• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application

    2022-12-28 09:53:10JieCheng程杰JiahaoXu徐家豪YinjieXiang項寅杰ShengliLiu劉勝利FengfengChi遲逢逢BinLi李斌andPengDong董鵬
    Chinese Physics B 2022年12期
    關(guān)鍵詞:徐家李斌勝利

    Jie Cheng(程杰) Jiahao Xu(徐家豪) Yinjie Xiang(項寅杰) Shengli Liu(劉勝利)Fengfeng Chi(遲逢逢) Bin Li(李斌) and Peng Dong(董鵬)

    1School of Science,New Energy Technology Engineering Laboratory of Jiangsu Province,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3School of Electrical Engineering,Nanjing Vocational University of Industry Technology,Nanjing 210023,China

    Keywords: photonic spin Hall effect,optical Tamm state,InSb,gas sensor

    1. Introduction

    It is well known that left- and right-handed circularly polarized components can split transversely perpendicular to the incident plane when a linearly polarized beam propagates through inhomogeneous media, due to spin–orbit interaction of photons. This phenomenon is called the photonic spin Hall effect (PSHE), and it was firstly proposed by Onodaet al.in 2004.[1–3]PSHE can be considered as an optical version of spin Hall effect in electronic systems,where the roles of spin electrons and electric potential are replaced by spin photons and refractive index gradient, respectively.[1,2]Owing to its physical interest and potential applications in precision metrology, quantum information, and optical devices,PSHE has drawn significant attentions since its discovery.Until now,the reported applications of PSHE have covered various fields,such as biosensing,[4]real-time detection of chemical reaction rates,[5]and one-dimensional edge detection.[6]However,PSHE is generally a tiny phenomenon with the corresponding spin shift of only subwavelength scale, which seriously hinders its widespread applications. Several proposals have been put forward to enhance PSHE,based on the Brewster angle,[7]surface plasmon resonance (SPR),[8]inhomogeneous metamaterials,[9]and so on.[10–12]Nevertheless, the enhancement and dynamical modulation of PSHE remain an open challenge,highly desirable for its importance in modern optics.

    The optical Tamm state (OTS), a new kind of surface wave confined at the interface between two different media,is an optical analogue of electronic Tamm state at crystal boundaries.[13]The OTS manifests itself as a narrow resonance in the optical transmittance or reflectance spectrum inside the bandgap. In contrast to conventional surface waves such as surface plasmon polaritons, OTS can be excited directly by both the TE and TM polarizations without special incident angles.[14–16]Due to these favorable characteristics,the potential applications of OTS have been explored in such uses as solar cells,[17]polariton laser,[18]optical resonators,[19]and large Goos–H¨anchen shift.[20]In recent years, OTS attracted increasing interests and offered an alternative platform to enhance the PSHE.The metal-distributed Bragg reflector(DBR)structure and one-dimensional photonic crystal heterostructure are typical systems for exciting the OTSs.[14,21,22]However,this traditional metal-DBR structure is unsuitable to excite the OTS in terahertz(THz)band.[23]Considering the progress of THz wave source and the outstanding applications in information and communications, biomedical imaging, and nondestructive evaluation and security, research of OTS-induced PSHE in THz range is of significant importance.

    Looking for suitable materials instead of metals to excite THz OTS is the first and most urgent challenge. InSb is a narrow bandgap semiconductor with an electronic bandgap of 0.17 eV at 300 K,whose permittivity in THz range is similar to those of metals in visible region.[24]Previous reports have investigated the enhancement and adjustment of PSHE in THz range for InSb-based structure,therefore,InSb can be considered as a good candidate to explore the PSHE in THz range.[25]Here,by replacing the metal film in conventional metal-DBR structure with a semiconductor of InSb, a new type of InSb-DBR system is constructed. Moreover, the permittivity of InSb can be dynamically modulated by temperature,[26]which provides a new degree of freedom to manipulate the THz OTS and also PSHE behavior of InSb-DBR structure. The results show that the maximum spin shift of PSHE is up to 11.15 mm at optimal structural parameters and temperature, due to the strong excitation of THz OTS. The spin shift is very sensitive to the refractive index change of gas,therefore,a THz gas sensing device based on the enhanced PSHE via the excited OTS of this InSb-DBR structure is proposed with a superior intensity sensitivity of 5.873×104mm/RIU.

