• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95μm

    2022-12-28 09:53:28GuoQuanQian錢國權(quán)MinBoWu吳敏波GuoWuTang唐國武MinSun孫敏DongDanChen陳東丹ZhiBinZhang張志斌HuiLuo羅輝andQiQian錢奇
    Chinese Physics B 2022年12期
    關(guān)鍵詞:國權(quán)唐國

    Guo-Quan Qian(錢國權(quán)) Min-Bo Wu(吳敏波) Guo-Wu Tang(唐國武) Min Sun(孫敏)Dong-Dan Chen(陳東丹) Zhi-Bin Zhang(張志斌) Hui Luo(羅輝) and Qi Qian(錢奇)

    1Yunnan Police College,Kunming 650223,China

    2Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques,South China University of Technology,Guangzhou 510640,China

    3School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    4Southwest Institute of Technical Physics,Chengdu 610041,China

    Keywords: all-glass fiber,single-frequency,2μm fiber laser,Tm:YAG ceramic derived

    1. Introduction

    Single-frequency fiber lasers operating at~2 μm have attracted intense attention for their wide-ranging applications,from high-resolution spectroscopy and noninvasive medicine to coherent beam combining,due to their outstanding properties of low noise, narrow linewidth and at an eye-safe wavelength regime.[1–4]Up to now,~2μm single-frequency fiber lasers have been achieved in various cavity structures,including ring cavities,distributed feedback(DFB)cavities and distributed Bragg reflector (DBR) cavities.[5–7]More recently,Walasiket al.reported a 2μm single-frequency all-fiber DFB laser source employing fiber Bragg gratings(FBGs)which has a laser linewidth of 5 kHz.[8]Here, we focus on a~2 μm single-frequency fiber laser with a DBR cavity structure. A key factor in obtaining a DBR single-frequency fiber laser is the use of high-gain glass fibers for shorting the laser cavity.[9]It is known that a high rare earth(RE)ion doping concentration can achieve a large pump absorption and high gain per unit length in the resulting glass fiber, which allows efficient laser output in a short piece of RE ion-doped active fiber.[10,11]

    To date, single-frequency DBR fiber lasers at~2 μm have been developed by using different Tm3+-doped glass fibers, such as silica, silicate and germanate glass fibers.[7,12,13]However,pure silica glass fibers have a low RE ion doping concentration because of the well-defined glass structure consisting of a [SiO4] tetrahedron, which limits the gain of the resulting silica glass fibers.[14]In 2015, Fuet al.demonstrated a 2μm single-frequency DBR fiber laser based on a 1.9-cm long commercially available Tm3+-doped silica glass fiber; this had a maximum output power of 18 mW and a slope efficiency of 13.4% with respect to the absorbed pump of a 793 nm laser diode (LD).[7]The output power of a 2 μm single-frequency DBR fiber laser can be improved by means of in-band pumping at the 1.5 μm band.[15]Note that multicomponent glasses,which have high RE ion solubility, are usually used to fabricate high-gain glass fibers.[1,16]Genget al.reported a single-frequency DBR fiber laser at 1893 nm based on a 2 cm long heavily Tm3+-doped germanate glass fiber; this had a pump threshold of 30 mW and a maximum output power of 50 mW.[17]They went on to demonstrate a narrow-linewidth single-frequency DBR fiber laser at 1.95μm with a 2 cm long heavily Tm3+-doped silicate glass fiber.[12]However, the large splicing losses (~2.2 dB) between the active fiber and two FBGs resulted in a relatively high threshold.[12,15]In 2018, Tanget al.fabricated a heavily Tm3+-doped barium gallo-germanate glass fiber that had a gain per unit length of 3.6 dB·cm?1at 1.95μm.[13]A singlefrequency DBR fiber laser of over 220 mW at 1.95μm was realized in a 1.5 cm long active fiber,showing a slope efficiency of 30.2% with respect to the absorbed pump of a 1568 nm fiber laser.[13]Although the multicomponent glass fibers used in these reports possess higher RE ion solubility over the silica fiber,which enables~2μm single-frequency DBR fiber laser operation with higher output power and slope efficiency,there are still some obstacles to their application in the aforementioned areas.[15,18]For example, their softening temperature and thermal expansion coefficient are different from those of commercial silica glass fiber,implying that it is more challenging to achieve low-loss spliced with silica-based fiber devices,such as wavelength division multiplexer(WDM)and FBG.[7]Moreover,the resulting splice joint exhibits reduced mechanical strength, which sacrifices the reliability of the fiber laser system.[15]Therefore, the development of novel fiber materials, fiber design and fabrication techniques could facilitate some high RE ion-doped silica-based fibers becoming competitive candidates for single-frequency fiber lasers.

