to a higher level.

    Table 1. The state-of-art OPOs based on PPKTP pumped by CW-and pulsed-green laser.

    2. Experimental setup

    The experimental setup is schematically shown in Fig.1.The pump is a commercially available diode-pumped-solidstate laser (DPSSL) operating at the central wavelength of 532 nm with about 3 ns pulse duration and 100 kHz repetition rate.The pumping source provides up to average power of 40 W with linearly polarization and in the approximate TEM00spatial mode withM2<1.5.The PPKTP crystal(Raicol Crystals Inc.) is 1 mm×2 mm×30 mm in dimensions with a domain inversion period of 11.05μm. The crystal is mounted on a 40 mm-long copper oven with temperature tuning available from 20?C to 60?C by thermos-electric cooler(TEC)with the precision of 0.1?C.Anti-reflective(AR)coating for 532 nm is applied to two end sides of the crystal. The OPO cavity has a length of~5.5 cm, and it is made up of a plane-convex dichromic mirror(DM)and a plane output coupler(OC).The dichromic mirror, with a radius of curvature of 2 m, is AR coated for 532 nm(R<0.5%).The OC is high reflective(HR)coating for 532 nm(T<0.2%)and partial reflective(PR)coating for the signal (T=35%). Both DM and OC mirrors are AR coated for idler (2143 nm) to form an SRO-OPO operation.

    Fig.1. Experimental setup of the green-pumped PPKTP OPO.FI,Faraday isolator;PBS:polarizing beam splitter;HWP:half-wave plate;DM:dichromic mirror;L:lens;M:mirror;OC:output coupler.

    3. Results

    Gauging the precise build-up time of OPO will play a significant role in SFG process of 193 nm generation in terms of the temporal overlap as well as the phase control. Due to the temporal gain narrowing effect,the pulse duration of the signal was shorter than that of the pump, making it an issue to have an exact measurement of OPO build-up time by our current photodiode(PD,Hamamatsu S5973-01). Benefitting from the stabilized twin-peak pulse profile of the pump,the estimation of the build-up time was feasible by our PD and oscilloscope.The pulse profiles of the pump and signal were measured by the fast response PD with the bandwidth more than 1 GHz and an oscilloscope (MSO44, Tektronix) to investigate the buildup time of OPO process, as shown in Fig.2. The position of PD was fixed during measurement for depleted pump and signal pulse profile. Two dichromic mirrors with different coating(HR for 532 nm&HT for 709 nm,and HT for 532 nm&HR for 709 nm)were individually set before PD according to the necessity of measurement. For acquiring the high contrast data, the comparable amplitude responses of PD for the extraction pump and signal were required,which were achieved by using dichromic mirrors and polarization misalignment between pump and PPKTP crystal.

    The pulse duration of the pump with twin-peak pulse profile before the OPO process was firstly measured to be 2.3 ns,as shown in Fig. 2(a). During the OPO process, the pulse profile was measured as depicted in Fig. 2(b) with a FWHM duration of right peak of 1.1 ns. Obviously, the pulse shape in Fig. 2(b) appears to have a similar twin-peak profile with the pulse shape of initial pump in Fig. 2(a) besides a larger right peak. After inserting a dichromic mirror(HT for 532 nm& HR for 709 nm) between PD and OPO cavity during the OPO process, the residual pulse profile shows a similar ratio twin-peak profile with initial pulse profile of pump shown in Fig.2(a). Therefore,the pulse profile in Fig.2(b)is verified to be the combination of the undepleted pump and the signal.

    Pulse profiles in Figs. 2(a) and 2(b) are compared as shown in Fig. 2(c). The curves of A and B are the replica of Figs.2(a)and 2(b),respectively. Curve C is the difference between B and A only by mathematical substraction. To further confirm that the pulse profile in Fig. 2(b) is the combination of the undepleted pump and the signal, the pulse duration of the signal shown in the left inset of Fig.2(d)was measured to be of~1 ns after filtering out the undepleted pump by use of another dichromic mirror(HR for 532 nm&HT for 709 nm).The pulse profile of the measured signal is normalized and demonstrated to be curve E in Fig.2(d),and curve D is the normalization pulse profile of curve C.It is obvious that curves E and D fit with each other perfectly,which implies that the pulse shape in Fig.2(b)is not only the undeleted pump but also with the signal. It is surprising that the pulse profile of signal is singlet instead of twin-peak pulse profile as pump. There is no reasonable explanation for this phenomenon. We notice that the slight humps exist on the right part in both curves D and E in Fig.2(d),which may result from the right peak of pump pulse profile.