    2. Theory and model

    The InSb-DBR structure composed of InSb, the epsilonnear-zero material(ENZ)layer and the one-dimensional photonic crystal(1D-PC)is shown in Fig.1(a). InSb with the refractive index ofn2is placed on the surface layer of structure,and the thickness is defined asd2. The ENZ layer(n3=0.1)with the thickness ofd3is sandwiched between InSb and 1DPC.The lower part of space layer is followed by a 1D-PC consisting of 20 cycles of DBR. The DBR is composed of two kinds of media layers(A and B)with the thicknesses ofd4andd5, respectively. The refractive indices of media A and B aren4=1.9 andn5=2.25 in the THz band, respectively. The thicknesses of A and B are given byd4,5=λc/4n4,5, where the central wavelength is chosen asλc=270μm(i.e.,the central frequency offc=1.11 THz). The permittivity of InSb at THz frequencies can be obtained from the Drude model as follows:[27]

    The Gaussian beam is incident on the surface InSb layer with an incident angleθi, as shown in Fig.1, and the PSHE of reflected light appears leading to the splitting of left-and righthanded circularly polarized components in they-axis direction. From the angular spectrum theory,the incident Gaussian beam can be expressed as

    Fig.1. (a)Schematic diagram of the proposed InSb-DBR structure and the corresponding PSHE of reflected light. (b)A dissymmetric cavity,enclosed by the InSb-ENZ layer and a DBR.

    3. Simulation results and analysis

    In order to investigate the OTS-induced PSHE behavior of the InSb-DBR structure,we have to demonstrate the excitation of OTS by the proposed InSb-DBR structure in the THz region.Figure 2 displays the reflectance spectrum versus the frequency of incident light for TM polarization (p-polarization)and TE polarization(s-polarization).It can be clearly seen that there exists a photonic bandgap for the original DBR (without the addition of InSb and ENZ material) in the frequency range of 1.07–1.15 THz, in which the reflectance is nearly 1.For the InSb-DBR structure,a pronounced reflection dip in the bandgap region is observed under both TM and TE polarizations.This reflectance dip is deep and relatively narrow,which may be associated with the excitation of OTS.Compared with the condition of TE polarization,TM polarization wave excites a deeper reflection valley,almost reaching 0.Therefore,we set the central frequency of incident light as 1.11 THz,which corresponds to the reflectance dip of TM polarization.

    It is known that excitation of OTS should satisfy the condition ofrleftrrightexp(2iΦ) = 1. As seen in Fig. 1(b), our InSb-DBR structure can be regarded as a dissymmetric cavity, enclosed by the InSb-ENZ layer on one side and a DBR on the other. Here,rleftandrrightrepresent the reflection coefficient of the incident electromagnetic waves on the InSb-ENZ layer and on the DBR,respectively,andΦis the phase change of the electromagnetic wave propagating in the cavity between two interfaces.[13,14,31]Using the transfer matrix method, the reflection coefficients on the interface of the InSb and DBR can be calculated. They arerleft=?0.9867?0.1474i andrright=?0.5577+0.8255i(TM polarization),rleft=0.9322?0.3280i,andrright=?0.5522+0.8297i(TE polarization),respectively. The above values perfectly satisfy the excitation condition of OTS, thus the narrow reflection valleys for TM and TE polarization in Fig. 2 are owing to the OTS of the InSb-DBR structure,which will result in the enhancing PSHE of reflected light.

    Fig.2. The reflectance spectrum of the InSb-DBR structure versus the incident frequency for TM and TE polarizations. Here, the structural parameters are T =300 K,d2=35 nm and d3=400μm. The dashed line is the bandgap of original DBR structure.