    In recent years, RE ion-doped Y3Al5O12(YAG) single crystal or polycrystalline ceramic (precursor phase) derived all-glass fibers with novel properties have been developed and fabricated for high-power fiber lasers,ultrafast fiber lasers and single-frequency fiber lasers.[19–22]Compared with RE ion-doped silica glass fibers,YAG-derived all-glass fibers with a high yttrium (Y) and aluminum (Al) concentration in the fiber core [yttrium aluminosilicate (YAS) glass] have a higher thermal conductivity and a higher stimulated Brillouin scattering threshold, properties which are beneficial for achieving high-power single-frequency fiber lasers.[23–26]Additionally, in contrast to RE ion-doped multicomponent glass fiber, the thermal expansion coefficient and refractive index of these YAG-derived all-glass fibers better matches with the silica glass cladding, making them easier to splice with silica fibers.[22,27,28]In 2019, Zhanget al.demonstrated a singlefrequency DBR fiber laser at 1.064 μm based on a 1.7 cm long Yb:YAG ceramic-derived all-glass fiber.[19]Although the output power and slope efficiency of the laser were relatively low, this work was the first to provide a prospect for the development of all-fiber single-frequency DBR fiber lasers by using YAG-derived all-glass fibers. Then, Liuet al.reported a 110 mW single-frequency DBR fiber laser at 1.064 μm with a slope efficiency of 18.5% based on a 1.4 cm long Yb:YAG crystal-derived all-glass fiber by reducing the resonance loss.[20]More recently,Xieet al.reported a 24.2 mW pulsed single-frequency laser at 1.55 μm based on a 1.8 cm long Er:YAG crystal-derived all-glass fiber.[29]However, single-frequency DBR fiber lasers at~2 μm based on Tm:YAG crystal or ceramic-derived all-glass fibers have never been reported.

    Here,Tm:YAG ceramic-derived all-glass fiber was drawn by using the molten core method. It has a gain per unit length of 2.7 dB·cm?1at 1.95 μm. The as-drawn fiber has a YAS glass core, which is composed of 14.2 mol.% Al2O3,77.1 mol.%SiO2, 6.5 mol.%Y2O3, and 2.25 mol.%Tm2O3.Details of the as-drawn YAS glass fiber can be found in Table 1. A 1.95 μm single-frequency DBR fiber laser was achieved by using a 2 cm long Tm:YAG ceramic-derived all-glass fiber. The fiber laser has a high optical signal-tonoise ratio (OSNR) of~77 dB and a low pump threshold of~15.4 mW. The direct output power of the laser reached 135 mW with a pump power of 1340 mW, corresponding to a slope efficiency of 10.2% with respect to the absorbed pump power. In addition, the linewidth and relative intensity noise(RIN)were measured. This work is a proof-of-concept that Tm:YAG-derived all-glass fiber with a high gain per unit length can be used in a compact 2μm single-frequency DBR fiber laser.

    Table 1. Properties of Tm:YAG ceramic-derived all-glass fiber.

    2. Experimental details

    Tm:YAG ceramic samples were prepared by the solidstate reaction method. Commercial powders (Al2O3, Y2O3,Tm2O3) were weighed and then mixed. Boric acid (1 wt%)was used as a sintering aid in the samples. Column-shaped YAG ceramic samples were prepared after the pressed green bodies were sintered at 1600?C for 5 h in a muffle furnace,and then ground and polished into cylindrical rods with a diameter of~2.8 mm. The YAG rods were washed repeatedly with dilute hydrochloric acid, alcohol and distilled water to remove the contaminated surface layer and then placed into a vacuum drying oven at 400?C for 12 h. After preparation the initial precursor material was inserted into cylindrical silica glass tubes (optical quality 99.99%, inner diameter~3 mm,external diameter~30 mm,length~150 mm). One end of the tube was sealed using an oxyhydrogen flame. Optical fiber was prepared using a standard fiber drawing tower at a temperature of~2000?C.During the drawing process of the molten core method, the glass cladding is similar to‘the crucible’, which provides a high-temperature, high-pressure environment for the core material,and the molten core is rapidly quenched. Glass fibers with different diameters can be obtained by controlling the feeding speed, the temperature and the pulling speed. Hundreds of meters of fibers with an outer diameter of~125μm were collected for test characterization and laser experiments.