    The right inset of Fig. 2(d) shows the residuals between D and E, which was supposed to be zero theoretically. It is mainly caused by the central peak mismatch and the intensity noise actually. To acquire the precise build-up time of OPO,we suppose that the singlet profile of signal arises from the left peak of pump pulse. Therefore,the build-up time of OPO could be obtained by the variation of curve E in delay time when the peak of the curve D coincides with the curve E in Fig.2(d). The build-up time of OPO is certified with~1.6 ns by the time variation of curve E.

    Fig. 2. Measured pulse profile of the pump and the signal. (a) The initial pulse profile of pump before the OPO process. (b) The combined pulse profile of signal and depleted pump during the OPO process. (c)The plots of detailed measurement data. (d)The comparison between the difference in(c)with individually measured signal pulse.

    Fig.3. The spectra of(a)pump and signal,and(c)idler.

    The spectra of the pump and signal were measured using a spectrometer with the spectral resolution of 0.66 nm(HR4Pro,Ocean Optics). At the same time,the idler was checked by an optical spectrum analyzer(OSA,AQ6376,YOKOGAWA),as shown in Fig. 3. The central wavelengths for the pump and signal were 531.5 nm and 709 nm when the temperature of the crystal was set to 60?C.The spectrum width of the signal was~1 nm, which was narrower than that of pump with 1.2 nm.The inset in Fig. 3(b) is the enlarged view of idler showing SNR more than 20 dB,and the central wavelength of idler was 2132 nm with a spectrum width of 4.2 nm by using 0.2 nm resolution of OSA. The spectrum width of idler is obviously higher than that of the signal and pump,which may result from the associated effects of the non-monochromaticity of pump and QPM tolerability around central pump wavelength of PPKTP. It could contribute to multi-OPO processes within the spectrum width of pump.

    Fig.4. Power scaling and efficiency of the OPO.(a)The output power and slope efficiency of signal and idler versus pump power. (b) The overall conversion and extraction efficiency versus pump power.

    The signal and idler output powers were measured with results in Fig. 4. The temperature of PPKTP maintains at 60?C. The maximum pump power was limited to 4.5 W to avoid excessive heat loading and the significant thermal lensing effect at high pump. With a single-side pump scheme,the OPO threshold is as low as~300 mW.The data-fitting slope efficiency of signal and idler are 37.6%and 14%,respectively,as illustrated in Fig.4(a).At the pump power of 4.3 W,the signal and idler achieved the maximum output power of 1.51 W and 0.57 W, respectively. As shown in Fig. 4(b), the overall conversion and extraction efficiencies are>45%and>52%,respectively, when the pump power is above 1.5 W. The output power and the extraction efficiency initially experiences a rapid increase, which leads to the maximum extraction efficiency up to 59%. It is worth emphasizing that the measurement of idler power was only carried out after the OC without including the idler power on the pump-incidence side. Thus,it implies a higher idler power inside the SRO-OPO cavity.The overall efficiency continuously decreases because of the severe mode mismatch caused by the thermal lensing effect with pump power increasing. The slow downward trend of extraction efficiency benefits from the short cavity,which could eliminate the mode mismatch partially. Therefore, a higher conversion efficiency could be obtained when the mode mismatch is improved by selecting appropriate pump parameters in the further research.

    Fig.5. Beam profile measurement of signal in horizontal(a)and vertical(b)planes.

    The beam quality of the commercial pump is withM2<1.5. To investigate the beam quality of the signal, we measured the variation of beam profile with a lens of focal length 100 mm recorded by a commercially available beam profiling camera (SP907, Ophir). Limited by the attenuation devices,the signal power was set to~800 mW. Insets in Fig. 5 are the signal beam profiles at different positions, intuitively reflecting the beam distribution and variation with diverse locations. Intensive measurements were performed near the focus,and the results are presented in Fig.5. With Gaussian fitting,the beam propagation factorM2was obtained to be~1.9 and 1.7 in horizontal and vertical axes,respectively. The identical beam radii in the horizontal and vertical axes indicate an excellent spot roundness. Because of the severe thermal lensing,the standing wave cavity is more challenging to obtain a good beam quality than the ring cavity. TheM2<1.9 (M2x<1.9,M2y<1.7)of the signal was obtained by precise adjustment of the cavity mirrors,which was close to the beam quality of the pump.

