• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95μm

    2022-12-28 09:53:28GuoQuanQian錢國權(quán)MinBoWu吳敏波GuoWuTang唐國武MinSun孫敏DongDanChen陳東丹ZhiBinZhang張志斌HuiLuo羅輝andQiQian錢奇
    Chinese Physics B 2022年12期
    關(guān)鍵詞:國權(quán)唐國

    Guo-Quan Qian(錢國權(quán)) Min-Bo Wu(吳敏波) Guo-Wu Tang(唐國武) Min Sun(孫敏)Dong-Dan Chen(陳東丹) Zhi-Bin Zhang(張志斌) Hui Luo(羅輝) and Qi Qian(錢奇)

    1Yunnan Police College,Kunming 650223,China

    2Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques,South China University of Technology,Guangzhou 510640,China

    3School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    4Southwest Institute of Technical Physics,Chengdu 610041,China

    Keywords: all-glass fiber,single-frequency,2μm fiber laser,Tm:YAG ceramic derived

    1. Introduction

    Single-frequency fiber lasers operating at~2 μm have attracted intense attention for their wide-ranging applications,from high-resolution spectroscopy and noninvasive medicine to coherent beam combining,due to their outstanding properties of low noise, narrow linewidth and at an eye-safe wavelength regime.[1–4]Up to now,~2μm single-frequency fiber lasers have been achieved in various cavity structures,including ring cavities,distributed feedback(DFB)cavities and distributed Bragg reflector (DBR) cavities.[5–7]More recently,Walasiket al.reported a 2μm single-frequency all-fiber DFB laser source employing fiber Bragg gratings(FBGs)which has a laser linewidth of 5 kHz.[8]Here, we focus on a~2 μm single-frequency fiber laser with a DBR cavity structure. A key factor in obtaining a DBR single-frequency fiber laser is the use of high-gain glass fibers for shorting the laser cavity.[9]It is known that a high rare earth(RE)ion doping concentration can achieve a large pump absorption and high gain per unit length in the resulting glass fiber, which allows efficient laser output in a short piece of RE ion-doped active fiber.[10,11]

    To date, single-frequency DBR fiber lasers at~2 μm have been developed by using different Tm3+-doped glass fibers, such as silica, silicate and germanate glass fibers.[7,12,13]However,pure silica glass fibers have a low RE ion doping concentration because of the well-defined glass structure consisting of a [SiO4] tetrahedron, which limits the gain of the resulting silica glass fibers.[14]In 2015, Fuet al.demonstrated a 2μm single-frequency DBR fiber laser based on a 1.9-cm long commercially available Tm3+-doped silica glass fiber; this had a maximum output power of 18 mW and a slope efficiency of 13.4% with respect to the absorbed pump of a 793 nm laser diode (LD).[7]The output power of a 2 μm single-frequency DBR fiber laser can be improved by means of in-band pumping at the 1.5 μm band.[15]Note that multicomponent glasses,which have high RE ion solubility, are usually used to fabricate high-gain glass fibers.[1,16]Genget al.reported a single-frequency DBR fiber laser at 1893 nm based on a 2 cm long heavily Tm3+-doped germanate glass fiber; this had a pump threshold of 30 mW and a maximum output power of 50 mW.[17]They went on to demonstrate a narrow-linewidth single-frequency DBR fiber laser at 1.95μm with a 2 cm long heavily Tm3+-doped silicate glass fiber.[12]However, the large splicing losses (~2.2 dB) between the active fiber and two FBGs resulted in a relatively high threshold.[12,15]In 2018, Tanget al.fabricated a heavily Tm3+-doped barium gallo-germanate glass fiber that had a gain per unit length of 3.6 dB·cm?1at 1.95μm.[13]A singlefrequency DBR fiber laser of over 220 mW at 1.95μm was realized in a 1.5 cm long active fiber,showing a slope efficiency of 30.2% with respect to the absorbed pump of a 1568 nm fiber laser.[13]Although the multicomponent glass fibers used in these reports possess higher RE ion solubility over the silica fiber,which enables~2μm single-frequency DBR fiber laser operation with higher output power and slope efficiency,there are still some obstacles to their application in the aforementioned areas.[15,18]For example, their softening temperature and thermal expansion coefficient are different from those of commercial silica glass fiber,implying that it is more challenging to achieve low-loss spliced with silica-based fiber devices,such as wavelength division multiplexer(WDM)and FBG.[7]Moreover,the resulting splice joint exhibits reduced mechanical strength, which sacrifices the reliability of the fiber laser system.[15]Therefore, the development of novel fiber materials, fiber design and fabrication techniques could facilitate some high RE ion-doped silica-based fibers becoming competitive candidates for single-frequency fiber lasers.