    Through our calculation,the excitation of OTS for InSb-DBR structure needs to meet the following structural requirements simultaneously: (i) The thickness of ENZ layer is greater than 300μm.(ii)The InSb thickness ranges from 1 nm to 10μm. However,the strength of OTS(i.e.,the value of reflection valley)is extremely sensitive to the thickness of InSb and ENZ layers. It is generally accepted that the spin shift of reflected light can be enhanced by enlarging the differences of Fresnel reflection coefficients betweenrsandrp. The giantδHprefers to have a smallrp, and largeδVwantsrsas small as possible.[8,32]Therefore, the thicknesses of InSb and ENZ layers affect the strength of OTS and then the PSHE behavior of reflected light for InSb-DBR structure. Figure 3 shows the Fresnel reflectance spectrum versus the incident angle with different thicknesses of ENZ and InSb layers. As shown in Fig. 3(a), by fixing the ENZ thickness (d3) to 400 μm, we found the prominent characteristic of OTS when the thickness of InSb layer(d2)changes from 5 to 70 nm. An increasedd2has little effect on the incident angle of OTS,but the penetration depth of OTS accordingly changes. The corresponding minimum value of reflectanceRpfor the InSb-DBR structure with differentd2is illustrated in Table 1. With the increment ofd2,Rpfirstly decreases to a small value and then continuously increases. The minimumRpof 1.50×10?7is obtained whend2=35 nm. UnlikeRp,Rsbecomes unchanged with increasing the incident angle from 10.1?to 10.6?,and it always maintains a large value(~0.9)with differentd2.Similarly,the effect of ENZ thickness(d3)on theRpwithd2=35 nm is also shown in Fig.3(c).When the thickness of ENZ layer increases from 350μm to 450μm,the incident angle of OTS moves towards a smaller angle,accompanied by the varied penetration depth.

    Fig. 3. Impact of thicknesses of the InSb layer (d2) on the reflectance(a) Rp and (b) Rs with d3 =400 μm. (c) The Rp curves for different thicknesses of the ENZ layer(d3),d2=35 nm. Here,T =300 K.

    Table 1. The minimum values of Rp with different InSb thicknesses in Fig.3(a).

    Therefore, for the InSb-DBR structure,Rpgets a nearzero value due to the strong excitation of OTS,whileRskeeps a large value (~0.9) in the incident angle range from 10.1?to 10.6?. Considering the intimate relationship between the PSHE and Fresnel reflectance, the excitation of OTS would lead to a large ratio ofrs/rpand the resulting giant spin shiftδHof reflected light for the InSb-DBR structure. Note that the spin shifts for left-and right-circularly polarized light are the same in magnitude but opposite in signs. For simplicity,only the spin shift of left-circularly polarized component is plotted in the figures of next sections.

    Figure 4 describes the role of InSb/ENZ thickness and the incident angle in PSHE of reflected light for the InSb-DBR structure. From Fig. 4(a), the value ofδ+His positive with small thickness of the InSb layer(d2)and incident angle,and then it reaches the positive peak in the spectrum of spin shifts as the InSb thickness increases to 35 nm, which is due to the strong excitation of OTS and the resultant near-zerorp.The sign of spin shifts changes from positive to negative,and then it exhibits the negative valley with the further increase ofd2and incident angle. Such variation can be attributed to the changed sign of the phase?pof Fresnel reflection coefficientrp. Meanwhile, the relationship between spin shiftδ+Hand the thickness of ENZ layer in Fig. 4(b) is similar to the condition of InSb thickness. Therefore, the spin shiftδ+Hof InSb-DBR structure changes with the incident angle and the InSb/ENZ thickness, and there are optimal parameters with the InSb/ENZ thickness to achieve the notable PSHE. The spin shiftδ+Hreaches up to 4.55 mm under the parameters ofd2=35 nm andd3=400μm, which can be attributed to the strong excitation of OTS in the InSb-DBR structure.

    Fig.4. The dependences of spin shift δ+H (a)on d2 and incident angle with d3=400μm and(b)on d3 and incident angle with d2=35 nm.

    InSb is a temperature-sensitive material, therefore, temperature can be an additional factor to modulate the behavior of PHSE in the InSb-DBR structure. Figure 5(a) shows the permittivity of InSb as a function of temperature. It can be clearly seen that both the real and imaginary parts of InSb permittivity stabilize to be a tiny value when temperature is lower than 250 K.With the continuous increase of temperature, the real component of InSb permittivity becomes negative, while the imaginary one increases to be a large positive value. The effect of temperature on the corresponding spin shiftδ+Hfor InSb-DBR structure is displayed in Fig. 5(b). It is demonstrated that the spin shiftδ+Hand the related excitation angle of OTS change slightly at low temperature, owing to the stable behavior of InSb permittivity. The giant spin shift is about 11.15 mm,about 6 times larger than the spin shift induced by InSb-supported long-range SPR for the incident frequency of 1 THz.[33]Then the spin shift undergoes a sign transformation with increasing temperature.Meanwhile,the magnitude ofδ+Hbecomes decreased,accompanied by the increment of OTS excitation angle.Consequently,temperature can be a new degree of freedom to flexibly tune the spin shift of PSHE for the InSb-DBR structure. Moreover, the optimal incident angle should be accordingly changed to excite the notable OTS and prominent spin shifts in future applications of PSHE-based devices.

