• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Watt-level,green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency

    2022-12-28 09:53:10HangHangYu俞航航ZhiTaoZhang張志韜andHongWenXuan玄洪文
    Chinese Physics B 2022年12期

    Hang-Hang Yu(俞航航), Zhi-Tao Zhang(張志韜), and Hong-Wen Xuan(玄洪文)

    GBA Branch of Aerospace Information Research Institute,Chinese Academy of Sciences,Guangzhou 510700,China

    Keywords: SRO-OPO,PPKTP,build-up time

    1. Introduction

    In the past decades,visible laser has glorious applications in light communications,nonlinear spectroscopy and trace gas sensing.[1–3]Compact green-pumped optical parametric oscillators (OPOs) are proven way to generate short-pulse visible laser,which could also be as one of pumping sources for solid-state 193 nm laser generation. A green-pumped optical parametric oscillator (OPO) has the advantage of producing visible laser radiation directly as well as the tunability, owing to the current commercially available high-performance quasi-phase-matched (QPM) nonlinear materials such as periodically poled MgO-doped LiNbO3(MgO:PPLN), LiTaO3(PPLT), and KTiOPO4(PPKTP).[4–9]It provides broader solutions for realization of solid-state 193 nm laser or other deep ultraviolet lasers. Photorefractive effect and green-induced infrared absorption in PPLN and PPLT are inevitable, which hinder the OPO output power boosting, although the MgOdoped crystals have obtained extensive research due to their mature growth and poling technology.[10–12]Recently,PPKTP shows itself as a promising candidate for high power OPOs in visible and near-infrared range, not only for its high damage threshold but also for its high effective nonlinearity.[13,14]Notably, PPKTP has a higher photorefractive damage threshold and negligible green-induced infrared absorption compared to PPLN and PPLT. Table 1 summarizes the state-of-art OPOs based on PPKTP pumped by both CW-and pulsed-green laser.A CW green-pumped singly resonant oscillator OPO (SROOPO)based on PPKTP generated the signal at 946.4 nm with 28 mW under the pump power of 1.2 W,and the quantum efficiency was 13%.[15]For the dual-wavelength output by the green-pumped doubly resonant oscillator(DRO)OPOs based on PPKTP, the output power of the signal was from tens of mW to hundreds of mW.[16,17]Until now, the highest output signal power in the visible and near-infrared(below 1μm)region is~580 mW at 765 nm.[18]In a word,the thermal effect inside PPKTP limits the OPO performances at high pumping power. High-power visible laser with good beam quality is the cornerstone to generate the 193 nm by single-step operation of sum frequency. However, there have been no reports on the Watt-level visible signal laser generated by green-pumped PPKTP-based OPOs seen from Table 1. The realization of Watt-level visible signal laser by PPKTP-based OPOs is still of challenge.

    In this contribution, we demonstrate a Watt-level,nanosecond SRO-OPO employed a short cavity with a high conversion efficiency. A uniform grating-period PPKTP was applied to generate a signal light at 709 nm and an idler light at 2132 nm pumped by a 532 nm laser. The signal wavelength at 709 nm will be applied to the 193 nm generation by frequency mixing with the ultraviolet laser at 266 nm in further research, which is the second-harmonic wavelengths of the pump. Hence, the signal wavelength of 709 nm is fixed by keeping constant temperature and therefore the wavelengthtuning characteristic of crystal is needless. The average output power of the signal was 1.51 W with the repetition rate of 100 kHz and the pulse duration of~1 ns. To the best of our knowledge,this is the first report on Watt-level,nanosecond PPKTP-based SRO-OPO with a high pump extraction efficiency up to 59%. This system also has the potential for power scaling up to a higher level.

    Table 1. The state-of-art OPOs based on PPKTP pumped by CW-and pulsed-green laser.