    In recent years, RE ion-doped Y3Al5O12(YAG) single crystal or polycrystalline ceramic (precursor phase) derived all-glass fibers with novel properties have been developed and fabricated for high-power fiber lasers,ultrafast fiber lasers and single-frequency fiber lasers.[19–22]Compared with RE ion-doped silica glass fibers,YAG-derived all-glass fibers with a high yttrium (Y) and aluminum (Al) concentration in the fiber core [yttrium aluminosilicate (YAS) glass] have a higher thermal conductivity and a higher stimulated Brillouin scattering threshold, properties which are beneficial for achieving high-power single-frequency fiber lasers.[23–26]Additionally, in contrast to RE ion-doped multicomponent glass fiber, the thermal expansion coefficient and refractive index of these YAG-derived all-glass fibers better matches with the silica glass cladding, making them easier to splice with silica fibers.[22,27,28]In 2019, Zhanget al.demonstrated a singlefrequency DBR fiber laser at 1.064 μm based on a 1.7 cm long Yb:YAG ceramic-derived all-glass fiber.[19]Although the output power and slope efficiency of the laser were relatively low, this work was the first to provide a prospect for the development of all-fiber single-frequency DBR fiber lasers by using YAG-derived all-glass fibers. Then, Liuet al.reported a 110 mW single-frequency DBR fiber laser at 1.064 μm with a slope efficiency of 18.5% based on a 1.4 cm long Yb:YAG crystal-derived all-glass fiber by reducing the resonance loss.[20]More recently,Xieet al.reported a 24.2 mW pulsed single-frequency laser at 1.55 μm based on a 1.8 cm long Er:YAG crystal-derived all-glass fiber.[29]However, single-frequency DBR fiber lasers at~2 μm based on Tm:YAG crystal or ceramic-derived all-glass fibers have never been reported.

    Here,Tm:YAG ceramic-derived all-glass fiber was drawn by using the molten core method. It has a gain per unit length of 2.7 dB·cm?1at 1.95 μm. The as-drawn fiber has a YAS glass core, which is composed of 14.2 mol.% Al2O3,77.1 mol.%SiO2, 6.5 mol.%Y2O3, and 2.25 mol.%Tm2O3.Details of the as-drawn YAS glass fiber can be found in Table 1. A 1.95 μm single-frequency DBR fiber laser was achieved by using a 2 cm long Tm:YAG ceramic-derived all-glass fiber. The fiber laser has a high optical signal-tonoise ratio (OSNR) of~77 dB and a low pump threshold of~15.4 mW. The direct output power of the laser reached 135 mW with a pump power of 1340 mW, corresponding to a slope efficiency of 10.2% with respect to the absorbed pump power. In addition, the linewidth and relative intensity noise(RIN)were measured. This work is a proof-of-concept that Tm:YAG-derived all-glass fiber with a high gain per unit length can be used in a compact 2μm single-frequency DBR fiber laser.

    Table 1. Properties of Tm:YAG ceramic-derived all-glass fiber.

    2. Experimental details

    Tm:YAG ceramic samples were prepared by the solidstate reaction method. Commercial powders (Al2O3, Y2O3,Tm2O3) were weighed and then mixed. Boric acid (1 wt%)was used as a sintering aid in the samples. Column-shaped YAG ceramic samples were prepared after the pressed green bodies were sintered at 1600?C for 5 h in a muffle furnace,and then ground and polished into cylindrical rods with a diameter of~2.8 mm. The YAG rods were washed repeatedly with dilute hydrochloric acid, alcohol and distilled water to remove the contaminated surface layer and then placed into a vacuum drying oven at 400?C for 12 h. After preparation the initial precursor material was inserted into cylindrical silica glass tubes (optical quality 99.99%, inner diameter~3 mm,external diameter~30 mm,length~150 mm). One end of the tube was sealed using an oxyhydrogen flame. Optical fiber was prepared using a standard fiber drawing tower at a temperature of~2000?C.During the drawing process of the molten core method, the glass cladding is similar to‘the crucible’, which provides a high-temperature, high-pressure environment for the core material,and the molten core is rapidly quenched. Glass fibers with different diameters can be obtained by controlling the feeding speed, the temperature and the pulling speed. Hundreds of meters of fibers with an outer diameter of~125μm were collected for test characterization and laser experiments.