    4. Conclusions

    In summary,we have demonstrated a Watt-level PPKTPbased SRO-OPO with a pulse duration of~1.0 ns. The maximum output power of signal is 1.51 W with maximum extraction efficiency up to 59%. The build-up time of OPO is estimated to be 1.6 ns with twin-peak pulse profile of pump.A good beam propagation factorM2in horizontal and vertical planes is obtained with excellent Gaussian fitting. Furthermore, the expected improvement of output power, beam quality,and extraction efficiency could be obtained by selecting a better pump source. This OPO laser will be applied to our DUV laser at 193 nm by sum-frequency generation with 266 nm in the following experimental research.

    Acknowledgements

    The work was supported by the Chinese Academy of Sciences Pioneer Hundred Talents Program (Grant No. E1Z1D101) and the Research Project of Aerospace Information Research Institute, Chinese Academy of Sciences(Grant No.E2Z2D101).

    色播亚洲综合网| 日本一本二区三区精品| 久久久久国产网址| 国产精品福利在线免费观看| 国产一区亚洲一区在线观看| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播| 久久久久免费精品人妻一区二区| 午夜福利高清视频| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 一个人看的www免费观看视频| 国产爱豆传媒在线观看| 日日啪夜夜撸| 欧美日本亚洲视频在线播放| 国产成人91sexporn| 我的女老师完整版在线观看| 亚洲美女黄片视频| 少妇熟女aⅴ在线视频| 国产精品一区二区免费欧美| 日韩欧美国产在线观看| 女人被狂操c到高潮| 欧美极品一区二区三区四区| 亚洲久久久久久中文字幕| 国产探花在线观看一区二区| 亚洲精华国产精华液的使用体验 | 97热精品久久久久久| 欧美性感艳星| 日本a在线网址| 久久6这里有精品| 久久午夜福利片| 国产成人影院久久av| 激情 狠狠 欧美| а√天堂www在线а√下载| 日韩av在线大香蕉| 国产高清有码在线观看视频| 日韩av在线大香蕉| 欧美成人a在线观看| 最近手机中文字幕大全| 毛片女人毛片| 久久99热6这里只有精品| 高清毛片免费看| 99精品在免费线老司机午夜| 日日摸夜夜添夜夜添av毛片| 免费黄网站久久成人精品| 干丝袜人妻中文字幕| 亚洲人成网站在线播| 午夜激情欧美在线| 日本黄色片子视频| 亚洲av不卡在线观看| 国产精品永久免费网站| 91精品国产九色| 久99久视频精品免费| 美女高潮的动态| 99热这里只有精品一区| 国内精品久久久久精免费| 亚洲精华国产精华液的使用体验 | 人妻制服诱惑在线中文字幕| 国产熟女欧美一区二区| 欧美日本亚洲视频在线播放| 美女黄网站色视频| 俄罗斯特黄特色一大片| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 国语自产精品视频在线第100页| 少妇被粗大猛烈的视频| 久久天躁狠狠躁夜夜2o2o| 九九爱精品视频在线观看| 黄色一级大片看看| 免费电影在线观看免费观看| 乱系列少妇在线播放| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 国产又黄又爽又无遮挡在线| 国产午夜福利久久久久久| 日韩三级伦理在线观看| 一进一出抽搐动态| 亚洲,欧美,日韩| 村上凉子中文字幕在线| 亚洲五月天丁香| 国产久久久一区二区三区| 国语自产精品视频在线第100页| 久久精品夜夜夜夜夜久久蜜豆| 99国产精品一区二区蜜桃av| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 黑人高潮一二区| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 久久欧美精品欧美久久欧美| 女人十人毛片免费观看3o分钟| 免费看av在线观看网站| 99久久成人亚洲精品观看| 天堂动漫精品| 日本成人三级电影网站| 国产精品1区2区在线观看.