    Figure 1(a) shows the XRD pattern of the Tm:YAG ceramic sample. The diffraction peaks of the sample match well with the standard card of YAG (PDF#33-0044), suggesting that the prepared ceramic sample is pure YAG phase. Figure 1(b) shows the Raman spectra of the resulting Tm:YAS fiber core and silica glass cladding. The broad Raman bands in the fiber core and cladding indicate the amorphous state of the obtained fiber.

    Figure 2(a) shows the electron micrograph image of the Tm:YAS all-glass fiber. It can be observed that the fiber core has a good circularity. Figures 2(b)–2(e) show the electron probe microanalyzer mapping of Si, Y Al, and Tm. The Al,Tm, and Y are mainly distributed in the core region, while the Si is distributed in both the cladding and the core. In our previous work this type of YAS glass fiber was proven to be a graded refractive index fiber due to the elemental migration between the melting core and the softened cladding.[27]

    Fig.1.(a)XRD pattern of the Tm:YAG ceramic sample.(b)Raman spectra of the resulting Tm:YAS glass fiber core and the silica glass cladding.

    Fig.2. (a)Electron micrograph image of the Tm:YAS all-glass fiber. (b)–(e)Electron probe microanalyzer images of the distribution of different elements across the fiber cross section.

    The scheme of the experimental setup for the 1.95 μm single-frequency DBR fiber laser is shown in Fig.3. The laser cavity combines a partial-reflection fiber Bragg grating (PRFBG), a high-reflection fiber Bragg grating (HR-FBG) and a short piece of as-drawn gain fiber. The two ends of the gain fiber were spliced with the PR-FBG and HR-FBG. The PRFBG has a reflectivity of 50.0%at 1950 nm and a 3 dB bandwidth of 0.09 nm. The HR-FBG has a reflectivity of 99.5%at 1950 nm. A backward pumping scheme was used in the laser experiment. The fiber laser was counter-pumped by a highpower 1610 nm fiber laser, through a 1610/1950 nm WDM.The whole laser cavity was placed in an aluminum tube,which was temperature-controlled by a cooling system with an accuracy of±0.1?C. To achieve efficient single-frequency laser operation,a short cavity length is necessary to enlarge the longitudinal mode spacing. For this purpose, a section of 2 cm long Tm:YAG-derived all-glass fiber was chosen as the gain fiber by the cut-back method. The laser output spectrum was monitored by an optical spectrum analyzer (AQ6375, Yokogawa, Japan) with a wavelength resolution of 0.02 nm. The single-frequency operation of the laser was confirmed by using a scanning fiber Fabry–Perot interferometer (FFPI; SA200-18B, Thorlabs) with a free-spectral range (FSR) of 1.5 GHz and a resolution of 7.5 MHz. The laser linewidth was measured by a self-heterodyne method. The RIN of the fiber laser was measured by an electrical spectrum analyzer,whose resolution bandwidth was set to 1 kHz. During each measurement of RIN the laser power was attenuated to 0.5 mW before being injected into a photoelectric detector.

    Fig.3. Scheme of the experimental setup for the 1.95μm single-frequency DBR fiber laser based on the as-drawn gain fiber(GF).

    3. Results and discussion

    The laser output spectrum is shown in Fig. 4(a). The achieved laser has a central wavelength of 1950 nm with an OSNR of~77 dB. The laser output power and the residual power were measured by a standard power meter. Figure 4(b) shows the laser output power as a function of the absorbed pump power. The laser threshold was measured to be~15.4 mW. The fiber laser yields a maximum laser output power of 135 mW with a slope efficiency of 10.2%. Note that the phenomenon of power saturation was not observed,suggesting that the output power could be further improved by using a higher available pump power. The stability of the laser output power at 60 mW was measured for 40 min; the result is shown in the inset of Fig.4(b). The constructed fiber laser is stable with an output power fluctuation relative to the average power of~3.24%(relative standard deviation)during the entire period.