    Figure 1(a) shows the XRD pattern of the Tm:YAG ceramic sample. The diffraction peaks of the sample match well with the standard card of YAG (PDF#33-0044), suggesting that the prepared ceramic sample is pure YAG phase. Figure 1(b) shows the Raman spectra of the resulting Tm:YAS fiber core and silica glass cladding. The broad Raman bands in the fiber core and cladding indicate the amorphous state of the obtained fiber.

    Figure 2(a) shows the electron micrograph image of the Tm:YAS all-glass fiber. It can be observed that the fiber core has a good circularity. Figures 2(b)–2(e) show the electron probe microanalyzer mapping of Si, Y Al, and Tm. The Al,Tm, and Y are mainly distributed in the core region, while the Si is distributed in both the cladding and the core. In our previous work this type of YAS glass fiber was proven to be a graded refractive index fiber due to the elemental migration between the melting core and the softened cladding.[27]

    Fig.1.(a)XRD pattern of the Tm:YAG ceramic sample.(b)Raman spectra of the resulting Tm:YAS glass fiber core and the silica glass cladding.

    Fig.2. (a)Electron micrograph image of the Tm:YAS all-glass fiber. (b)–(e)Electron probe microanalyzer images of the distribution of different elements across the fiber cross section.

    The scheme of the experimental setup for the 1.95 μm single-frequency DBR fiber laser is shown in Fig.3. The laser cavity combines a partial-reflection fiber Bragg grating (PRFBG), a high-reflection fiber Bragg grating (HR-FBG) and a short piece of as-drawn gain fiber. The two ends of the gain fiber were spliced with the PR-FBG and HR-FBG. The PRFBG has a reflectivity of 50.0%at 1950 nm and a 3 dB bandwidth of 0.09 nm. The HR-FBG has a reflectivity of 99.5%at 1950 nm. A backward pumping scheme was used in the laser experiment. The fiber laser was counter-pumped by a highpower 1610 nm fiber laser, through a 1610/1950 nm WDM.The whole laser cavity was placed in an aluminum tube,which was temperature-controlled by a cooling system with an accuracy of±0.1?C. To achieve efficient single-frequency laser operation,a short cavity length is necessary to enlarge the longitudinal mode spacing. For this purpose, a section of 2 cm long Tm:YAG-derived all-glass fiber was chosen as the gain fiber by the cut-back method. The laser output spectrum was monitored by an optical spectrum analyzer (AQ6375, Yokogawa, Japan) with a wavelength resolution of 0.02 nm. The single-frequency operation of the laser was confirmed by using a scanning fiber Fabry–Perot interferometer (FFPI; SA200-18B, Thorlabs) with a free-spectral range (FSR) of 1.5 GHz and a resolution of 7.5 MHz. The laser linewidth was measured by a self-heterodyne method. The RIN of the fiber laser was measured by an electrical spectrum analyzer,whose resolution bandwidth was set to 1 kHz. During each measurement of RIN the laser power was attenuated to 0.5 mW before being injected into a photoelectric detector.

    Fig.3. Scheme of the experimental setup for the 1.95μm single-frequency DBR fiber laser based on the as-drawn gain fiber(GF).

    3. Results and discussion

    The laser output spectrum is shown in Fig. 4(a). The achieved laser has a central wavelength of 1950 nm with an OSNR of~77 dB. The laser output power and the residual power were measured by a standard power meter. Figure 4(b) shows the laser output power as a function of the absorbed pump power. The laser threshold was measured to be~15.4 mW. The fiber laser yields a maximum laser output power of 135 mW with a slope efficiency of 10.2%. Note that the phenomenon of power saturation was not observed,suggesting that the output power could be further improved by using a higher available pump power. The stability of the laser output power at 60 mW was measured for 40 min; the result is shown in the inset of Fig.4(b). The constructed fiber laser is stable with an output power fluctuation relative to the average power of~3.24%(relative standard deviation)during the entire period.