| 一个人看的www免费观看视频| 精品福利观看| 在线天堂最新版资源| 国产成人freesex在线 | 中文字幕av成人在线电影| 精品人妻视频免费看| 草草在线视频免费看| 在线免费观看的www视频| 久久人人爽人人爽人人片va| 嫩草影院精品99| 亚洲无线在线观看| 亚洲七黄色美女视频| 成人无遮挡网站| 可以在线观看的亚洲视频| 国产精品永久免费网站| 尾随美女入室| 国产成人精品久久久久久| 五月伊人婷婷丁香| 久久精品国产自在天天线| 亚洲精品粉嫩美女一区| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 久久久久久久亚洲中文字幕| 少妇熟女aⅴ在线视频| 亚洲在线观看片| 91狼人影院| 99久久久亚洲精品蜜臀av| 热99在线观看视频| 免费看美女性在线毛片视频| 1024手机看黄色片| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| av在线蜜桃| 香蕉av资源在线| 一个人免费在线观看电影| 国产麻豆成人av免费视频| 国产高清三级在线| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 日日啪夜夜撸| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 色噜噜av男人的天堂激情| 亚洲va在线va天堂va国产| 国产欧美日韩精品一区二区| 日韩av不卡免费在线播放| 久久精品国产亚洲av香蕉五月| 国产蜜桃级精品一区二区三区| 亚洲自偷自拍三级| 天堂√8在线中文| 毛片一级片免费看久久久久| 午夜激情福利司机影院| 老女人水多毛片| 国产精品99久久久久久久久| 久久鲁丝午夜福利片| 变态另类成人亚洲欧美熟女| 最好的美女福利视频网| 九色成人免费人妻av| 成年女人永久免费观看视频| 成人漫画全彩无遮挡| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 夜夜爽天天搞| 国产男靠女视频免费网站| 91久久精品电影网| 欧美+亚洲+日韩+国产| 一a级毛片在线观看| 亚洲最大成人av| 熟女人妻精品中文字幕| 天堂网av新在线| 在线观看66精品国产| 久久精品91蜜桃| 看十八女毛片水多多多| 成人亚洲欧美一区二区av| 最好的美女福利视频网| 久久人人爽人人爽人人片va| 成人无遮挡网站| 亚洲图色成人| 日本黄色视频三级网站网址| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频 | 国产高清视频在线播放一区| 久久亚洲精品不卡| 久久6这里有精品| 老司机福利观看| 欧美日韩国产亚洲二区| 一区二区三区高清视频在线| 免费电影在线观看免费观看| 精品免费久久久久久久清纯| 国产精品一区www在线观看| 真实男女啪啪啪动态图| 欧美日韩国产亚洲二区| 精品不卡国产一区二区三区| 深夜a级毛片| 搡女人真爽免费视频火全软件 | 干丝袜人妻中文字幕| 免费av观看视频| 亚洲精品亚洲一区二区| 精品久久久久久久久av| 久久国内精品自在自线图片| 亚洲第一电影网av| 久久久久国产精品人妻aⅴ院| 欧美日韩在线观看h| 俄罗斯特黄特色一大片| 亚洲成a人片在线一区二区| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄 | 免费搜索国产男女视频| 久久久欧美国产精品| 少妇丰满av| 国产片特级美女逼逼视频| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 日本撒尿小便嘘嘘汇集6| 三级经典国产精品| 我要看日韩黄色一级片| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 内射极品少妇av片p| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 91午夜精品亚洲一区二区三区| 夜夜爽天天搞| 欧美人与善性xxx| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产老妇女一区| 露出奶头的视频| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 亚洲四区av| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 老司机福利观看| 99久久久亚洲精品蜜臀av| 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验 | 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 色哟哟哟哟哟哟| av天堂中文字幕网| 免费观看在线日韩| 亚洲欧美日韩无卡精品| 国产精品三级大全| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 国产女主播在线喷水免费视频网站 | 日韩欧美国产在线观看| 国产精品国产高清国产av| 少妇丰满av| 少妇裸体淫交视频免费看高清| 国产美女午夜福利| 亚洲丝袜综合中文字幕| 国内精品美女久久久久久| 久久中文看片网| av卡一久久| 老司机福利观看| 网址你懂的国产日韩在线| 国产不卡一卡二| 少妇猛男粗大的猛烈进出视频 | 中国美女看黄片| av黄色大香蕉| 国产午夜福利久久久久久| 国产av不卡久久| 欧美xxxx性猛交bbbb| 91在线观看av| 日本色播在线视频| 一区二区三区四区激情视频 | 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 91久久精品电影网| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 久久久久久久亚洲中文字幕| 国产高潮美女av| 我要搜黄色片| 99热这里只有精品一区| 你懂的网址亚洲精品在线观看 | 欧美激情国产日韩精品一区| 成人特级av手机在线观看| 久久人妻av系列| 日韩中字成人| 国产精品伦人一区二区| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 熟女电影av网| av卡一久久| 内射极品少妇av片p| 久久精品综合一区二区三区| 日韩大尺度精品在线看网址| 国产一区亚洲一区在线观看| 日本一本二区三区精品| 美女黄网站色视频| 国产又黄又爽又无遮挡在线| 亚洲综合色惰| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 国产美女午夜福利| ponron亚洲| 亚洲精品国产av成人精品 | 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 免费无遮挡裸体视频| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清| 国产在线男女| 久久久久久久午夜电影| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 男女那种视频在线观看| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 校园春色视频在线观看| 在线观看一区二区三区| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 久久草成人影院| av中文乱码字幕在线| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 精品久久久久久久末码| 亚洲专区国产一区二区| videossex国产| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 国产成人freesex在线 | 夜夜看夜夜爽夜夜摸| 久久天躁狠狠躁夜夜2o2o| 婷婷亚洲欧美| 六月丁香七月| 在线观看66精品国产| 免费搜索国产男女视频| 美女被艹到高潮喷水动态| 3wmmmm亚洲av在线观看| 日韩,欧美,国产一区二区三区 | 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 九九在线视频观看精品| 一进一出好大好爽视频| 免费人成视频x8x8入口观看| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 在线观看一区二区三区| 插阴视频在线观看视频| 少妇的逼水好多| 最新中文字幕久久久久| 能在线免费观看的黄片| 精品福利观看| 色综合站精品国产| 免费黄网站久久成人精品| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 国产色婷婷99| 黄片wwwwww| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 成人二区视频| 国产高清有码在线观看视频| 赤兔流量卡办理| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 黄色配什么色好看| 日韩强制内射视频| 变态另类丝袜制服| 直男gayav资源| 精华霜和精华液先用哪个| 男人和女人高潮做爰伦理| av专区在线播放| 最新中文字幕久久久久| 在线看三级毛片| 国产免费一级a男人的天堂| 成人漫画全彩无遮挡| 人妻丰满熟妇av一区二区三区| 精品国产三级普通话版| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 久久久久久伊人网av| 日本三级黄在线观看| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 欧美激情国产日韩精品一区| 国产欧美日韩精品亚洲av| 色视频www国产| 黄色配什么色好看| 久久久久久久午夜电影| 欧美最黄视频在线播放免费| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 免费无遮挡裸体视频| 成人国产麻豆网| 成年女人毛片免费观看观看9| 成人毛片a级毛片在线播放| 六月丁香七月| 少妇熟女aⅴ在线视频| 在线免费观看的www视频| 能在线免费观看的黄片| 国产毛片a区久久久久| 两个人视频免费观看高清| 午夜免费男女啪啪视频观看 | 给我免费播放毛片高清在线观看| 亚洲无线观看免费| 久久久成人免费电影| 亚洲av电影不卡..