    2. Experimental setup

    The experimental setup is schematically shown in Fig.1.The pump is a commercially available diode-pumped-solidstate laser (DPSSL) operating at the central wavelength of 532 nm with about 3 ns pulse duration and 100 kHz repetition rate.The pumping source provides up to average power of 40 W with linearly polarization and in the approximate TEM00spatial mode withM2<1.5.The PPKTP crystal(Raicol Crystals Inc.) is 1 mm×2 mm×30 mm in dimensions with a domain inversion period of 11.05μm. The crystal is mounted on a 40 mm-long copper oven with temperature tuning available from 20?C to 60?C by thermos-electric cooler(TEC)with the precision of 0.1?C.Anti-reflective(AR)coating for 532 nm is applied to two end sides of the crystal. The OPO cavity has a length of~5.5 cm, and it is made up of a plane-convex dichromic mirror(DM)and a plane output coupler(OC).The dichromic mirror, with a radius of curvature of 2 m, is AR coated for 532 nm(R<0.5%).The OC is high reflective(HR)coating for 532 nm(T<0.2%)and partial reflective(PR)coating for the signal (T=35%). Both DM and OC mirrors are AR coated for idler (2143 nm) to form an SRO-OPO operation.

    Fig.1. Experimental setup of the green-pumped PPKTP OPO.FI,Faraday isolator;PBS:polarizing beam splitter;HWP:half-wave plate;DM:dichromic mirror;L:lens;M:mirror;OC:output coupler.

    3. Results

    Gauging the precise build-up time of OPO will play a significant role in SFG process of 193 nm generation in terms of the temporal overlap as well as the phase control. Due to the temporal gain narrowing effect,the pulse duration of the signal was shorter than that of the pump, making it an issue to have an exact measurement of OPO build-up time by our current photodiode(PD,Hamamatsu S5973-01). Benefitting from the stabilized twin-peak pulse profile of the pump,the estimation of the build-up time was feasible by our PD and oscilloscope.The pulse profiles of the pump and signal were measured by the fast response PD with the bandwidth more than 1 GHz and an oscilloscope (MSO44, Tektronix) to investigate the buildup time of OPO process, as shown in Fig.2. The position of PD was fixed during measurement for depleted pump and signal pulse profile. Two dichromic mirrors with different coating(HR for 532 nm&HT for 709 nm,and HT for 532 nm&HR for 709 nm)were individually set before PD according to the necessity of measurement. For acquiring the high contrast data, the comparable amplitude responses of PD for the extraction pump and signal were required,which were achieved by using dichromic mirrors and polarization misalignment between pump and PPKTP crystal.

    The pulse duration of the pump with twin-peak pulse profile before the OPO process was firstly measured to be 2.3 ns,as shown in Fig. 2(a). During the OPO process, the pulse profile was measured as depicted in Fig. 2(b) with a FWHM duration of right peak of 1.1 ns. Obviously, the pulse shape in Fig. 2(b) appears to have a similar twin-peak profile with the pulse shape of initial pump in Fig. 2(a) besides a larger right peak. After inserting a dichromic mirror(HT for 532 nm& HR for 709 nm) between PD and OPO cavity during the OPO process, the residual pulse profile shows a similar ratio twin-peak profile with initial pulse profile of pump shown in Fig.2(a). Therefore,the pulse profile in Fig.2(b)is verified to be the combination of the undepleted pump and the signal.

    Pulse profiles in Figs. 2(a) and 2(b) are compared as shown in Fig. 2(c). The curves of A and B are the replica of Figs.2(a)and 2(b),respectively. Curve C is the difference between B and A only by mathematical substraction. To further confirm that the pulse profile in Fig. 2(b) is the combination of the undepleted pump and the signal, the pulse duration of the signal shown in the left inset of Fig.2(d)was measured to be of~1 ns after filtering out the undepleted pump by use of another dichromic mirror(HR for 532 nm&HT for 709 nm).The pulse profile of the measured signal is normalized and demonstrated to be curve E in Fig.2(d),and curve D is the normalization pulse profile of curve C.It is obvious that curves E and D fit with each other perfectly,which implies that the pulse shape in Fig.2(b)is not only the undeleted pump but also with the signal. It is surprising that the pulse profile of signal is singlet instead of twin-peak pulse profile as pump. There is no reasonable explanation for this phenomenon. We notice that the slight humps exist on the right part in both curves D and E in Fig.2(d),which may result from the right peak of pump pulse profile.