    The scanning spectrum over the FSR of the FFPI is presented in Fig.5.A stable single-longitudinal-mode output was achieved when the temperature of the laser cavity was controlled at 19.6?C. Through the strict temperature control of the whole laser cavity, the laser operated stably in a singlefrequency regime without mode hopping or mode competition as the pump power increased. Therefore, a 135 mW singlefrequency DBR fiber laser operating at 1.95μm was realized in a 2 cm long gain fiber when in-band pumped by a 1610 nm fiber laser.

    Fig.4. (a)Measured output spectrum of the fiber laser. (b)The laser output power versus the absorbed pump power. The inset shows the power stability of the laser output power at 60 mW for 40 min.

    The laser linewidth was measured at a laser output power of 100 mW using the self-heterodyne method performed with a 3 km delay fiber (SMF-28M, Corning). Figure 6(a)shows the measured heterodyne signal which was fitted with a Lorentz lineshape. It can be observed that the signal is 90 kHz at 20 dB from the peak, indicating that the fiber laser has a linewidth of 4.5 kHz. Laser noise is an important parameter for a single-frequency fiber laser. Figure 6(b) shows the output RIN results under different laser output powers in the frequency range 0 MHz–15 MHz. The relaxation oscillation frequency peaks under different laser output powers were observed at frequencies of 0.55 MHz,0.95 MHz,and 1.24 MHz,respectively. The relaxation oscillation frequency peaks move toward the higher frequency from 0.55 MHz to 1.24 MHz with increasing output power. The measured RIN is less than?140 dB·Hz?1at frequencies above 10 MHz. Table 2 summarizes the performance of different single-frequency DBR fiber lasers based on RE ion-doped silica glass fiber and YAGderived all-glass fibers. Here, the slope efficiency is defined as the slope of the curve obtained by plotting the laser output power versus the absorbed pump power. It can be found that the output power and the slope efficiency achieved in this work are higher than that in the single-frequency DBR Tm3+doped silica fiber laser.[15]In addition, compared with the other single-frequency DBR YAG-derived all-glass fiber lasers,the performance of the 1.95μm single-frequency DBR fiber laser achieved in this work is competitive. Further improvement should be made with respect to cavity design,such as optimizing the gain fiber numerical aperture(NA)and using high-NA FBGs to optimize the coupling efficiency of pump light.

    Fig.6. (a)Linewidth of the single-frequency fiber laser measured by the self-heterodyne method. (b)RIN of the single-frequency fiber laser in the frequency band of 0 MHz–15 MHz with different output powers.

    Table 2. Performance of different single-frequency DBR fiber lasers based on RE ion-doped silica fiber and YAG-derived all-glass fibers.

    4. Conclusion

    In conclusion, a 1.95 μm single-frequency DBR fiber laser was realized by using a 2 cm long Tm:YAG ceramicderived all-glass fiber pumped by a 1610 nm fiber laser. A maximum output power of 135 mW was obtained in this allfiber integrated laser system with a linewidth of 4.5 kHz. The fiber laser has a high OSNR of~77 dB and a low pump threshold of~15.4 mW.In addition,the RIN was investigated under different laser output powers.These results indicate that high-gain Tm:YAG ceramic-derived all-glass fiber is a promising candidate in 2μm single-frequency DBR fiber lasers.

    Acknowledgments

    Project supported by the Yunnan Fundamental Research Projects (Grant No. 202201AU070065), Natural Science Foundation of China for Young Scholars (Grant No. 52002131), Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(Grant No.2021-04),and the Scientific Research Fund Project of Yunnan Provincial Department of Education(Grant No.2022J0591).