    The scanning spectrum over the FSR of the FFPI is presented in Fig.5.A stable single-longitudinal-mode output was achieved when the temperature of the laser cavity was controlled at 19.6?C. Through the strict temperature control of the whole laser cavity, the laser operated stably in a singlefrequency regime without mode hopping or mode competition as the pump power increased. Therefore, a 135 mW singlefrequency DBR fiber laser operating at 1.95μm was realized in a 2 cm long gain fiber when in-band pumped by a 1610 nm fiber laser.

    Fig.4. (a)Measured output spectrum of the fiber laser. (b)The laser output power versus the absorbed pump power. The inset shows the power stability of the laser output power at 60 mW for 40 min.

    The laser linewidth was measured at a laser output power of 100 mW using the self-heterodyne method performed with a 3 km delay fiber (SMF-28M, Corning). Figure 6(a)shows the measured heterodyne signal which was fitted with a Lorentz lineshape. It can be observed that the signal is 90 kHz at 20 dB from the peak, indicating that the fiber laser has a linewidth of 4.5 kHz. Laser noise is an important parameter for a single-frequency fiber laser. Figure 6(b) shows the output RIN results under different laser output powers in the frequency range 0 MHz–15 MHz. The relaxation oscillation frequency peaks under different laser output powers were observed at frequencies of 0.55 MHz,0.95 MHz,and 1.24 MHz,respectively. The relaxation oscillation frequency peaks move toward the higher frequency from 0.55 MHz to 1.24 MHz with increasing output power. The measured RIN is less than?140 dB·Hz?1at frequencies above 10 MHz. Table 2 summarizes the performance of different single-frequency DBR fiber lasers based on RE ion-doped silica glass fiber and YAGderived all-glass fibers. Here, the slope efficiency is defined as the slope of the curve obtained by plotting the laser output power versus the absorbed pump power. It can be found that the output power and the slope efficiency achieved in this work are higher than that in the single-frequency DBR Tm3+doped silica fiber laser.[15]In addition, compared with the other single-frequency DBR YAG-derived all-glass fiber lasers,the performance of the 1.95μm single-frequency DBR fiber laser achieved in this work is competitive. Further improvement should be made with respect to cavity design,such as optimizing the gain fiber numerical aperture(NA)and using high-NA FBGs to optimize the coupling efficiency of pump light.

    Fig.6. (a)Linewidth of the single-frequency fiber laser measured by the self-heterodyne method. (b)RIN of the single-frequency fiber laser in the frequency band of 0 MHz–15 MHz with different output powers.

    Table 2. Performance of different single-frequency DBR fiber lasers based on RE ion-doped silica fiber and YAG-derived all-glass fibers.

    4. Conclusion

    In conclusion, a 1.95 μm single-frequency DBR fiber laser was realized by using a 2 cm long Tm:YAG ceramicderived all-glass fiber pumped by a 1610 nm fiber laser. A maximum output power of 135 mW was obtained in this allfiber integrated laser system with a linewidth of 4.5 kHz. The fiber laser has a high OSNR of~77 dB and a low pump threshold of~15.4 mW.In addition,the RIN was investigated under different laser output powers.These results indicate that high-gain Tm:YAG ceramic-derived all-glass fiber is a promising candidate in 2μm single-frequency DBR fiber lasers.

    Acknowledgments

    Project supported by the Yunnan Fundamental Research Projects (Grant No. 202201AU070065), Natural Science Foundation of China for Young Scholars (Grant No. 52002131), Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(Grant No.2021-04),and the Scientific Research Fund Project of Yunnan Provincial Department of Education(Grant No.2022J0591).

