• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetrical photonic spin Hall effect based on dielectric metasurfaces

    2022-12-28 09:53:30GuangzhouGeng耿廣州RuhaoPan潘如豪WeiZhu朱維andJunjieLi李俊杰
    Chinese Physics B 2022年12期
    關(guān)鍵詞:李俊廣州

    Guangzhou Geng(耿廣州) Ruhao Pan(潘如豪) Wei Zhu(朱維) and Junjie Li(李俊杰)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Electronic and Electrical Engineering,Wuhan Textile University,Wuhan 430200,China

    Keywords: dielectric metasurface,photonic spin Hall effect,asymmetrical optical response

    1. Introduction

    The photonic spin Hall effect (PSHE), associated with photonic spin–orbit interactions, has attracted extensive research interest due to its potential for novel photonic applications. Generally, the spin–orbit interaction is typically related to two types of geometric phases: the propagation phase and the Pancharatnam–Berry (PB) phase, which are associated with the propagation direction and polarization state of light, respectively.[1–4]The PSHE is rising as a promising platform for novel photonic functions and can be applied in numerous applications,[5–8]such as identifying the graphene layer numbers,[9]precise measurement of optical conductivity of atomically thin crystal,[10]detection of chemical reaction rate,[11]and measurement of ion concentration.[12]More recently, the PSHE has also been applied in high-contrast edge imaging.[13]However, it is always a challenge to manipulate the PSHE flexibly in practical applications. Conventional PSHE manipulation methods only support symmetric photon spin–orbit interactions, which makes it difficult to use different spin states for multifunctional integration. By independently manipulating the different spins of light by employing the PB phase and propagation phase simultaneously,asymmetrical PSHE can integrate circular asymmetric transmission and wavefront shaping,showing strong abilities in the multidimensional and flexible manipulation of spin photons and has potential applications in chiral spin-controlled microscopy and nanophotonics.[14,15]

    Recently, metamaterials consisting of subwavelength units with tunable electromagnetic responses have shown great and flexible abilities to modulate the amplitude, phase and polarization of electromagnetic waves due to the abundant local resonances, resulting in the realization of many extraordinary properties, which are unavailable through natural materials.[16–19]Compared with metamaterials composed of complex three-dimensional structures, metasurfaces are twodimensional artificial planar nanodevices, which can be easily fabricated through conventional semiconductor fabricating processes. Their optical properties are determined by an ultra-thin layer of building blocks with delicately designed geometry and arrangement,[20–22]showing advantages in controlling light in nanoscale. Metasurfaces have also exhibited excellent ability to manipulate the spin–orbit interaction of light, and have been widely used to produce spin-dependent splitting.[23,24]What is more, all-dielectric metasurfaces are composed of building blocks with high aspect ratio, highrefractive-index, and low-loss dielectrics, which have been proposed as a more prospective route than the metallic ones,for the Ohmic damping could be avoided.[25–29]Among dielectric materials used to manufacture metasurfaces, amorphous silicon (a-silicon) is commonly chosen for its compatibility with current fabrication processing technology,as well as the high refractive index and negligible absorption coefficient in the infrared region. Consequently, a-silicon now serves as a promising candidate for metasurface that can manipulate light with high-efficiency over nanoscale dimensions,showing plenty of potential applications in various nanophotonic devices such as lithography, dynamic information display and virtual reality.[30–33]

    In this work, we design, fabricate, and experimentally demonstrate an optical all-dielectric a-silicon metasurface,which realizes PSHE with transmissive modulation, showing an asymmetric transverse spin-dependent split of transmitted left-handed circular polarization(LCP)light and right-handed circular polarization(RCP)light. Due to the combined action of both PB phase and propagation phase, when the metasurface is under normal incidence of operating light with wavelength of 1550 nm, the LCP light exhibits an anomalous refraction of 28.9?,while the RCP light transmits directly. The metasurfaces with building units of a-silicon nanofins, which have changing rotational angles and feature sizes,standing on a quartz substrate are manufactured by common electron beam lithography (EBL), metal deposition and etching procedures,which are compatible with mature semiconductor processes and are feasible for on-chip integrated devices. The experimental results show good consistency with the simulation,exhibiting versatile potentials in ultra-compact spin-dependent photonics devices,and providing a simple and promising route for applications in optical sensing, optical communications,quantum information processing,etc.