    猜你喜歡
    國權(quán)唐國
    “電競游戲”思維下的體育游戲設(shè)計
    體育科技(2022年2期)2022-08-05 14:27:14
    甘薯解偶聯(lián)蛋白基因家族鑒定與表達分析
    唐國龍【布面水彩】
    淺析高層建筑剪力墻結(jié)構(gòu)優(yōu)化設(shè)計
    成都大學(xué)學(xué)報(社會科學(xué)版)(2019年3期)2019-07-11 08:05:20
    成都大學(xué)學(xué)報(社會科學(xué)版)(2018年5期)2018-11-12 00:22:58
    擺不平的劣跡
    紫甘薯紅色素與其他同類色素的穩(wěn)定性比較
    40年前發(fā)生的“桑蘭事件”
    大眾健康(2001年5期)2001-04-29 14:51:33
    藝術(shù),不朽的活力
    雕塑(1998年2期)1998-06-28 12:57:08
    能在线免费看毛片的网站| 欧美老熟妇乱子伦牲交| 夜夜爽夜夜爽视频| 老司机影院毛片| 日产精品乱码卡一卡2卡三| 少妇人妻久久综合中文| 听说在线观看完整版免费高清| 亚洲av福利一区| 国产精品爽爽va在线观看网站| 国产成人a∨麻豆精品| 免费黄色在线免费观看| 青春草视频在线免费观看| 女人久久www免费人成看片| 国产精品成人在线| 久久久精品94久久精品| 黄色视频在线播放观看不卡| 成人欧美大片| 男女边摸边吃奶| 国产成人免费观看mmmm| 亚洲精品国产av成人精品| 成年av动漫网址| 嘟嘟电影网在线观看| 精品久久久噜噜| 九草在线视频观看| 久久精品国产自在天天线| 少妇人妻一区二区三区视频| 九色成人免费人妻av| 国产黄a三级三级三级人| 69av精品久久久久久| 国产亚洲一区二区精品| 国产又色又爽无遮挡免| 亚洲精品日韩在线中文字幕| 高清av免费在线| 亚洲综合精品二区| 中文在线观看免费www的网站| 精品酒店卫生间| 黄片无遮挡物在线观看| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 成人一区二区视频在线观看| 日韩人妻高清精品专区| 舔av片在线| 国产黄色视频一区二区在线观看| 免费av观看视频| 久久久久久九九精品二区国产| 国产精品一及| 久久国内精品自在自线图片| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 亚洲真实伦在线观看| 欧美另类一区| 精品一区二区三区视频在线| 午夜免费观看性视频| av.在线天堂| freevideosex欧美| 少妇人妻一区二区三区视频| 久久99蜜桃精品久久| 五月伊人婷婷丁香| 亚洲av男天堂| 男人和女人高潮做爰伦理| 在线免费十八禁| 日本一本二区三区精品| 在线观看av片永久免费下载| 国产高清国产精品国产三级 | 久久99热6这里只有精品| 可以在线观看毛片的网站| 亚洲欧美一区二区三区黑人 | 一级毛片我不卡| 在线亚洲精品国产二区图片欧美 | 丝袜美腿在线中文| 新久久久久国产一级毛片| h日本视频在线播放| 国产一区二区在线观看日韩| 国产精品久久久久久av不卡| videos熟女内射| av福利片在线观看| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 亚洲精品一区蜜桃| 一区二区三区乱码不卡18| videossex国产| 国产高清有码在线观看视频| 九草在线视频观看| 国产有黄有色有爽视频| 亚洲av中文av极速乱| 国产一区二区在线观看日韩| 国产真实伦视频高清在线观看| 2022亚洲国产成人精品| 日韩欧美精品v在线| 又大又黄又爽视频免费| 免费av毛片视频| 亚洲av男天堂| 狂野欧美激情性xxxx在线观看| 亚洲欧美日韩另类电影网站 | 国产色爽女视频免费观看| 肉色欧美久久久久久久蜜桃 | 国产成人午夜福利电影在线观看| 街头女战士在线观看网站| 深爱激情五月婷婷| 欧美丝袜亚洲另类| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 99热这里只有是精品在线观看| 在线播放无遮挡| 汤姆久久久久久久影院中文字幕| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 国产精品成人在线| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 欧美精品人与动牲交sv欧美| 久久久国产一区二区| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 亚洲欧美清纯卡通| 久久久色成人| 干丝袜人妻中文字幕| 国产在线男女| av.