    猜你喜歡
    國權(quán)唐國
    “電競游戲”思維下的體育游戲設(shè)計
    體育科技(2022年2期)2022-08-05 14:27:14
    甘薯解偶聯(lián)蛋白基因家族鑒定與表達分析
    唐國龍【布面水彩】
    淺析高層建筑剪力墻結(jié)構(gòu)優(yōu)化設(shè)計
    成都大學(xué)學(xué)報(社會科學(xué)版)(2019年3期)2019-07-11 08:05:20
    成都大學(xué)學(xué)報(社會科學(xué)版)(2018年5期)2018-11-12 00:22:58
    擺不平的劣跡
    紫甘薯紅色素與其他同類色素的穩(wěn)定性比較
    40年前發(fā)生的“桑蘭事件”
    大眾健康(2001年5期)2001-04-29 14:51:33
    藝術(shù),不朽的活力
    雕塑(1998年2期)1998-06-28 12:57:08
    久久精品久久精品一区二区三区| 欧美xxxx性猛交bbbb| 国产日韩欧美视频二区| 国产成人精品一,二区| 亚洲精品美女久久久久99蜜臀 | 性色avwww在线观看| 国产一级毛片在线| 久久精品国产亚洲av涩爱| 母亲3免费完整高清在线观看 | 午夜久久久在线观看| 精品国产国语对白av| 热re99久久精品国产66热6| 午夜福利视频在线观看免费| 亚洲av电影在线进入| 国产精品一国产av| 黄色怎么调成土黄色| 亚洲五月色婷婷综合| 国产免费又黄又爽又色| 永久免费av网站大全| 亚洲欧洲国产日韩| 久久97久久精品| 精品一区二区三区视频在线| 日本欧美视频一区| av.在线天堂| 99香蕉大伊视频| 成人国产av品久久久| 另类精品久久| 亚洲欧美一区二区三区国产| 精品一区二区三区视频在线| 精品卡一卡二卡四卡免费| 亚洲高清免费不卡视频| 久久99热这里只频精品6学生| 人人妻人人添人人爽欧美一区卜| 最近中文字幕高清免费大全6| 久久精品久久精品一区二区三区| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| 亚洲一级一片aⅴ在线观看| 日韩三级伦理在线观看| videossex国产| 丝袜在线中文字幕| av在线老鸭窝| 免费观看在线日韩| 在线观看三级黄色| 日日爽夜夜爽网站| 中文字幕亚洲精品专区| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 亚洲成人一二三区av| 午夜福利乱码中文字幕| 男女免费视频国产| 高清av免费在线| 美国免费a级毛片| 熟妇人妻不卡中文字幕| 国产免费现黄频在线看| 人人妻人人澡人人看| 欧美性感艳星| 欧美丝袜亚洲另类| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 亚洲丝袜综合中文字幕| 母亲3免费完整高清在线观看 | 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| 一本色道久久久久久精品综合| 久久人人爽av亚洲精品天堂| 蜜桃国产av成人99| 97超碰精品成人国产| 亚洲一码二码三码区别大吗| 日韩av免费高清视频| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 午夜福利网站1000一区二区三区| 免费久久久久久久精品成人欧美视频 | 久久综合国产亚洲精品| 婷婷色av中文字幕| 免费黄频网站在线观看国产| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 老司机亚洲免费影院| 亚洲欧美清纯卡通| 视频中文字幕在线观看| 久久影院123| 在线观看美女被高潮喷水网站| 久久影院123| 国精品久久久久久国模美| 免费观看无遮挡的男女| 一级毛片我不卡| 国产免费一区二区三区四区乱码| 亚洲成人手机| 婷婷色综合www| 美女内射精品一级片tv| 午夜老司机福利剧场| 美女内射精品一级片tv| 亚洲国产最新在线播放| 免费大片18禁| 男女国产视频网站| 国产综合精华液| 久久久精品94久久精品| av福利片在线| 99国产精品免费福利视频| 激情视频va一区二区三区| av卡一久久| 少妇人妻久久综合中文| 久久99精品国语久久久| 色网站视频免费| 亚洲精品美女久久久久99蜜臀 | 日韩 亚洲 欧美在线| 精品少妇内射三级| av在线播放精品| xxx大片免费视频| 日产精品乱码卡一卡2卡三| av卡一久久| 热re99久久国产66热| 国产精品女同一区二区软件| 搡老乐熟女国产| 91在线精品国自产拍蜜月| 国产日韩一区二区三区精品不卡| 啦啦啦在线观看免费高清www| 亚洲情色 制服丝袜| 亚洲欧美日韩卡通动漫| 2021少妇久久久久久久久久久| 性色av一级| 精品人妻一区二区三区麻豆| 宅男免费午夜| 免费高清在线观看日韩| 久久精品国产亚洲av涩爱| 