    2. Fabrications and method

    Sample fabrication Firstly, 800 nm a-silicon was deposited onto the quartz substrates by plasma enhanced chemical vapor deposition (PECVD), then poly (methylmethacrylate)(PMMA)electron beam resist(EBR)of 400 nm was spinning coated on the a-silicon films. The desired metasurface was patterned by utilizing electron beam lithography (EBL)(JEOL 6300FS) at a base dose of 1000 μC/cm2with an accelerating voltage of 100 kV. After the exposure process, the resist was developed in methyl isobutyl ketone (MIBK): isopropyl alcohol (IPA) of 1:3 solution for 40 s and rinsed in IPA for 30 s successively,followed by a deposition of 100 nm Cr by using the electron beam evaporation deposition (EBD)method. For the purpose of realizing the lift-off process, the samples were immersed in hot acetone of 65?C and cleaned by ultrasonic. Finally,by etching through the inductively coupled plasma (ICP) reactive ion etching (RIE) method with HBr at room temperature(RT)for 270 s(flow rate of 50 sccm, pressure of 10 mTorr, RF and ICP powers of 50 W and 750 W,respectively), the desired metasurfaces were transferred from Cr to silicon and the residual Cr was removed by cerium(IV)ammonium nitrate.

    Simulation methods The phase responses and crosspolarized transmission efficiency of the metasurface were simulated by the three-dimensional (3D) finite difference timedomain method (FDTD). A two-dimensional (2D) parameter sweep of a single unit with length and width from 80 nm to 250 nm and 200 nm–650 nm,height fixed at 800 nm simultaneously,was carried out under thex-polarization to obtain the phase map of the different structural parameters at 1550 nm wavelength under normal incidence. For these simulations,periodic boundary conditions were applied in thexandydirections and perfectly matched layers(PMLs)were applied in thezdirection. The phase response undery-polarization was obtained by transposition of thex-polarization results. The refractive index of the a-silicon was measured by an ellipsometer. The effective refractive index was obtained from the fundamental modes while the power coupling into higher-order waveguide modes was ignored.

    3. Results and discussion

    Figure 1 shows the designed transmissive all-dielectric metasurface that achieves asymmetrical transverse spindependent split due to the spin–orbit interaction in a broadband waveband. In this work, four diverse unit building blocks labeled as U1–U4 are specifically selected to assemble the metasurface, which stand on the quartz substrate. The periodsPand heightsHare both kept at 800 nm, while the widthsWand lengthsLof U1 to U4 are set as 220 nm/290 nm/320 nm/340 nm, and 600 nm/530 nm/540 nm/550 nm,respectively. One supercell,which possesses four nanofins with aπ/8 increment gradient of the rotation angleθaround thez-axis, is arrayed in large area to achieve the designed metasurface. To obtain appropriate PB phase, the rotation anglesθare kept at 0,π/8,π/4,and 3π/8,successively.

    When LCP or RCP lights illuminate the metasurface,the two spins of light will be refracted into the different transverse propagating directions after passing through the metasurface.For normal incident circular polarization(CP)light,the transmitted electric field(EtL/R)of the nanofins rotated by an angleθcan be obtained from the Jones matrix as follows:[34,35]

    Additionally, when an optical wave with CPs incident on a certain nanofin, the relationship between the modulated phase and the characteristics of the nanofin can be achieved as follows:[36]

    where?xand?yrepresent the phase delays of the nanofin for polarized light along thexandyaxes, respectively.θis the rotation angle of the nanofin relative to the reference coordinate system, and?+(x,y) and??(x,y) are the corresponding transmitted modulated phases. It can be seen from the above equations that the phase difference between?xand?yisπ. The modulation phase depends on?xand 2θ, which corresponds to the propagation phase and the PB phase, respectively. The propagation phase?xis mainly determined by the material refractive index and the geometry of the nanofin,and the PB phase 2θis only determined by the rotation angle of the nanofin. Resultingly, the LCP and RCP lights are transformed into the corresponding orthogonal polarization states after passing through the nanofin,while gaining the same propagation phase and opposite PB phase. According to the above equations,the independent phase modulation of the LCP and RCP light can be obtained through the linear combination of the propagation and PB phases.