在线天堂| 黄片无遮挡物在线观看| av国产免费在线观看| 欧美zozozo另类| 精品亚洲乱码少妇综合久久| 成人毛片a级毛片在线播放| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 久久ye,这里只有精品| 亚洲成人一二三区av| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 在线免费十八禁| 欧美高清成人免费视频www| 久久99蜜桃精品久久| 欧美激情在线99| 日日啪夜夜爽| 亚洲精品视频女| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 国产欧美亚洲国产| 亚洲国产av新网站| 国内精品宾馆在线| 国产精品99久久久久久久久| 男女下面进入的视频免费午夜| 亚洲国产最新在线播放| 亚洲av中文字字幕乱码综合| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| 男女那种视频在线观看| 91午夜精品亚洲一区二区三区| av在线天堂中文字幕| 国产精品久久久久久久久免| 人妻夜夜爽99麻豆av| 搡老乐熟女国产| 久热久热在线精品观看| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 国产一区二区三区综合在线观看 | 有码 亚洲区| 三级国产精品片| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 人妻系列 视频| 日本熟妇午夜| 男女边吃奶边做爰视频| 欧美高清性xxxxhd video| 制服丝袜香蕉在线| 亚洲av一区综合| 高清毛片免费看| 免费观看在线日韩| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 精品熟女少妇av免费看| 亚洲,一卡二卡三卡| 丝袜喷水一区| 亚洲熟女精品中文字幕| 美女cb高潮喷水在线观看| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 日本熟妇午夜| 久久精品综合一区二区三区| 高清在线视频一区二区三区| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区成人| 免费黄频网站在线观看国产| 美女主播在线视频| 简卡轻食公司| 欧美最新免费一区二区三区| 18禁在线播放成人免费| 尤物成人国产欧美一区二区三区| 大陆偷拍与自拍| 我的女老师完整版在线观看| 一级二级三级毛片免费看| 一级黄片播放器| 80岁老熟妇乱子伦牲交| 日韩国内少妇激情av| 欧美日韩视频精品一区| 亚洲国产精品成人综合色| 国产欧美日韩一区二区三区在线 | 亚洲av中文字字幕乱码综合| 黄色日韩在线| 91aial.com中文字幕在线观看| 丰满人妻一区二区三区视频av| 嫩草影院新地址| 久久人人爽人人片av| 不卡视频在线观看欧美| 亚洲欧洲日产国产| 久久精品国产鲁丝片午夜精品| 欧美精品人与动牲交sv欧美| 国产免费一区二区三区四区乱码| 亚洲,欧美,日韩| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 婷婷色综合www| 国产精品人妻久久久久久| 亚洲国产av新网站| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 激情 狠狠 欧美| av黄色大香蕉| 街头女战士在线观看网站| 久久久久九九精品影院| 天天一区二区日本电影三级| 久久久久久久午夜电影| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 国产亚洲av嫩草精品影院| 久久久久久久久久成人| 欧美精品国产亚洲| 欧美成人午夜免费资源| 国产 一区精品| 亚洲四区av| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 男人舔奶头视频| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 欧美高清性xxxxhd video| 午夜福利网站1000一区二区三区| 国产精品久久久久久av不卡| 尾随美女入室| 国产成人福利小说| 久久久久久久久久久丰满| 中文天堂在线官网| 久久国内精品自在自线图片| 免费av不卡在线播放| 久久人人爽人人爽人人片va| 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| 草草在线视频免费看| 韩国高清视频一区二区三区| 日韩欧美 国产精品| 好男人视频免费观看在线| 人人妻人人爽人人添夜夜欢视频 | 久久久久久九九精品二区国产| 欧美成人a在线观看| 尾随美女入室| 亚洲精品国产色婷婷电影| 老女人水多毛片| 日韩中字成人| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃 | 三级国产精品欧美在线观看| 一级毛片我不卡| 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 蜜桃久久精品国产亚洲av| 久久久午夜欧美精品| 国产精品嫩草影院av在线观看| 伊人久久精品亚洲午夜| 久久人人爽av亚洲精品天堂 | 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| www.av在线官网国产| 男女国产视频网站| av专区在线播放| 日日撸夜夜添| 又爽又黄a免费视频| 婷婷色综合大香蕉| 欧美3d第一页| 