    The right inset of Fig. 2(d) shows the residuals between D and E, which was supposed to be zero theoretically. It is mainly caused by the central peak mismatch and the intensity noise actually. To acquire the precise build-up time of OPO,we suppose that the singlet profile of signal arises from the left peak of pump pulse. Therefore,the build-up time of OPO could be obtained by the variation of curve E in delay time when the peak of the curve D coincides with the curve E in Fig.2(d). The build-up time of OPO is certified with~1.6 ns by the time variation of curve E.

    Fig. 2. Measured pulse profile of the pump and the signal. (a) The initial pulse profile of pump before the OPO process. (b) The combined pulse profile of signal and depleted pump during the OPO process. (c)The plots of detailed measurement data. (d)The comparison between the difference in(c)with individually measured signal pulse.

    Fig.3. The spectra of(a)pump and signal,and(c)idler.

    The spectra of the pump and signal were measured using a spectrometer with the spectral resolution of 0.66 nm(HR4Pro,Ocean Optics). At the same time,the idler was checked by an optical spectrum analyzer(OSA,AQ6376,YOKOGAWA),as shown in Fig. 3. The central wavelengths for the pump and signal were 531.5 nm and 709 nm when the temperature of the crystal was set to 60?C.The spectrum width of the signal was~1 nm, which was narrower than that of pump with 1.2 nm.The inset in Fig. 3(b) is the enlarged view of idler showing SNR more than 20 dB,and the central wavelength of idler was 2132 nm with a spectrum width of 4.2 nm by using 0.2 nm resolution of OSA. The spectrum width of idler is obviously higher than that of the signal and pump,which may result from the associated effects of the non-monochromaticity of pump and QPM tolerability around central pump wavelength of PPKTP. It could contribute to multi-OPO processes within the spectrum width of pump.

    Fig.4. Power scaling and efficiency of the OPO.(a)The output power and slope efficiency of signal and idler versus pump power. (b) The overall conversion and extraction efficiency versus pump power.

    The signal and idler output powers were measured with results in Fig. 4. The temperature of PPKTP maintains at 60?C. The maximum pump power was limited to 4.5 W to avoid excessive heat loading and the significant thermal lensing effect at high pump. With a single-side pump scheme,the OPO threshold is as low as~300 mW.The data-fitting slope efficiency of signal and idler are 37.6%and 14%,respectively,as illustrated in Fig.4(a).At the pump power of 4.3 W,the signal and idler achieved the maximum output power of 1.51 W and 0.57 W, respectively. As shown in Fig. 4(b), the overall conversion and extraction efficiencies are>45%and>52%,respectively, when the pump power is above 1.5 W. The output power and the extraction efficiency initially experiences a rapid increase, which leads to the maximum extraction efficiency up to 59%. It is worth emphasizing that the measurement of idler power was only carried out after the OC without including the idler power on the pump-incidence side. Thus,it implies a higher idler power inside the SRO-OPO cavity.The overall efficiency continuously decreases because of the severe mode mismatch caused by the thermal lensing effect with pump power increasing. The slow downward trend of extraction efficiency benefits from the short cavity,which could eliminate the mode mismatch partially. Therefore, a higher conversion efficiency could be obtained when the mode mismatch is improved by selecting appropriate pump parameters in the further research.

    Fig.5. Beam profile measurement of signal in horizontal(a)and vertical(b)planes.

    The beam quality of the commercial pump is withM2<1.5. To investigate the beam quality of the signal, we measured the variation of beam profile with a lens of focal length 100 mm recorded by a commercially available beam profiling camera (SP907, Ophir). Limited by the attenuation devices,the signal power was set to~800 mW. Insets in Fig. 5 are the signal beam profiles at different positions, intuitively reflecting the beam distribution and variation with diverse locations. Intensive measurements were performed near the focus,and the results are presented in Fig.5. With Gaussian fitting,the beam propagation factorM2was obtained to be~1.9 and 1.7 in horizontal and vertical axes,respectively. The identical beam radii in the horizontal and vertical axes indicate an excellent spot roundness. Because of the severe thermal lensing,the standing wave cavity is more challenging to obtain a good beam quality than the ring cavity. TheM2<1.9 (M2x<1.9,M2y<1.7)of the signal was obtained by precise adjustment of the cavity mirrors,which was close to the beam quality of the pump.