    Fig. 2. The design and simulation mechanisms of nanofins. The simulation results of (a) transmission Tx/Ty (b) phase delays ?x and ?y as a function of lengths Lx/Ly of nanofins under normal incidence at the wavelength of 1550 nm,respectively. The sizes of the selected nanofins are highlighted by red dots.(c)Simulated E-fields(top: xoz-plane,bottom: yoz-plane)distributions in and near the nanofin at the wavelength of 1550 nm.

    According to the above discussion, a series of nanofins with different phases (?x,?y) that satisfy Eqs. (2)–(4) possessing complete phase coverage of?+(x,y) and??(x,y)are required. To achieve the maximum polarization conversion efficiency (PCE), every nanofin is supposed to operate as a half-waveplate. The 3D finite difference time-domain(FDTD) is implemented to investigate the geometric parameters of the nanofins. The transmissionsTx/Tyand the phase changes?xand?yare simulated as a function of the lengthsLx/Lyof the nanofins,respectively. The proper parameters of the nanofins are picked up through these lengths,as illustrated by red dots in Figs. 2(a) and 2(b). The nanofins U1–U4 possess relative propagation phase shifts?xof 0,π/4,π/2 and 3π/4 in thex-direction, respectively. While the phase delay?yin they-direction meets Eq. (2) to get high polarization conversion efficiency. Furthermore, localized electric fields distributions atxozplane(top in Fig.2(c))andyozplane(bottom in Fig.2(c))in the nanofin at the wavelength of 1550 nm illustrate well confinement of electric fields,showing that the coupling between adjacent nanofins is weak. In this way, the non-uniform medium is typically approximated to the uniform periodic medium,which simplifies the design process.

    Fig. 3. The as-fabricated a-silicon metasurfaces composed of different nanofins, and the simulated/experimental PCEs of each nanofin array. (a)Tilted scanning electron microscopy(SEM)images of different metasurfaces composed of nanofins U1–U4,respectively. The insets are the top view SEM images of each metasurfaces. (b) Simulated and experimental PCEs of the metasurfaces composed of nanofins of U1–U4. Scale bars: 1μm.

    To further establish the validity of the selected U1–U4 nanofins, the a-silicon nanofins are separately fabricated on quartz substrates, as shown in Fig. 3(a). The optical measurements of PCEs are carried out by the Fourier transfer infrared spectrometer (FTIR). The PCEs of U1–U4 are firstly calculated for incident light wavelengths from 1300 nm to 2000 nm, showing that samples U1–U4 have maximal PCEs at the promised operating wavelength(~1550 nm),as shown in the top of Fig.3(b).The PCE is calculated as the ratio of the transmitted opposite helicity power to the incident power. The measured PCE results are displayed at the bottom of Fig.3(b).The deterioration of intensity between simulation and measurement is mainly caused by imperfection of fabrication such as the structure distortions, while the trends match well with the maximum PCE at the operation wavelength.

    Usually,two types of transverse spin-dependent splittings based on the metasurface (symmetric and asymmetric) are concerned. As for the symmetric spin-dependent splitting,the nanofins in the supercell are reserved of the uniform geometric structures with different orientation angles. The light with different helicity obtains an opposite but equal refraction angle after transmitting through the metasurface.[30]However,the refraction angles of light with different spin states are different along theyozplane in the asymmetric case, in which the refraction angles are more flexible. Due to the variation of nanofins in the supercell, the modulated phase is a hybrid phase(the PB phase and propagation phase)for the asymmetric case.[32]