日产精品乱码卡一卡2卡三| 下体分泌物呈黄色| 成人高潮视频无遮挡免费网站| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 黑人高潮一二区| 亚洲最大成人av| 亚洲国产精品成人久久小说| 国产在线男女| av国产免费在线观看| 国语对白做爰xxxⅹ性视频网站| 午夜精品一区二区三区免费看| 国产亚洲5aaaaa淫片| 国产综合精华液| 国产精品蜜桃在线观看| 日本一本二区三区精品| 三级国产精品欧美在线观看| 亚洲自偷自拍三级| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 在线观看国产h片| 少妇熟女欧美另类| 中文资源天堂在线| 日韩中字成人| av卡一久久| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 视频区图区小说| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 亚洲va在线va天堂va国产| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 国产又色又爽无遮挡免| 国产高清国产精品国产三级 | 国产欧美亚洲国产| 一区二区三区四区激情视频| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 免费看光身美女| 亚洲av一区综合| 熟女av电影| 亚洲欧洲日产国产| 少妇的逼水好多| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 夫妻午夜视频| 久久久精品免费免费高清| 国产精品人妻久久久影院| 国产综合懂色| 777米奇影视久久| 老女人水多毛片| 美女国产视频在线观看| av黄色大香蕉| 国产一区亚洲一区在线观看| 中文字幕久久专区| 久久久久久国产a免费观看| 天堂网av新在线| 最近最新中文字幕免费大全7| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 免费黄网站久久成人精品| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| 精品国产三级普通话版| 97在线人人人人妻| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 亚洲欧洲日产国产| 日韩在线高清观看一区二区三区| 欧美一区二区亚洲| 亚洲最大成人中文| 嫩草影院入口| 国产精品久久久久久久电影| 大香蕉97超碰在线| 男的添女的下面高潮视频| 在线免费十八禁| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 久久精品人妻少妇| 久久精品久久久久久久性| 蜜臀久久99精品久久宅男| 人妻系列 视频| 一区二区三区精品91| 麻豆乱淫一区二区| 国产 一区精品| 如何舔出高潮| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 99热国产这里只有精品6| 欧美极品一区二区三区四区| 亚洲国产av新网站| 免费黄频网站在线观看国产| 国内揄拍国产精品人妻在线| 亚洲欧美日韩另类电影网站 | 日本熟妇午夜| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 99re6热这里在线精品视频| 国产白丝娇喘喷水9色精品| 大话2 男鬼变身卡| 中国国产av一级| 久久精品国产亚洲av天美| 午夜福利高清视频| 亚洲精品成人av观看孕妇| 午夜福利视频精品| 亚洲成人av在线免费| 婷婷色综合www| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 免费高清在线观看视频在线观看| 色视频www国产| 国产一区二区三区av在线| 女的被弄到高潮叫床怎么办| 久久久久久伊人网av| 一级爰片在线观看| 国产一区二区亚洲精品在线观看| 看黄色毛片网站| 久久人人爽av亚洲精品天堂 | 亚洲第一区二区三区不卡| 久久久色成人| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 视频区图区小说| 高清在线视频一区二区三区| 一级片'在线观看视频| 国产在线男女| 国产黄片视频在线免费观看| 大陆偷拍与自拍| 日本欧美国产在线视频| 久久久午夜欧美精品| 国产精品久久久久久精品古装| 精品国产乱码久久久久久小说| 伊人久久国产一区二区| 午夜激情久久久久久久| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩另类电影网站 | 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 美女xxoo啪啪120秒动态图| www.av在线官网国产| 亚洲国产最新在线播放| 欧美精品人与动牲交sv欧美| 超碰97精品在线观看| 精品国产三级普通话版| 精品久久久噜噜| av一本久久久久| 国产探花极品一区二区| 好男人视频免费观看在线| 亚洲欧美精品自产自拍| 国产乱来视频区| 精华霜和精华液先用哪个| 日日啪夜夜爽| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 久久久久九九精品影院| 亚洲国产av新网站| 涩涩av久久男人的天堂| 欧美少妇被猛烈插入视频| 国产毛片在线视频| 亚洲高清免费不卡视频| .