尾随美女入室| 久久久久久久久久久免费av| h视频一区二区三区| 麻豆精品久久久久久蜜桃| 2021少妇久久久久久久久久久| 亚洲国产精品一区三区| 日韩人妻精品一区2区三区| 亚洲经典国产精华液单| 亚洲人成77777在线视频| 欧美老熟妇乱子伦牲交| 国产精品麻豆人妻色哟哟久久| 亚洲成人一二三区av| 一本大道久久a久久精品| 亚洲综合精品二区| 啦啦啦视频在线资源免费观看| av卡一久久| 国产日韩欧美在线精品| 男人爽女人下面视频在线观看| av卡一久久| 99久久精品国产国产毛片| 久久人人爽av亚洲精品天堂| 菩萨蛮人人尽说江南好唐韦庄| 中国三级夫妇交换| 精品福利永久在线观看| 国产又色又爽无遮挡免| 99热这里只有是精品在线观看| 热99国产精品久久久久久7| 春色校园在线视频观看| 亚洲 欧美一区二区三区| 久久久久久伊人网av| 国产成人91sexporn| 91午夜精品亚洲一区二区三区| 国产精品一区二区在线观看99| 人妻一区二区av| 91成人精品电影| 一级黄片播放器| 9色porny在线观看| 十分钟在线观看高清视频www| 亚洲av国产av综合av卡| 宅男免费午夜| 国产深夜福利视频在线观看| 亚洲精品日本国产第一区| 亚洲av电影在线观看一区二区三区| 亚洲综合色网址| 欧美日韩成人在线一区二区| 亚洲成人av在线免费| 午夜福利,免费看| 秋霞伦理黄片| 日日啪夜夜爽| 在线免费观看不下载黄p国产| 精品卡一卡二卡四卡免费| 国产高清国产精品国产三级| 2018国产大陆天天弄谢| 色吧在线观看| 国产一区二区三区av在线| 久久99一区二区三区| 女人久久www免费人成看片| 90打野战视频偷拍视频| 欧美日本中文国产一区发布| 不卡视频在线观看欧美| 日韩成人伦理影院| 成年人免费黄色播放视频| 国产高清不卡午夜福利| 精品福利永久在线观看| 国产精品.久久久| 男人添女人高潮全过程视频| tube8黄色片| 亚洲久久久国产精品| 永久免费av网站大全| 视频在线观看一区二区三区| 国产麻豆69| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 一级黄片播放器| 久久精品国产a三级三级三级| 亚洲精品国产av蜜桃| 国产精品久久久久久久久免| 黄色 视频免费看| 内地一区二区视频在线| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 亚洲性久久影院| 美女脱内裤让男人舔精品视频| 中文天堂在线官网| 日韩不卡一区二区三区视频在线| 亚洲av电影在线观看一区二区三区| 嫩草影院入口| 好男人视频免费观看在线| 国产国语露脸激情在线看| 一本色道久久久久久精品综合| 日韩中文字幕视频在线看片| 亚洲av福利一区| 色吧在线观看| 青春草亚洲视频在线观看| 一级毛片我不卡| 亚洲人与动物交配视频| 18禁观看日本| 18禁国产床啪视频网站| 久久国产精品大桥未久av| 91国产中文字幕| 各种免费的搞黄视频| 午夜福利视频精品| 超碰97精品在线观看| 久久狼人影院| 日韩熟女老妇一区二区性免费视频| 久久久欧美国产精品| 高清视频免费观看一区二区| 日韩av不卡免费在线播放| 少妇的丰满在线观看| 天美传媒精品一区二区| 三级国产精品片| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看 | 日本与韩国留学比较| 中文天堂在线官网| 久久99精品国语久久久| 国产精品 国内视频| 国产麻豆69| 久久热在线av| 日本av手机在线免费观看| 亚洲精品av麻豆狂野| av国产久精品久网站免费入址| 亚洲国产精品成人久久小说| 日本欧美视频一区| 亚洲性久久影院| 日本免费在线观看一区| 观看av在线不卡| 嫩草影院入口| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| av在线app专区| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 国产在线视频一区二区| 中国国产av一级| 老女人水多毛片| 一区在线观看完整版| 亚洲国产精品成人久久小说| 日韩熟女老妇一区二区性免费视频| 精品一区在线观看国产| 美女中出高潮动态图| 99热国产这里只有精品6| 51国产日韩欧美| 色网站视频免费| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区 | 国产日韩欧美视频二区| 国产免费一级a男人的天堂| 男男h啪啪无遮挡| 国产午夜精品一二区理论片| 日韩av免费高清视频| 十八禁高潮呻吟视频| 寂寞人妻少妇视频99o| 男女国产视频网站| 如何舔出高潮| 免费av不卡在线播放| 日日撸夜夜添| 成人无遮挡网站| 成年动漫av网址| 这个男人来自地球电影免费观看 | 夫妻性生交免费视频一级片| 欧美性感艳星| 18禁国产床啪视频网站| 国产精品欧美亚洲77777| 老女人水多毛片| 