    These four designed nanofins show relatively high PCE,and also introduce different extra propagation phases. The combination of PB phase and propagation phase makes it much more flexible to modulate the polarization of light,implying multi-freedom regulation in spin photons, such as PSHE.To further verify that the propagation phase can break the conjugated characteristic of the modulated phases,the chosen nanofins,whose propagation phase shifts are 0,π/4,π/2,and 3π/4 in thex-direction, respectively, are arranged with aπ/8 increment of the rotation angle to fabricate the metasurfaces as shown in Fig.4(a). Combined with the PB phase,the transmitted modulated phase of LCP light can cover 2πphase,while the transmitted phase of RCP light will remain the same,through which the transmitted LCP light exhibits an anomalous refraction while the RCP light transmits directly. We simulate the electric field distributions of the transmitted lights for the LCP and RCP incident lights,in which the conjugated characteristic of modulated phases of PB phase metasurfaces for different spins is broken,and transverse asymmetrical spindependent splitting occurs,as illustrated in Fig.4(b). The refractive angles of the transmitted LCP light can be calculated by the generalized Snell’s law asθ′=sin?1(λ/Λ)=28.9?,whereΛis the periodic dimension of each supercell, which equals to 4 times of the periodP. Figure 4(c) shows the experimental intensity distributions for normal RCP and LCP illuminations, respectively. These two spins of light are split into the transverse asymmetric propagating directions after passing through the metasurfaces. What is more, by properly optimizing the geometric dimensions of the nanofins,the reflective angles of the LCP and RCP lights can be modulated independently. The above results show highly free manipulation of spin photons and realize multidimensional spindependent splitting. It provides a flexible way to design spindependent multifunctional devices for a variety of potential applications, including optical sensing, microscopy imaging,and spin-controlled nanophotonics.

    Fig. 4. Fabricated a-silicon metasurface and transmitted light results with different spin states illumination at 1550 nm. (a) Tilt SEM images of the metasurface for abnormal refraction, and the insets are the corresponding top-down SEM images. (b)Simulated electric field maps for RCP and LCP illuminations,respectively. (c)Measured light intensity profiles of m=?1,m=0,and m=+1 orders with incident polarization states of RCP and LCP,respectively. Scale bar: 1μm.

    4. Conclusion

    We have demonstrated a multi-dimensional polarization manipulation device based on a single-layer dielectric metasurface.The incident circularly polarized light of two different polarizations can be arbitrarily and independently modulated due to the combination of the PB phase and the propagation phase. Compared with the previous works which control the polarization of the light only by the PB phase,the metasurface we proposed enables to control the polarization more flexible due to the collaborative work mode of the PB phase and propagation phase. The conjugated characteristic of the modulated PB phase for different spin photons can be successfully broken due to the interplay of the propagation phase and the PB phase, by which the spin-dependent splitting in the transverse direction can be completely controlled. Our approach has potentials in spin-controlled nanophotonics,ranging from microscopy imaging to optical communication and information encryption.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074420, U21A20140, and 61905274), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z211100004821009), the Chinese Academy of Sciences through the Project for Young Scientists in Basic Research (Grant No. YSBR-021), and the Synergic Extreme Condition User Facility.