国产精品久久| 好男人在线观看高清免费视频| 久久久午夜欧美精品| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 秋霞伦理黄片| 国产黄片视频在线免费观看| 熟女电影av网| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 欧美高清性xxxxhd video| av又黄又爽大尺度在线免费看| 国产在线男女| 丝袜美腿在线中文| av在线蜜桃| 青春草国产在线视频| 看非洲黑人一级黄片| 真实男女啪啪啪动态图| 激情五月婷婷亚洲| 久久鲁丝午夜福利片| 亚洲精品国产av成人精品| 日韩av在线免费看完整版不卡| 如何舔出高潮| 大码成人一级视频| 91狼人影院| 一区二区三区免费毛片| 91久久精品电影网| 国产精品伦人一区二区| 中国三级夫妇交换| 久久亚洲国产成人精品v| 性插视频无遮挡在线免费观看| 永久网站在线| 免费看av在线观看网站| 成人国产av品久久久| xxx大片免费视频| 欧美高清成人免费视频www| 国产免费视频播放在线视频| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品古装| 99热网站在线观看| kizo精华| 丰满少妇做爰视频| 亚洲精品日韩在线中文字幕| 亚洲久久久久久中文字幕| 国产国拍精品亚洲av在线观看| 搞女人的毛片| 热99国产精品久久久久久7| 男女啪啪激烈高潮av片| 欧美成人午夜免费资源| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 国产精品99久久99久久久不卡 | 亚洲在线观看片| 我要看日韩黄色一级片| 精品国产一区二区三区久久久樱花 | 亚洲美女视频黄频| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 美女脱内裤让男人舔精品视频| 午夜激情福利司机影院| 菩萨蛮人人尽说江南好唐韦庄| 成人一区二区视频在线观看| av国产精品久久久久影院| 精品熟女少妇av免费看| 男人狂女人下面高潮的视频| 日韩三级伦理在线观看| 特级一级黄色大片| 男人和女人高潮做爰伦理| 亚洲熟女精品中文字幕| 别揉我奶头 嗯啊视频| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 18禁在线播放成人免费| 免费观看av网站的网址| 亚洲精品成人av观看孕妇| 亚洲怡红院男人天堂| 久久这里有精品视频免费| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 卡戴珊不雅视频在线播放| 大话2 男鬼变身卡| 晚上一个人看的免费电影| 久久久久久久久大av| 国产成人a区在线观看| 精品久久久久久久久av| 国产欧美日韩精品一区二区| 久久久精品94久久精品| av在线亚洲专区| 欧美区成人在线视频| 亚洲婷婷狠狠爱综合网| 黄色配什么色好看| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区| 干丝袜人妻中文字幕| 五月伊人婷婷丁香| 欧美高清性xxxxhd video| 美女国产视频在线观看| 观看免费一级毛片| 国产一区二区亚洲精品在线观看| 人妻一区二区av| 国产免费一区二区三区四区乱码| av在线蜜桃| 成人鲁丝片一二三区免费| 久久99热这里只有精品18| 国产成人a区在线观看| 精品久久久久久久久av| 亚洲在久久综合| 国产免费一区二区三区四区乱码| 欧美xxⅹ黑人| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 91精品国产九色| 亚州av有码| 国产欧美亚洲国产| 亚洲欧美一区二区三区国产| 久久久久久伊人网av| 欧美人与善性xxx| 国产片特级美女逼逼视频| 日韩精品有码人妻一区| 免费人成在线观看视频色| 男男h啪啪无遮挡| 蜜臀久久99精品久久宅男| 一级爰片在线观看| 91久久精品国产一区二区成人| 男人舔奶头视频| tube8黄色片| 久久99热这里只频精品6学生| 国产女主播在线喷水免费视频网站| 精华霜和精华液先用哪个| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 久久久色成人| 草草在线视频免费看| 亚洲无线观看免费| 一本一本综合久久| 搡女人真爽免费视频火全软件| 久久综合国产亚洲精品| 午夜福利在线观看免费完整高清在| 国产欧美日韩一区二区三区在线 | 国产乱人偷精品视频| 欧美一区二区亚洲| 91久久精品电影网| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 久久久亚洲精品成人影院| 熟妇人妻不卡中文字幕| 18禁在线播放成人免费| 国产高潮美女av| 伊人久久国产一区二区|