    Fig. 5. (a) The permittivity of InSb (ε) for different temperatures. (b)The spin shift of δ+H versus temperature T and incident angle. Here d2=35 nm and d3=400μm.

    Given the advantages of precise real-time detection and fast response,optical refractive index sensors have received a great deal of attention in potential applications including toxic monitoring, medical diagnose, food safety inspection, and so on.[4,34,35]Nowadays, most of the typical sensors are based on the SPR or resonant optical tunneling effect,and the sensing mechanisms are directly associated with the changes of reflection valley for different analytes. As a novel optical effect, PSHE opens the possibility for developing a new type of optical sensors. Compared with other traditional sensors,PSHE-based refractive index sensors exhibit the desirable accuracy and higher signal-to-noise ratio.[36]Until now, most optical sensors based on PSHE have been focused in the visible region,and the research of THz gas sensor is of significant importance, because the vibrational and rotational energy of most gas molecules lie in THz ranges. Here we replaced the first air layer of the InSb-DBR structure (in Fig. 1(a)) by the gas to be detected,and proposed a THz gas sensor based on the OTS-induced PSHE of the InSb-DBR system.Considering the intimate relationship between the PSHE and refractive index of analyte, when two different sensing analytes are detected,the corresponding spin shift will be distinctive. According to the intensity-based shift sensing scheme, the intensity sensitivity of PSHE sensors can be expressed asSδ+H=?δ+H/?n,

    where ?δ+His the variation of spin shift at a fixed working angle as shown in Fig.6,and ?nis the refractive index difference of gas. We found that the spin shift is extremely sensitive to the refractive index change of detected gas, and the intensity sensitivity can be up to 5.873×104mm/RIU. This value is about two orders of magnitude greater than that of PSHE sensor based on InSb-supported long-range SPR.[33]Compared with the conventional micro-electromechanical system(MEMS) gas sensors,[37]our sensitivity of PSHE-based sensor enhances nearly four orders of magnitude, demonstrating a superior sensing performance.

    Fig. 6. The intensity sensitivity of refractive index sensor based on OTS-induced PSHE.

    Table 2.The effect of InSb dielectric constant on the maximal spin shift of PSHE.

    In practical applications, the experimental growth of InSb/ENZ heterostructure may lead to rough interface of InSb/ENZ. The dielectric constant will be different from the above calculation, therefore, the spin shift and corresponding sensitivity of InSb-DBR-based sensor can be changed. The dielectric constant of InSb at 300 K is –66.2371+17.9i, and the maximal spin shift is 10.9 mm. Here, we calculated the effect of the dielectric constant changes on the maximal spin shift of PSHE, and the detailed data are listed in Table 2. It is clearly seen that the average changing rate of spin shift is about 0.07%, which can be negligible and have little effect on the sensitivity of PSHE-based sensors. Therefore,our proposed gas sensor based on the enhanced PSHE of the InSb-DBR structure shows a good stability in practical experiment applications.

    4. Conclusion

    In summary, we have proposed the InSb-DBR structure to excite the THz OTS and to achieve the significant enhancement of PSHE for reflected light. The spin shift of PSHE can be dynamically modulated by the thickness of the InSb/ENZ layer as well as the temperature. Under the optimal parameter setup, the largest spin shiftδ+Hwith a 1.1 THz Gaussian beam reaches 11.15 mm,which is much larger than the previously reported values. Finally,a THz gas sensor based on the enhanced PSHE of the InSb-DBR structure due to the excitation of OTS is presented with a superior intensity sensitivity of 5.873×104mm/RIU and good stability. These results could provide an alternative way for enhancement of PSHE in THz range and design of nano-photonic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12175107 and 12004194)and the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY220030).