    猜你喜歡
    李俊廣州
    Design method of reusable reciprocal invisibility and phantom device
    沒有叫停!廣州舊改,還在穩(wěn)步推進(jìn)……
    李俊杰作品
    大眾文藝(2021年5期)2021-04-12 09:31:08
    117平、4房、7飄窗,光大來驚艷廣州了!
    9000萬平!超20家房企廝殺! 2020年上半年,廣州“舊改王”花落誰家?
    李俊儒論
    中華詩詞(2020年11期)2020-07-22 06:31:16
    多彩廣州
    小讀者(2020年4期)2020-06-16 03:34:08
    廣州路壹號院
    李俊彥
    我與廣州這些年
    中國三峽(2017年2期)2017-06-09 08:15:26
    久久精品久久久久久久性| 欧美国产精品一级二级三级 | 国产精品一区二区在线不卡| 亚洲精品一二三| 九色成人免费人妻av| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| 精品久久久精品久久久| 一级毛片 在线播放| 一本久久精品| 免费看光身美女| 午夜免费鲁丝| 国产黄片美女视频| 久久ye,这里只有精品| 国产乱来视频区| 国产极品天堂在线| 麻豆精品久久久久久蜜桃| 欧美日本中文国产一区发布| 国产一区二区在线观看av| 一区在线观看完整版| 国产黄色免费在线视频| 日日摸夜夜添夜夜爱| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av中文av极速乱| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 卡戴珊不雅视频在线播放| 97在线人人人人妻| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡动漫免费视频| 麻豆成人午夜福利视频| 人妻系列 视频| 全区人妻精品视频| 久久免费观看电影| 又大又黄又爽视频免费| 校园人妻丝袜中文字幕| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 在线观看免费日韩欧美大片 | 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 国产淫语在线视频| 色婷婷久久久亚洲欧美| 只有这里有精品99| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 亚洲综合色惰| 亚洲国产欧美在线一区| 人妻人人澡人人爽人人| 日本91视频免费播放| 成人毛片a级毛片在线播放| 最近最新中文字幕免费大全7| 国产乱来视频区| 亚洲内射少妇av| av视频免费观看在线观看| 免费播放大片免费观看视频在线观看| 亚洲欧洲国产日韩| 丰满人妻一区二区三区视频av| 高清视频免费观看一区二区| 男女边吃奶边做爰视频| 涩涩av久久男人的天堂| 久久精品国产亚洲av涩爱| 日韩一区二区视频免费看| 亚洲av电影在线观看一区二区三区| 久久久精品免费免费高清| av播播在线观看一区| 国产精品99久久99久久久不卡 | 麻豆乱淫一区二区| 91久久精品国产一区二区成人| 又黄又爽又刺激的免费视频.| 2022亚洲国产成人精品| 熟女av电影| videos熟女内射| 亚洲av欧美aⅴ国产| 亚洲欧美精品专区久久| 精品少妇内射三级| 国产精品成人在线| 久久久久精品久久久久真实原创| 日产精品乱码卡一卡2卡三| 成人影院久久| 一个人免费看片子| 国产免费视频播放在线视频| 免费看av在线观看网站| 建设人人有责人人尽责人人享有的| 国产精品国产三级国产专区5o| 亚洲性久久影院| 亚洲欧洲日产国产| 欧美成人午夜免费资源| 中文字幕久久专区| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 亚洲国产精品一区三区| 久久精品国产亚洲av天美| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 一区在线观看完整版| www.色视频.com| av在线app专区| 特大巨黑吊av在线直播| 日本免费在线观看一区| 91久久精品国产一区二区三区| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 亚洲第一区二区三区不卡| 久久这里有精品视频免费| 99九九线精品视频在线观看视频| 日韩精品免费视频一区二区三区 | 日韩制服骚丝袜av| 99久久精品国产国产毛片| 久久久久久久亚洲中文字幕| 国产精品国产三级专区第一集| 午夜免费鲁丝| 秋霞在线观看毛片| 久久青草综合色| 80岁老熟妇乱子伦牲交| 国产黄频视频在线观看| 99热这里只有精品一区| 最黄视频免费看| 边亲边吃奶的免费视频| 亚洲精品日韩av片在线观看| 天堂8中文在线网| 国产亚洲av片在线观看秒播厂| 国产综合精华液| 日韩 亚洲 欧美在线| 在线观看www视频免费| 午夜视频国产福利| 亚洲国产毛片av蜜桃av| 狠狠精品人妻久久久久久综合| 中文资源天堂在线| 亚洲人成网站在线观看播放| 欧美最新免费一区二区三区| 一级毛片aaaaaa免费看小| 久久久久久人妻| 