在线观看| 欧美日韩在线观看h| 成人性生交大片免费视频hd| 在线a可以看的网站| 天堂√8在线中文| 久久午夜亚洲精品久久| 婷婷亚洲欧美| 日韩成人av中文字幕在线观看 | 男人舔女人下体高潮全视频| 美女xxoo啪啪120秒动态图| 色av中文字幕| 我的老师免费观看完整版| 免费大片18禁| 国产乱人偷精品视频| 久久国产乱子免费精品| 最近在线观看免费完整版| 国产黄片美女视频| 免费av毛片视频| 九九爱精品视频在线观看| 草草在线视频免费看| 欧美zozozo另类| 国产成人freesex在线 | 国产高清三级在线| 一级a爱片免费观看的视频| 综合色av麻豆| 亚洲婷婷狠狠爱综合网| 六月丁香七月| 白带黄色成豆腐渣| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 国产精品无大码| 亚洲人与动物交配视频| 国产午夜精品论理片| 国产精品国产三级国产av玫瑰| 中出人妻视频一区二区| 99久国产av精品| 99热这里只有精品一区| 搡老岳熟女国产| av卡一久久| 91在线观看av| 91久久精品国产一区二区三区| 国产在线精品亚洲第一网站| 热99在线观看视频| 国产91av在线免费观看| 99久久精品热视频| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 欧美zozozo另类| 91狼人影院| 狂野欧美激情性xxxx在线观看| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 久久精品久久久久久噜噜老黄 | 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 伦理电影大哥的女人| 日本爱情动作片www.在线观看 | 国产精品精品国产色婷婷| 国产精品野战在线观看| 久久久久久久久久黄片| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| av卡一久久| 九九在线视频观看精品| 久久久色成人| 色综合色国产| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| www.色视频.com| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 国产中年淑女户外野战色| 悠悠久久av| 老司机影院成人| 不卡一级毛片| 午夜免费激情av| 国产精品亚洲一级av第二区| 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 日日摸夜夜添夜夜爱| 国产毛片a区久久久久| 亚洲七黄色美女视频| 一个人看视频在线观看www免费| 观看美女的网站| 国产探花极品一区二区| 一夜夜www| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 又粗又爽又猛毛片免费看| 精品99又大又爽又粗少妇毛片| 日本精品一区二区三区蜜桃| 国产免费男女视频| 给我免费播放毛片高清在线观看| 亚洲自拍偷在线| 观看免费一级毛片| 国产精品女同一区二区软件| 国产精品久久久久久久电影| 色视频www国产| 高清日韩中文字幕在线| 日韩成人伦理影院| 最近手机中文字幕大全| 亚洲乱码一区二区免费版| 婷婷六月久久综合丁香| 欧美最黄视频在线播放免费| 亚洲av熟女| 身体一侧抽搐| 蜜桃亚洲精品一区二区三区| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免| 3wmmmm亚洲av在线观看| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 国产亚洲欧美98| 欧美日韩精品成人综合77777| av黄色大香蕉| 少妇的逼好多水| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看 | 小蜜桃在线观看免费完整版高清| 色综合站精品国产| av在线亚洲专区| 国产精品爽爽va在线观看网站| 国产色婷婷99| 久久精品影院6| 美女被艹到高潮喷水动态| 变态另类丝袜制服| 真实男女啪啪啪动态图| 国产精品人妻久久久影院| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| 麻豆av噜噜一区二区三区| 村上凉子中文字幕在线| 99久国产av精品| 热99在线观看视频| 最近最新中文字幕大全电影3| 长腿黑丝高跟| 在线国产一区二区在线| 欧美日韩乱码在线| 白带黄色成豆腐渣| 男人的好看免费观看在线视频| 寂寞人妻少妇视频99o| 亚洲人与动物交配视频| 午夜影院日韩av| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 成人精品一区二区免费| 久久综合国产亚洲精品| 欧美激情久久久久久爽电影| 亚洲精品久久国产高清桃花| 亚洲成人久久性| a级毛色黄片| 久久婷婷人人爽人人干人人爱| 欧美日本视频| 99久国产av精品国产电影| 五月伊人婷婷丁香| 波多野结衣巨乳人妻| 俺也久久电影网| 村上凉子中文字幕在线| 国产探花在线观看一区二区| 国产成人a∨麻豆精品| 国产av在哪里看| 成人美女网站在线观看视频| 色播亚洲综合网| 蜜臀久久99精品久久宅男| 又黄又爽又刺激的免费视频.| av视频在线观看入口| 国产三级中文精品| 又黄又爽又刺激的免费视频.| 岛国在线免费视频观看| 日韩精品青青久久久久久| 十八禁国产超污无遮挡网站| 欧美zozozo另类| 日产精品乱码卡一卡2卡三| 成人美女网站在线观看视频| 一个人观看的视频www高清免费观看| av天堂在线播放| 亚洲在线观看片| 天天躁日日操中文字幕| 久久热精品热| av在线老鸭窝| 卡戴珊不雅视频在线播放| 欧美又色又爽又黄视频| 欧美一级a爱片免费观看看| 嫩草影院入口| 国产真实伦视频高清在线观看|