    猜你喜歡
    徐家李斌勝利
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    堅持就是勝利
    World Wetlands Day
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    徐家柱 用愛喚醒沉睡12年的妻子
    堅持
    十九大勝利召開
    岷峨詩稿(2017年4期)2017-11-25 10:35:17
    一级毛片久久久久久久久女| 日韩免费av在线播放| 亚洲久久久久久中文字幕| 啪啪无遮挡十八禁网站| 九九久久精品国产亚洲av麻豆| 网址你懂的国产日韩在线| 亚洲av电影不卡..在线观看| 日本 欧美在线| 黄片小视频在线播放| 亚洲中文字幕日韩| 午夜激情欧美在线| 天美传媒精品一区二区| 精品久久久久久久久亚洲 | 国产 一区 欧美 日韩| 美女cb高潮喷水在线观看| АⅤ资源中文在线天堂| 色在线成人网| 少妇高潮的动态图| 国产在线精品亚洲第一网站| 精品熟女少妇八av免费久了| 成年女人永久免费观看视频| 伦理电影大哥的女人| 亚洲欧美日韩高清在线视频| 成人av在线播放网站| 成年女人永久免费观看视频| 日韩成人在线观看一区二区三区| 小说图片视频综合网站| 国产高清三级在线| 欧美xxxx性猛交bbbb| 亚洲国产欧美人成| 久久久久久九九精品二区国产| 国产伦在线观看视频一区| 亚洲精品乱码久久久v下载方式| 日韩欧美精品免费久久 | 亚洲精品456在线播放app | 欧美一区二区亚洲| 一区福利在线观看| 国产精品亚洲一级av第二区| 国产av麻豆久久久久久久| 日本黄色片子视频| 一个人观看的视频www高清免费观看| 国产高清视频在线观看网站| 人人妻人人澡欧美一区二区| 欧美日韩瑟瑟在线播放| 九色国产91popny在线| 国产精品久久久久久亚洲av鲁大| 成人高潮视频无遮挡免费网站| 午夜福利成人在线免费观看| 亚洲成av人片免费观看| 久久久久久大精品| av欧美777| 午夜福利高清视频| 中文资源天堂在线| 天堂影院成人在线观看| xxxwww97欧美| 嫁个100分男人电影在线观看| 欧美日韩乱码在线| 最新中文字幕久久久久| 久久精品91蜜桃| 内射极品少妇av片p| 直男gayav资源| 一区二区三区免费毛片| 床上黄色一级片| 国产精品影院久久| 亚洲avbb在线观看| 床上黄色一级片| 成年版毛片免费区| 桃红色精品国产亚洲av| 男人舔奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 国产私拍福利视频在线观看| 成人欧美大片| 亚洲av熟女| 日韩中文字幕欧美一区二区| 精品无人区乱码1区二区| 精品一区二区免费观看| 国产伦一二天堂av在线观看| 十八禁人妻一区二区| 婷婷六月久久综合丁香| 久久欧美精品欧美久久欧美| av福利片在线观看| 国产亚洲精品av在线| 国产在视频线在精品| 首页视频小说图片口味搜索| 成人性生交大片免费视频hd| 久久6这里有精品| 欧美性猛交黑人性爽| 黄片小视频在线播放| 国产野战对白在线观看| 一进一出抽搐gif免费好疼| 在线观看舔阴道视频| 久久精品国产亚洲av天美| 欧美色欧美亚洲另类二区| 男插女下体视频免费在线播放| 亚洲av熟女| 观看美女的网站| 综合色av麻豆| 色吧在线观看| 亚洲国产精品999在线| 1000部很黄的大片| 精品国产亚洲在线| 国产精品1区2区在线观看.| 亚洲午夜理论影院| 亚洲在线观看片| 亚洲不卡免费看| 久久99热6这里只有精品| 精品熟女少妇八av免费久了| 毛片一级片免费看久久久久 | 国产精品国产高清国产av| 给我免费播放毛片高清在线观看| 大型黄色视频在线免费观看| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 悠悠久久av| 一本精品99久久精品77| 超碰av人人做人人爽久久| 又粗又爽又猛毛片免费看| 成人美女网站在线观看视频| 亚洲精品影视一区二区三区av| 国产真实伦视频高清在线观看 | 亚洲av电影在线进入| 永久网站在线| x7x7x7水蜜桃| 少妇的逼好多水| xxxwww97欧美| 亚洲国产精品成人综合色| 俄罗斯特黄特色一大片| 亚洲av成人av| 88av欧美| www.