国产色婷婷99| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 日韩,欧美,国产一区二区三区| 久久久欧美国产精品| 欧美+日韩+精品| 亚洲丝袜综合中文字幕| 另类亚洲欧美激情| 亚洲欧美日韩东京热| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 成年av动漫网址| 男男h啪啪无遮挡| 日韩中字成人| 亚洲情色 制服丝袜| 国产又色又爽无遮挡免| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 精品午夜福利在线看| 91精品国产九色| 精品一区二区三卡| 亚洲熟女精品中文字幕| 日韩中文字幕视频在线看片| 免费黄网站久久成人精品| 国产一区二区三区综合在线观看 | 成人18禁高潮啪啪吃奶动态图 | 日韩av在线免费看完整版不卡| av网站免费在线观看视频| 国产美女午夜福利| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 精品一品国产午夜福利视频| 22中文网久久字幕| 综合色丁香网| 91成人精品电影| 亚洲成人一二三区av| 麻豆乱淫一区二区| 99久久精品国产国产毛片| 少妇人妻久久综合中文| 日韩强制内射视频| 亚洲不卡免费看| 九色成人免费人妻av| 中文字幕免费在线视频6| 老司机影院毛片| 亚洲国产最新在线播放| 精品人妻熟女毛片av久久网站| 精品久久久久久久久亚洲| 国产乱来视频区| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 亚洲中文av在线| 日本色播在线视频| 国产一区亚洲一区在线观看| av不卡在线播放| 欧美三级亚洲精品| 国产一区二区在线观看av| 欧美3d第一页| 国产男女内射视频| 国产亚洲5aaaaa淫片| 国产精品嫩草影院av在线观看| 精品熟女少妇av免费看| 国内精品宾馆在线| 久久精品久久久久久噜噜老黄| av有码第一页| 丁香六月天网| 午夜福利影视在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国内精品宾馆在线| 国产精品不卡视频一区二区| 亚洲国产精品专区欧美| 两个人免费观看高清视频 | 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜爱| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 18禁在线无遮挡免费观看视频| 亚洲丝袜综合中文字幕| 高清不卡的av网站| 九草在线视频观看| 国产精品伦人一区二区| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 亚洲国产精品一区三区| 成人无遮挡网站| 国产男女超爽视频在线观看| 久久青草综合色| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 免费观看av网站的网址| 免费人妻精品一区二区三区视频| 性色avwww在线观看| 中文资源天堂在线| 亚洲精品国产成人久久av| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 青春草亚洲视频在线观看| a级毛色黄片| 女人久久www免费人成看片| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频 | 国产成人免费无遮挡视频| 一区二区三区精品91| 日韩视频在线欧美| 草草在线视频免费看| 国产精品一区二区性色av| 丰满少妇做爰视频| 波野结衣二区三区在线| 99久久综合免费| 天堂中文最新版在线下载| 日本黄大片高清| 日本黄色日本黄色录像| 日韩大片免费观看网站| 一级a做视频免费观看| 亚洲精品国产成人久久av| 亚洲真实伦在线观看| 久久久久久久久久久丰满| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| 久久精品夜色国产| 免费看日本二区| 91精品国产九色| 亚洲国产精品一区三区| 搡女人真爽免费视频火全软件| 国产精品欧美亚洲77777| 日韩强制内射视频| 美女中出高潮动态图| 日韩强制内射视频| 高清毛片免费看| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 大陆偷拍与自拍| 黄色视频在线播放观看不卡| 夫妻性生交免费视频一级片| 大码成人一级视频| 最近手机中文字幕大全| 精品少妇黑人巨大在线播放| 啦啦啦中文免费视频观看日本| 高清在线视频一区二区三区| 丰满迷人的少妇在线观看| 国产乱来视频区| 高清欧美精品videossex| 赤兔流量卡办理| 亚洲自偷自拍三级| 少妇被粗大的猛进出69影院 | 精品久久久精品久久久| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 免费观看av网站的网址| 哪个播放器可以免费观看大片| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 国产欧美日韩精品一区二区| 精品国产一区二区久久| 欧美3d第一页| 国产永久视频网站| 免费黄频网站在线观看国产| 亚洲av电影在线观看一区二区三区| 