看非洲黑人一级黄片| 国产日韩欧美视频二区| 男女啪啪激烈高潮av片| 高清欧美精品videossex| 成年人免费黄色播放视频| 激情五月婷婷亚洲| 国产成人精品一,二区| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 美女大奶头黄色视频| 美国免费a级毛片| 精品酒店卫生间| 青春草亚洲视频在线观看| 日韩电影二区| 国产国拍精品亚洲av在线观看| 黑人巨大精品欧美一区二区蜜桃 | 新久久久久国产一级毛片| 国产一区二区三区av在线| 51国产日韩欧美| 日本黄大片高清| 午夜91福利影院| 欧美激情极品国产一区二区三区 | videosex国产| 中文字幕av电影在线播放| 18+在线观看网站| 亚洲综合色网址| 精品亚洲成a人片在线观看| 成人黄色视频免费在线看| 免费黄色在线免费观看| 美女大奶头黄色视频| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 久久青草综合色| kizo精华| 一边亲一边摸免费视频| 一级爰片在线观看| 日韩三级伦理在线观看| 在线观看一区二区三区激情| 日韩三级伦理在线观看| 在线观看一区二区三区激情| 大码成人一级视频| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 高清毛片免费看| 波多野结衣一区麻豆| 韩国高清视频一区二区三区| av播播在线观看一区| 国产精品99久久99久久久不卡 | 色94色欧美一区二区| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀 | 波野结衣二区三区在线| 久久久久久久精品精品| 欧美激情国产日韩精品一区| 天堂8中文在线网| 国产精品不卡视频一区二区| 9色porny在线观看| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 亚洲,欧美,日韩| 成人影院久久| 久久久欧美国产精品| 夫妻午夜视频| 国产精品国产av在线观看| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 午夜久久久在线观看| 一级爰片在线观看| 亚洲综合色网址| 国产免费又黄又爽又色| 日本猛色少妇xxxxx猛交久久| 国产xxxxx性猛交| 大码成人一级视频| 成年女人在线观看亚洲视频| √禁漫天堂资源中文www| h视频一区二区三区| www.色视频.com| 久久人人爽人人片av| 免费高清在线观看日韩| 天堂8中文在线网| 丝袜喷水一区| 少妇被粗大猛烈的视频| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 亚洲丝袜综合中文字幕| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 久久午夜福利片| 欧美激情 高清一区二区三区| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看| 大片免费播放器 马上看| 国产高清不卡午夜福利| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看| 亚洲国产精品成人久久小说| 最新的欧美精品一区二区| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在 | 国内精品宾馆在线| 男的添女的下面高潮视频| 一二三四在线观看免费中文在 | 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 999精品在线视频| 国产欧美日韩综合在线一区二区| 日日啪夜夜爽| 国产亚洲欧美精品永久| 欧美变态另类bdsm刘玥| 国产成人av激情在线播放| 99国产精品免费福利视频| 国精品久久久久久国模美| 亚洲成色77777| 午夜福利影视在线免费观看| 精品福利永久在线观看| 韩国高清视频一区二区三区| 又大又黄又爽视频免费| 丝袜喷水一区| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 成人亚洲精品一区在线观看| 美国免费a级毛片| 国产福利在线免费观看视频| 少妇熟女欧美另类| 少妇被粗大猛烈的视频| 免费黄频网站在线观看国产| 免费av中文字幕在线| 亚洲精华国产精华液的使用体验| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 啦啦啦在线观看免费高清www| av视频免费观看在线观看| 在线观看国产h片| 在线精品无人区一区二区三| 在线观看免费高清a一片| 九九在线视频观看精品| 国产精品99久久99久久久不卡 | 国产永久视频网站| 蜜桃国产av成人99| 久久久久久伊人网av| 精品一区二区三卡| 国产精品女同一区二区软件| 亚洲人成77777在线视频| 免费日韩欧美在线观看| 一区二区三区精品91| 