    4. Conclusions

    In summary,we have demonstrated a Watt-level PPKTPbased SRO-OPO with a pulse duration of~1.0 ns. The maximum output power of signal is 1.51 W with maximum extraction efficiency up to 59%. The build-up time of OPO is estimated to be 1.6 ns with twin-peak pulse profile of pump.A good beam propagation factorM2in horizontal and vertical planes is obtained with excellent Gaussian fitting. Furthermore, the expected improvement of output power, beam quality,and extraction efficiency could be obtained by selecting a better pump source. This OPO laser will be applied to our DUV laser at 193 nm by sum-frequency generation with 266 nm in the following experimental research.

    Acknowledgements

    The work was supported by the Chinese Academy of Sciences Pioneer Hundred Talents Program (Grant No. E1Z1D101) and the Research Project of Aerospace Information Research Institute, Chinese Academy of Sciences(Grant No.E2Z2D101).

    国产成人aa在线观看| 日本一本二区三区精品| 婷婷亚洲欧美| 成人国产一区最新在线观看| 日韩欧美三级三区| 免费观看的影片在线观看| 如何舔出高潮| 亚洲国产精品合色在线| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| videossex国产| 久久精品国产99精品国产亚洲性色| 波多野结衣巨乳人妻| 欧美区成人在线视频| 午夜a级毛片| 嫩草影院新地址| 少妇人妻精品综合一区二区 | 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| av在线天堂中文字幕| 国产麻豆成人av免费视频| 日本一本二区三区精品| 成年版毛片免费区| 香蕉av资源在线| 性插视频无遮挡在线免费观看| 男人狂女人下面高潮的视频| 日韩精品中文字幕看吧| 国产蜜桃级精品一区二区三区| 在线观看美女被高潮喷水网站| 午夜免费激情av| 中文亚洲av片在线观看爽| 国产精品综合久久久久久久免费| 成人三级黄色视频| 久久亚洲精品不卡| 少妇的逼好多水| 国产精品久久久久久精品电影| 国产 一区精品| 人人妻人人澡欧美一区二区| 少妇丰满av| 日日撸夜夜添| 亚洲熟妇熟女久久| or卡值多少钱| 99久久无色码亚洲精品果冻| 真人一进一出gif抽搐免费| 久久久久性生活片| 欧美日韩亚洲国产一区二区在线观看| 日本三级黄在线观看| 日韩大尺度精品在线看网址| 欧美+日韩+精品| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 精品一区二区三区视频在线观看免费| 色哟哟·www| 午夜爱爱视频在线播放| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 岛国在线免费视频观看| 久久久久久久久久久丰满 | 国产精品一及| 乱系列少妇在线播放| 美女被艹到高潮喷水动态| 悠悠久久av| 国产国拍精品亚洲av在线观看| 男人和女人高潮做爰伦理| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 长腿黑丝高跟| 日本黄色片子视频| 国内精品一区二区在线观看| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 午夜久久久久精精品| 久久香蕉精品热| 亚洲精品色激情综合| 1024手机看黄色片| 波多野结衣巨乳人妻| 波多野结衣高清无吗| 久久久精品欧美日韩精品| aaaaa片日本免费| 91在线观看av| 国产三级在线视频| 色精品久久人妻99蜜桃| 日韩欧美国产在线观看| 在线观看av片永久免费下载| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 不卡一级毛片| 偷拍熟女少妇极品色| 如何舔出高潮| 国产一级毛片七仙女欲春2| 十八禁网站免费在线| 久久久国产成人免费| 看片在线看免费视频| 日韩欧美国产一区二区入口| 亚洲国产精品成人综合色| 99热这里只有精品一区| 欧美日韩综合久久久久久 | 成人二区视频| 女同久久另类99精品国产91| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片 | 人妻少妇偷人精品九色| 欧美人与善性xxx| 