亚洲中文av在线| 色94色欧美一区二区| 国产精品久久久久久精品电影小说| 精品卡一卡二卡四卡免费| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图 | 高清在线视频一区二区三区| 国产精品一区二区性色av| 久久人人爽av亚洲精品天堂| 国产精品不卡视频一区二区| 国产 一区精品| 搡老乐熟女国产| 中文字幕久久专区| 亚洲精品国产色婷婷电影| 极品教师在线视频| 人人妻人人澡人人爽人人夜夜| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 午夜福利网站1000一区二区三区| 97精品久久久久久久久久精品| av福利片在线观看| 观看美女的网站| 日日啪夜夜爽| 午夜福利在线观看免费完整高清在| 国语对白做爰xxxⅹ性视频网站| 一级毛片黄色毛片免费观看视频| 久久久久久久国产电影| 妹子高潮喷水视频| 日韩视频在线欧美| 国产精品一区二区三区四区免费观看| 精品午夜福利在线看| 国产片特级美女逼逼视频| 少妇精品久久久久久久| 亚州av有码| 寂寞人妻少妇视频99o| 欧美日本中文国产一区发布| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| 亚洲欧美日韩东京热| 赤兔流量卡办理| 精品一区在线观看国产| videossex国产| 国产精品久久久久久精品古装| 男女无遮挡免费网站观看| 如日韩欧美国产精品一区二区三区 | 26uuu在线亚洲综合色| 亚洲丝袜综合中文字幕| 乱码一卡2卡4卡精品| 热99国产精品久久久久久7| 国产91av在线免费观看| 久久97久久精品| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 亚洲国产欧美在线一区| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 69精品国产乱码久久久| 国产熟女午夜一区二区三区 | 日本黄大片高清| 免费少妇av软件| 精品99又大又爽又粗少妇毛片| 午夜av观看不卡| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 天堂8中文在线网| 赤兔流量卡办理| 久久久久久久精品精品| 日本91视频免费播放| 97在线视频观看| 人妻制服诱惑在线中文字幕| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 黄色日韩在线| 日韩大片免费观看网站| 一区二区三区乱码不卡18| 97超碰精品成人国产| 久久韩国三级中文字幕| 精品国产一区二区久久| 成人二区视频| 亚洲电影在线观看av| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 亚洲国产色片| 在线观看国产h片| 国产爽快片一区二区三区| 免费av中文字幕在线| 一级毛片aaaaaa免费看小| 亚洲va在线va天堂va国产| 婷婷色麻豆天堂久久| av不卡在线播放| 国产成人精品福利久久| 国产成人免费无遮挡视频| 一级爰片在线观看| 十分钟在线观看高清视频www | 日韩熟女老妇一区二区性免费视频| 日韩av在线免费看完整版不卡| 桃花免费在线播放| 欧美老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| av在线老鸭窝| 一区在线观看完整版| av黄色大香蕉| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 涩涩av久久男人的天堂| 18禁裸乳无遮挡动漫免费视频| 亚洲中文av在线| 秋霞在线观看毛片| 亚洲国产av新网站| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站| 久久国产乱子免费精品| 国产精品伦人一区二区| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 国产精品久久久久成人av| 黑人高潮一二区| 色视频www国产| 高清av免费在线| 色网站视频免费| 人人妻人人添人人爽欧美一区卜| 国产免费一区二区三区四区乱码| 欧美日韩在线观看h| 亚洲av欧美aⅴ国产| 久久精品国产鲁丝片午夜精品| 在线免费观看不下载黄p国产| 午夜免费观看性视频| 国内少妇人妻偷人精品xxx网站| 免费av中文字幕在线| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 中文字幕久久专区| 激情五月婷婷亚洲| 久久亚洲国产成人精品v| 日本av免费视频播放| 99久国产av精品国产电影| 久久99精品国语久久久| 久久精品国产a三级三级三级| 免费观看无遮挡的男女| 国产欧美日韩一区二区三区在线 | 天堂中文最新版在线下载| 精品午夜福利在线看| 久久久久久久大尺度免费视频| 岛国毛片在线播放| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 国产熟女午夜一区二区三区 | 精品国产露脸久久av麻豆| 在现免费观看毛片| 久久久国产一区二区| 尾随美女入室| 香蕉精品网在线| 欧美日韩精品成人综合77777| 中文字幕亚洲精品专区| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 