黄色 视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久av美女十八| 搡老乐熟女国产| 久久久久国产网址| 亚洲国产精品国产精品| 一本色道久久久久久精品综合| 午夜免费观看性视频| 久久午夜综合久久蜜桃| 国产免费现黄频在线看| 亚洲国产色片| 国产 一区精品| 九九爱精品视频在线观看| 黑人高潮一二区| 国产成人午夜福利电影在线观看| 啦啦啦视频在线资源免费观看| 国产有黄有色有爽视频| 亚洲五月色婷婷综合| 99香蕉大伊视频| 涩涩av久久男人的天堂| 男女国产视频网站| 女人久久www免费人成看片| 大香蕉97超碰在线| 大香蕉久久成人网| 高清毛片免费看| 国产成人精品婷婷| 亚洲久久久国产精品| av国产久精品久网站免费入址| 边亲边吃奶的免费视频| 妹子高潮喷水视频| 七月丁香在线播放| kizo精华| videossex国产| 伊人亚洲综合成人网| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| 美女中出高潮动态图| 青青草视频在线视频观看| 国产男女超爽视频在线观看| 曰老女人黄片| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 成人18禁高潮啪啪吃奶动态图| videosex国产| 欧美日韩av久久| av免费观看日本| av黄色大香蕉| 久久久精品94久久精品| 日韩熟女老妇一区二区性免费视频| 欧美国产精品va在线观看不卡| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲av天美| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 大香蕉97超碰在线| 如日韩欧美国产精品一区二区三区| av在线app专区| 亚洲精品国产色婷婷电影| 女性生殖器流出的白浆| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| videos熟女内射| 欧美国产精品一级二级三级| 日韩熟女老妇一区二区性免费视频| a级毛片黄视频| 欧美精品一区二区免费开放| 日本91视频免费播放| 中国国产av一级| 99精国产麻豆久久婷婷| 麻豆精品久久久久久蜜桃| 亚洲综合色惰| 熟女av电影| 国语对白做爰xxxⅹ性视频网站| freevideosex欧美| 亚洲少妇的诱惑av| 中国国产av一级| 欧美日韩综合久久久久久| a级毛片黄视频| 丝袜人妻中文字幕| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www| 久久狼人影院| av天堂久久9| 91精品三级在线观看| 国产成人免费无遮挡视频| 亚洲一码二码三码区别大吗| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| 少妇高潮的动态图| 亚洲欧美一区二区三区国产| 精品一区二区三区四区五区乱码 | 国产精品人妻久久久影院| 亚洲久久久国产精品| 免费日韩欧美在线观看| av福利片在线| 成人午夜精彩视频在线观看| 国产免费一区二区三区四区乱码| 亚洲精品久久久久久婷婷小说| av在线app专区| 亚洲情色 制服丝袜| 精品熟女少妇av免费看| 欧美 日韩 精品 国产| 国产男人的电影天堂91| 国产一区二区三区综合在线观看 | 欧美人与性动交α欧美精品济南到 | 欧美成人精品欧美一级黄| 五月玫瑰六月丁香| 九草在线视频观看| 欧美精品亚洲一区二区| 精品一区二区免费观看| 国产伦理片在线播放av一区| 日本欧美国产在线视频| 五月伊人婷婷丁香| 精品人妻在线不人妻| 久久精品国产综合久久久 | 久久精品国产鲁丝片午夜精品| 久久久久人妻精品一区果冻| 插逼视频在线观看| 国产精品久久久久久精品古装| 在线观看三级黄色| 伦理电影大哥的女人| 51国产日韩欧美| 国产成人免费观看mmmm| 尾随美女入室| 亚洲av免费高清在线观看| 午夜av观看不卡| 久久婷婷青草| 欧美日韩国产mv在线观看视频| av播播在线观看一区| 国产高清三级在线| 亚洲欧洲精品一区二区精品久久久 | 毛片一级片免费看久久久久| 汤姆久久久久久久影院中文字幕| 国产亚洲精品第一综合不卡 | 久久人妻熟女aⅴ| 国产精品久久久久久精品古装| 一边亲一边摸免费视频| 免费高清在线观看日韩| 国产无遮挡羞羞视频在线观看| 亚洲av福利一区| 亚洲经典国产精华液单| 性色av一级| 色哟哟·www| 精品国产露脸久久av麻豆| 如何舔出高潮| 亚洲精品国产色婷婷电影| 免费观看在线日韩| 天天躁夜夜躁狠狠躁躁| 国产日韩一区二区三区精品不卡| 在线看a的网站| 亚洲伊人色综图| 青青草视频在线视频观看| 男的添女的下面高潮视频| 乱码一卡2卡4卡精品| 国产av国产精品国产| 蜜臀久久99精品久久宅男| 久久国产精品男人的天堂亚洲 | 久久99一区二区三区| 乱人伦中国视频|