少妇被粗大猛烈的视频| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 日韩欧美国产一区二区入口| 91久久精品国产一区二区成人| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 国产一区二区三区在线臀色熟女| 高清在线国产一区| 亚洲 国产 在线| 国产精品女同一区二区软件 | 美女高潮喷水抽搐中文字幕| 国产视频内射| 久久香蕉精品热| 长腿黑丝高跟| 成人二区视频| 国产亚洲精品久久久久久毛片| 国产精品人妻久久久影院| 乱系列少妇在线播放| 中国美白少妇内射xxxbb| 97人妻精品一区二区三区麻豆| 日韩av在线大香蕉| 99热这里只有是精品50| 午夜福利18| 69av精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 综合色av麻豆| 国产在视频线在精品| 精品一区二区三区人妻视频| 91在线精品国自产拍蜜月| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影| 国产精品久久电影中文字幕| 久久热精品热| 色播亚洲综合网| 日韩欧美国产在线观看| 日本免费一区二区三区高清不卡| 成人午夜高清在线视频| 日韩大尺度精品在线看网址| 精品久久久久久久久亚洲 | 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 日韩高清综合在线| 少妇的逼水好多| 美女大奶头视频| 性色avwww在线观看| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 春色校园在线视频观看| 人人妻人人看人人澡| 18禁黄网站禁片免费观看直播| 最后的刺客免费高清国语| 成人综合一区亚洲| 精品久久久久久,| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 午夜a级毛片| 好男人在线观看高清免费视频| 在线国产一区二区在线| 国产高清激情床上av| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| eeuss影院久久| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 国产黄色小视频在线观看| 春色校园在线视频观看| 亚洲图色成人| 亚洲中文字幕日韩| 婷婷精品国产亚洲av在线| 丰满的人妻完整版| 日本 欧美在线| 欧美3d第一页| 国内精品久久久久精免费| 精品福利观看| 日韩欧美精品v在线| 国产成人福利小说| 一本一本综合久久| 尤物成人国产欧美一区二区三区| 黄色配什么色好看| 亚洲欧美日韩无卡精品| 噜噜噜噜噜久久久久久91| 久久久国产成人免费| 老女人水多毛片| 国产乱人伦免费视频| 少妇人妻一区二区三区视频| 最近视频中文字幕2019在线8| xxxwww97欧美| 1000部很黄的大片| 嫩草影院入口| 欧美+日韩+精品| 久久久久久久久久黄片| 成年免费大片在线观看| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 黄色一级大片看看| 嫩草影院精品99| 精品人妻一区二区三区麻豆 | 国产不卡一卡二| av女优亚洲男人天堂| 国产免费男女视频| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 老熟妇仑乱视频hdxx| 欧美激情在线99| 日日摸夜夜添夜夜添小说| 久久精品久久久久久噜噜老黄 | 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 亚洲电影在线观看av| 一个人免费在线观看电影| 精品久久久噜噜| 深夜a级毛片| 久久午夜亚洲精品久久| 波野结衣二区三区在线| 男女之事视频高清在线观看| av专区在线播放| 亚洲美女视频黄频| 一级黄片播放器| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 在线免费观看的www视频| 免费看日本二区| 精品一区二区三区人妻视频| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 成年版毛片免费区| 免费看美女性在线毛片视频| 成人精品一区二区免费| 88av欧美| 中文在线观看免费www的网站| 人人妻人人澡欧美一区二区| 日韩 亚洲 欧美在线| 变态另类成人亚洲欧美熟女| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 男人狂女人下面高潮的视频| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 成人国产综合亚洲| 俄罗斯特黄特色一大片| 色综合婷婷激情| 国产私拍福利视频在线观看| 日本在线视频免费播放| 91av网一区二区| bbb黄色大片| 国产精品1区2区在线观看.| 综合色av麻豆| 真人做人爱边吃奶动态| 少妇的逼好多水| 在线播放国产精品三级| 国产精品av视频在线免费观看| 久久99热6这里只有精品| 1000部很黄的大片| 午夜精品在线福利| 亚洲成人免费电影在线观看| 久久午夜福利片| 欧美激情国产日韩精品一区| 久久久精品欧美日韩精品| 黄色欧美视频在线观看| 精品一区二区免费观看| 亚洲国产精品久久男人天堂| 成人三级黄色视频| 女人被狂操c到高潮| 中文字幕av成人在线电影| 午夜福利视频1000在线观看| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 中文资源天堂在线| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| 国产精品av视频在线免费观看| 国产单亲对白刺激| 日本与韩国留学比较| 可以在线观看的亚洲视频| 九九在线视频观看精品| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看.