青青草视频在线视频观看| 日韩人妻高清精品专区| 午夜激情福利司机影院| 少妇精品久久久久久久| av天堂久久9| 亚洲av电影在线观看一区二区三区| 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看| 自拍偷自拍亚洲精品老妇| 一本久久精品| av专区在线播放| 男人和女人高潮做爰伦理| 最后的刺客免费高清国语| √禁漫天堂资源中文www| 大又大粗又爽又黄少妇毛片口| 久久韩国三级中文字幕| 亚洲av不卡在线观看| 国产免费福利视频在线观看| 色视频在线一区二区三区| 亚洲精品aⅴ在线观看| 久久久久久久久久成人| 少妇猛男粗大的猛烈进出视频| 欧美精品国产亚洲| 成人国产麻豆网| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品古装| 91精品国产国语对白视频| 精品熟女少妇av免费看| 涩涩av久久男人的天堂| 日韩av免费高清视频| 国产永久视频网站| 国产欧美日韩一区二区三区在线 | 国产成人freesex在线| av在线播放精品| 欧美一级a爱片免费观看看| 国产精品久久久久久av不卡| 我要看日韩黄色一级片| 色视频在线一区二区三区| 人妻制服诱惑在线中文字幕| 丁香六月天网| 一级毛片久久久久久久久女| 亚洲怡红院男人天堂| 欧美bdsm另类| 久久精品国产a三级三级三级| 精品久久久精品久久久| 日本wwww免费看| 晚上一个人看的免费电影| 亚洲国产av新网站| 国产精品伦人一区二区| 汤姆久久久久久久影院中文字幕| 中文在线观看免费www的网站| 国产美女午夜福利| 黑人猛操日本美女一级片| 少妇高潮的动态图| 亚洲精品456在线播放app| 五月天丁香电影| 精品一区二区三区视频在线| 国产综合精华液| 欧美日韩在线观看h| 在线播放无遮挡| a 毛片基地| 日日摸夜夜添夜夜爱| 国产精品三级大全| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 亚洲精品国产成人久久av| 精品亚洲乱码少妇综合久久| 欧美三级亚洲精品| 国产免费视频播放在线视频| 精品亚洲成国产av| 一区在线观看完整版| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 亚州av有码| 男女国产视频网站| a级毛片免费高清观看在线播放| 午夜福利视频精品| 亚洲欧洲精品一区二区精品久久久 | 狂野欧美激情性bbbbbb| 亚州av有码| 国产伦精品一区二区三区视频9| 亚洲伊人久久精品综合| 亚洲中文av在线| 少妇 在线观看| 久久综合国产亚洲精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产av蜜桃| 成年av动漫网址| 97精品久久久久久久久久精品| 91精品一卡2卡3卡4卡| 涩涩av久久男人的天堂| 夫妻性生交免费视频一级片| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 亚洲av免费高清在线观看| 亚洲成人手机| 国产亚洲91精品色在线| 国产精品国产三级国产av玫瑰| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 黄色欧美视频在线观看| av视频免费观看在线观看| 国产精品蜜桃在线观看| 日韩在线高清观看一区二区三区| 美女视频免费永久观看网站| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| av国产久精品久网站免费入址| 丰满迷人的少妇在线观看| 一级片'在线观看视频| 26uuu在线亚洲综合色| 热re99久久国产66热| 亚洲精品色激情综合| 国产真实伦视频高清在线观看| av一本久久久久| 国产精品秋霞免费鲁丝片| www.色视频.com| 男人舔奶头视频| 少妇的逼水好多| 久久这里有精品视频免费| 另类精品久久| 亚洲精品中文字幕在线视频 | 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 午夜福利在线观看免费完整高清在| 国产午夜精品一二区理论片| av线在线观看网站| 国产精品伦人一区二区| 国产精品久久久久久精品电影小说| 97超碰精品成人国产| 亚洲人与动物交配视频| 99久国产av精品国产电影| 免费播放大片免费观看视频在线观看| 成人国产麻豆网| 欧美日韩精品成人综合77777| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 大片电影免费在线观看免费| 女人精品久久久久毛片| 人妻系列 视频| 观看免费一级毛片| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 国产亚洲5aaaaa淫片| 精品国产国语对白av| 2021少妇久久久久久久久久久| videossex国产| 99久久综合免费| 国产黄片视频在线免费观看| 欧美少妇被猛烈插入视频| 热99国产精品久久久久久7| 伦理电影免费视频| 亚洲国产精品专区欧美| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 蜜臀久久99精品久久宅男| 国产熟女欧美一区二区| 欧美最新免费一区二区三区|