色视频.com| 搡老岳熟女国产| 欧美日本亚洲视频在线播放| 99久久久亚洲精品蜜臀av| 亚洲国产高清在线一区二区三| 亚洲专区国产一区二区| 搞女人的毛片| 亚洲午夜理论影院| 成人一区二区视频在线观看| 精品久久久久久久久久免费视频| 内地一区二区视频在线| 成年女人毛片免费观看观看9| 性欧美人与动物交配| 狂野欧美白嫩少妇大欣赏| 一级作爱视频免费观看| 午夜精品在线福利| 性色avwww在线观看| 亚洲精品影视一区二区三区av| 一个人免费在线观看电影| 日韩欧美免费精品| 少妇裸体淫交视频免费看高清| 日韩欧美免费精品| 深爱激情五月婷婷| 亚洲最大成人av| 亚洲国产欧美人成| 十八禁网站免费在线| 男女床上黄色一级片免费看| 91麻豆精品激情在线观看国产| 男女做爰动态图高潮gif福利片| 精品久久久久久久久亚洲 | 少妇高潮的动态图| 亚洲欧美日韩东京热| 在线观看66精品国产| 亚洲av二区三区四区| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区视频9| av视频在线观看入口| 午夜激情欧美在线| 男女那种视频在线观看| 国产午夜精品论理片| 日本黄大片高清| 日韩欧美精品v在线| 2021天堂中文幕一二区在线观| 无遮挡黄片免费观看| 五月伊人婷婷丁香| 日本 av在线| 精品一区二区免费观看| 免费搜索国产男女视频| 又爽又黄a免费视频| 看十八女毛片水多多多| 午夜a级毛片| 久久久久久久精品吃奶| 婷婷丁香在线五月| 亚洲国产精品合色在线| 永久网站在线| 欧美午夜高清在线| 欧美性感艳星| 男女之事视频高清在线观看| 欧美成人性av电影在线观看| 狠狠狠狠99中文字幕| 亚洲国产精品成人综合色| 久久久久久久精品吃奶| 成人午夜高清在线视频| 99久久无色码亚洲精品果冻| 久久久久久久精品吃奶| 国产精品久久视频播放| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美清纯卡通| 男人和女人高潮做爰伦理| 麻豆国产av国片精品| 精品人妻熟女av久视频| 成人av在线播放网站| 午夜激情福利司机影院| 日本撒尿小便嘘嘘汇集6| 很黄的视频免费| 欧美丝袜亚洲另类 | 高清毛片免费观看视频网站| 国产精品久久视频播放| 青草久久国产| 久9热在线精品视频| bbb黄色大片| 免费看日本二区| 国产av一区在线观看免费| 中文字幕人妻熟人妻熟丝袜美| 老女人水多毛片| 国产av麻豆久久久久久久| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 国语自产精品视频在线第100页| 女同久久另类99精品国产91| 夜夜看夜夜爽夜夜摸| 日本免费一区二区三区高清不卡| 此物有八面人人有两片| 婷婷色综合大香蕉| 国产高清激情床上av| 老司机午夜福利在线观看视频| 美女 人体艺术 gogo| 久久草成人影院| 如何舔出高潮| 级片在线观看| 欧美最黄视频在线播放免费| 亚洲成av人片在线播放无| 久久精品国产亚洲av涩爱 | 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 熟妇人妻久久中文字幕3abv| 国产精品国产高清国产av| 一区二区三区激情视频| 国产精品综合久久久久久久免费| 国产男靠女视频免费网站| 欧美bdsm另类| 国产精品免费一区二区三区在线| 国产亚洲欧美在线一区二区| 色吧在线观看| 午夜影院日韩av| 九九在线视频观看精品| 日韩欧美在线乱码| 欧美日韩亚洲国产一区二区在线观看| 久久久久九九精品影院| 欧美性猛交╳xxx乱大交人| 热99在线观看视频| 久久久久亚洲av毛片大全| h日本视频在线播放| 午夜视频国产福利| 欧洲精品卡2卡3卡4卡5卡区| bbb黄色大片| 中国美女看黄片| 听说在线观看完整版免费高清| 国产精品av视频在线免费观看| 日韩人妻高清精品专区| 一级黄色大片毛片| 好看av亚洲va欧美ⅴa在| 十八禁国产超污无遮挡网站| 赤兔流量卡办理| h日本视频在线播放| 精品人妻偷拍中文字幕| 在线观看一区二区三区| 国产三级黄色录像| 国产精品久久久久久人妻精品电影| 1024手机看黄色片| 精品99又大又爽又粗少妇毛片 | 精品日产1卡2卡| 成人欧美大片| 老熟妇乱子伦视频在线观看| 免费在线观看影片大全网站| 午夜福利欧美成人| 成年女人永久免费观看视频| 亚洲黑人精品在线| 精品无人区乱码1区二区| 直男gayav资源| 搡老熟女国产l中国老女人| 亚洲人成网站在线播放欧美日韩| 91av网一区二区| 有码 亚洲区| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 99热这里只有精品一区| 成人精品一区二区免费| 欧美日韩综合久久久久久 | 亚洲一区高清亚洲精品| 又黄又爽又刺激的免费视频.