| 一个人免费在线观看电影| 日日摸夜夜添夜夜添小说| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式| 亚洲真实伦在线观看| 在线免费十八禁| 欧美日韩综合久久久久久 | 亚洲中文日韩欧美视频| 欧美一区二区国产精品久久精品| 在线观看午夜福利视频| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 91在线观看av| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| 国产综合懂色| 在线免费观看的www视频| 亚洲avbb在线观看| 精华霜和精华液先用哪个| 国产精品嫩草影院av在线观看 | av在线天堂中文字幕| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 亚洲综合色惰| 老女人水多毛片| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 日本色播在线视频| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 校园春色视频在线观看| 少妇丰满av| 两人在一起打扑克的视频| 男女啪啪激烈高潮av片| 韩国av在线不卡| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 亚洲真实伦在线观看| 一级黄片播放器| av在线蜜桃| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美精品免费久久| 免费av不卡在线播放| 69人妻影院| 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 亚洲无线在线观看| 亚洲无线观看免费| 欧美性猛交黑人性爽| 真人做人爱边吃奶动态| 成人特级av手机在线观看| 国产色婷婷99| 高清日韩中文字幕在线| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 日本 av在线| 18禁裸乳无遮挡免费网站照片| 麻豆一二三区av精品| 在线观看一区二区三区| 日韩亚洲欧美综合| 午夜日韩欧美国产| 男女啪啪激烈高潮av片| 日本免费a在线| 国产精品一区二区免费欧美| 天堂√8在线中文| 中出人妻视频一区二区| 永久网站在线| 精品免费久久久久久久清纯| 欧美一级a爱片免费观看看| 精品久久久久久,| 日韩亚洲欧美综合| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 国产单亲对白刺激| ponron亚洲| 嫩草影院入口| 免费av不卡在线播放| 亚洲五月天丁香| 亚洲专区国产一区二区| 成人无遮挡网站| 国产高清不卡午夜福利| 亚洲四区av| 不卡一级毛片| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 99精品久久久久人妻精品| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 97碰自拍视频| 男人狂女人下面高潮的视频| 成人国产麻豆网| 欧美国产日韩亚洲一区| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 欧美性猛交黑人性爽| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| 97热精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 国产高潮美女av| 欧美xxxx性猛交bbbb| 亚洲真实伦在线观看| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 香蕉av资源在线| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 看片在线看免费视频| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 一区二区三区四区激情视频 | 18+在线观看网站| 一级毛片久久久久久久久女| 亚洲av五月六月丁香网| 春色校园在线视频观看| 日韩人妻高清精品专区| 亚洲一区高清亚洲精品| 搡女人真爽免费视频火全软件 | 看黄色毛片网站| or卡值多少钱| 欧美激情久久久久久爽电影| a在线观看视频网站| 三级国产精品欧美在线观看| 免费在线观看成人毛片| 亚洲成人中文字幕在线播放| av黄色大香蕉| 少妇的逼好多水| 午夜日韩欧美国产| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 春色校园在线视频观看| 成人国产一区最新在线观看| 中出人妻视频一区二区| 国产精品一及| 真人做人爱边吃奶动态| 最近中文字幕高清免费大全6 | 亚洲av第一区精品v没综合| 少妇高潮的动态图| 