| 欧美绝顶高潮抽搐喷水| 成人av一区二区三区在线看| 亚洲美女视频黄频| 亚洲av电影在线进入| 久久性视频一级片| 色av中文字幕| netflix在线观看网站| 亚洲一区二区三区色噜噜| 色噜噜av男人的天堂激情| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| av在线老鸭窝| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 成人一区二区视频在线观看| 久久人人精品亚洲av| 国产一区二区激情短视频| 亚洲五月婷婷丁香| 色综合欧美亚洲国产小说| 亚洲午夜理论影院| 成人av一区二区三区在线看| www.999成人在线观看| 一本久久中文字幕| 蜜桃久久精品国产亚洲av| 韩国av一区二区三区四区| 中文字幕av成人在线电影| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 99久久九九国产精品国产免费| 两个人的视频大全免费| 国产真实伦视频高清在线观看 | 波野结衣二区三区在线| 精品人妻1区二区| 国产国拍精品亚洲av在线观看| 久久久国产成人免费| 免费黄网站久久成人精品 | 国产精品影院久久| 久久99热这里只有精品18| 国产精华一区二区三区| 天堂网av新在线| 丁香欧美五月| 成年人黄色毛片网站| 99热精品在线国产| 精品一区二区三区视频在线观看免费| 亚洲综合色惰| a在线观看视频网站| 波多野结衣巨乳人妻| 中文字幕av在线有码专区| 国产精品美女特级片免费视频播放器| 日本在线视频免费播放| 久久精品国产亚洲av涩爱 | 一级黄色大片毛片| av国产免费在线观看| 亚洲av电影在线进入| 1024手机看黄色片| 国产aⅴ精品一区二区三区波| 一个人看视频在线观看www免费| 亚洲 国产 在线| 久久精品影院6| 男插女下体视频免费在线播放| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 亚洲av电影在线进入| 69人妻影院| 赤兔流量卡办理| 黄片小视频在线播放| 成年免费大片在线观看| 99久久九九国产精品国产免费| 亚洲国产欧美人成| 男女视频在线观看网站免费| 亚洲在线自拍视频| 少妇被粗大猛烈的视频| 老鸭窝网址在线观看| 免费人成在线观看视频色| 五月伊人婷婷丁香| 中国美女看黄片| 国产高清三级在线| ponron亚洲| 国内精品美女久久久久久| 在线观看av片永久免费下载| 亚洲av成人av| 国内精品久久久久久久电影| 一个人看的www免费观看视频| 亚洲18禁久久av| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| av天堂中文字幕网| 嫩草影院精品99| 又爽又黄a免费视频| 亚洲精品一区av在线观看| 夜夜爽天天搞| 久久精品国产清高在天天线| 午夜福利免费观看在线| 精品人妻一区二区三区麻豆 | 欧美成人性av电影在线观看| www.熟女人妻精品国产| 精品免费久久久久久久清纯| 中文字幕久久专区| 黄色女人牲交| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 午夜日韩欧美国产| 天堂√8在线中文| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| 免费av不卡在线播放| 欧美一区二区亚洲| 欧美一区二区亚洲| 欧美丝袜亚洲另类 | 亚洲国产日韩欧美精品在线观看| www.999成人在线观看| 国产成人啪精品午夜网站| 91午夜精品亚洲一区二区三区 | 国产真实乱freesex| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久久久| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲精品一区av在线观看| 中国美女看黄片| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 在线观看av片永久免费下载| 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 免费人成在线观看视频色| 他把我摸到了高潮在线观看| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 精品欧美国产一区二区三| 国产亚洲精品久久久久久毛片| 69人妻影院| 国产探花在线观看一区二区| 亚洲激情在线av| 国产视频内射| 