国内精品宾馆在线| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 免费不卡的大黄色大毛片视频在线观看 | 国产美女午夜福利| 亚洲美女黄片视频| 内地一区二区视频在线| 日本精品一区二区三区蜜桃| netflix在线观看网站| 一区二区三区四区激情视频 | 国产毛片a区久久久久| 日韩高清综合在线| 91午夜精品亚洲一区二区三区 | 丰满人妻一区二区三区视频av| 中文字幕久久专区| 欧美一区二区亚洲| 日本成人三级电影网站| 国产成人aa在线观看| 国产一区二区三区av在线 | 老司机午夜福利在线观看视频| 亚洲美女视频黄频| 99精品在免费线老司机午夜| 日本免费a在线| 国产色婷婷99| 精品久久久久久久久av| 亚洲午夜理论影院| 日本 欧美在线| av在线蜜桃| 在线看三级毛片| avwww免费| 天堂网av新在线| 深夜精品福利| 搡老熟女国产l中国老女人| 日韩av在线大香蕉| 人妻夜夜爽99麻豆av| 桃色一区二区三区在线观看| 男女做爰动态图高潮gif福利片| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 成人国产综合亚洲| 真人一进一出gif抽搐免费| 亚洲真实伦在线观看| 亚洲不卡免费看| 深夜精品福利| 国产成人一区二区在线| 99riav亚洲国产免费| 久久精品91蜜桃| 免费在线观看成人毛片| 国产免费av片在线观看野外av| 中文字幕久久专区| 日本爱情动作片www.在线观看 | 国产成年人精品一区二区| 色综合婷婷激情| 色播亚洲综合网| av在线蜜桃| 欧美3d第一页| 美女黄网站色视频| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 97碰自拍视频| 别揉我奶头 嗯啊视频| 床上黄色一级片| 日韩国内少妇激情av| 亚洲欧美清纯卡通| 国产精品福利在线免费观看| 乱码一卡2卡4卡精品| 综合色av麻豆| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| 久久精品国产自在天天线| 成人美女网站在线观看视频| 欧美日韩乱码在线| 国产午夜福利久久久久久| 国产亚洲欧美98| 香蕉av资源在线| 欧美高清成人免费视频www| 亚洲精品影视一区二区三区av| 国产精品综合久久久久久久免费| 色av中文字幕| 国产精品一区二区三区四区久久| 欧美激情国产日韩精品一区| 久久九九热精品免费| 久久久色成人| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 国产黄色小视频在线观看| 午夜福利在线观看免费完整高清在 | 欧美一区二区国产精品久久精品| 精品福利观看| 在线免费观看不下载黄p国产 | 窝窝影院91人妻| 丝袜美腿在线中文| 日本免费一区二区三区高清不卡| 九九爱精品视频在线观看| 男女边吃奶边做爰视频| 亚洲av二区三区四区| 18禁黄网站禁片午夜丰满| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 精品免费久久久久久久清纯| 白带黄色成豆腐渣| 日韩欧美精品免费久久| 国产一区二区三区视频了| 国产精华一区二区三区| 最好的美女福利视频网| 亚洲人成网站高清观看| 狠狠狠狠99中文字幕| 国产女主播在线喷水免费视频网站 | 老师上课跳d突然被开到最大视频| 成年女人永久免费观看视频| 18+在线观看网站| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 淫秽高清视频在线观看| 内射极品少妇av片p| 69av精品久久久久久| 又紧又爽又黄一区二区| 最近在线观看免费完整版| 欧美日本亚洲视频在线播放| 免费看av在线观看网站| 久久人人精品亚洲av| 精品欧美国产一区二区三| 精品一区二区三区人妻视频| 久9热在线精品视频| 亚洲 国产 在线| 日本黄色片子视频| 日韩中字成人| 欧美国产日韩亚洲一区| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久国产a免费观看| 在线观看舔阴道视频| 国产高清有码在线观看视频| av福利片在线观看| 好男人在线观看高清免费视频| 国产三级中文精品| 最新在线观看一区二区三区| 一级a爱片免费观看的视频| 国产久久久一区二区三区| 国产91精品成人一区二区三区| 亚洲三级黄色毛片| 国产一区二区三区在线臀色熟女| 欧美日韩国产亚洲二区| 少妇猛男粗大的猛烈进出视频 | 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| av在线老鸭窝| 制服丝袜大香蕉在线| 国产视频一区二区在线看| 18禁黄网站禁片午夜丰满| 日本 av在线| 18+在线观看网站| 中国美女看黄片| 日日啪夜夜撸| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 一区二区三区激情视频| 亚洲一区高清亚洲精品| 美女高潮喷水抽搐中文字幕| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| 免费人成视频x8x8入口观看| 午夜福利高清视频| 精品99又大又爽又粗少妇毛片 | 中文资源天堂在线| 亚洲va在线va天堂va国产| 国产 一区精品| 成人综合一区亚洲| 岛国在线免费视频观看| 欧美一区二区精品小视频在线| 99热这里只有精品一区| 亚洲av日韩精品久久久久久密| 变态另类成人亚洲欧美熟女| 亚洲欧美激情综合另类| 亚洲18禁久久av| 又黄又爽又免费观看的视频|