亚洲av二区三区四区| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 国产精品一及| 亚洲人成网站在线播| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 成人永久免费在线观看视频| 日本 av在线| 夜夜夜夜夜久久久久| 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| 波野结衣二区三区在线| 日韩欧美免费精品| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 久久香蕉精品热| 91在线精品国自产拍蜜月| 亚洲va日本ⅴa欧美va伊人久久| 国产精品三级大全| 亚洲av成人精品一区久久| 国产高清激情床上av| 国产单亲对白刺激| 国产野战对白在线观看| 免费在线观看亚洲国产| 日韩欧美 国产精品| 国产亚洲精品久久久com| 日韩中文字幕欧美一区二区| 性插视频无遮挡在线免费观看| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 免费在线观看日本一区| 亚洲18禁久久av| 女人十人毛片免费观看3o分钟| 色综合站精品国产| 好看av亚洲va欧美ⅴa在| 免费搜索国产男女视频| 精品一区二区三区人妻视频| 国产视频内射| 精品一区二区免费观看| 日日摸夜夜添夜夜添小说| 日韩欧美免费精品| 欧美区成人在线视频| 精品熟女少妇八av免费久了| 亚洲成人中文字幕在线播放| 观看免费一级毛片| 嫩草影院精品99| 国产白丝娇喘喷水9色精品| 亚洲av免费高清在线观看| 亚洲精品在线观看二区| 亚洲美女搞黄在线观看 | 国产午夜福利久久久久久| 99热6这里只有精品| 在线观看免费视频日本深夜| 欧美xxxx性猛交bbbb| www日本黄色视频网| 日本一本二区三区精品| 欧美性感艳星| 国产视频一区二区在线看| 亚洲人与动物交配视频| 一区福利在线观看| 国产精品电影一区二区三区| 一区二区三区四区激情视频 | 色视频www国产| 久久99热这里只有精品18| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 亚洲,欧美,日韩| 午夜福利在线观看吧| 精品人妻偷拍中文字幕| 欧美日韩亚洲国产一区二区在线观看| 久久精品影院6| 一个人看视频在线观看www免费| 俺也久久电影网| 午夜福利在线在线| 99久久成人亚洲精品观看| 欧美日韩中文字幕国产精品一区二区三区| 激情在线观看视频在线高清| 成人性生交大片免费视频hd| www日本黄色视频网| 午夜精品一区二区三区免费看| 欧美一区二区亚洲| 亚洲国产高清在线一区二区三| 欧美色欧美亚洲另类二区| www.色视频.com| 中文字幕av在线有码专区| 毛片一级片免费看久久久久 | eeuss影院久久| 日韩大尺度精品在线看网址| а√天堂www在线а√下载| 欧美日韩黄片免| 亚洲精品456在线播放app | 久9热在线精品视频| 久久国产乱子免费精品| 淫妇啪啪啪对白视频| 美女xxoo啪啪120秒动态图 | 日本 欧美在线| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 色综合婷婷激情| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 成人欧美大片| 少妇的逼好多水| 人人妻人人看人人澡| 久久久精品欧美日韩精品| 欧美日韩瑟瑟在线播放| 69人妻影院| 在线a可以看的网站| 给我免费播放毛片高清在线观看| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 无遮挡黄片免费观看| 久久久国产成人精品二区| 亚洲国产精品999在线| 又爽又黄a免费视频| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| АⅤ资源中文在线天堂| 天堂av国产一区二区熟女人妻| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 欧美性猛交╳xxx乱大交人| 天天一区二区日本电影三级| 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 在线观看午夜福利视频| 色哟哟哟哟哟哟| 欧美色视频一区免费| 午夜免费成人在线视频| 最新在线观看一区二区三区| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 丰满乱子伦码专区| 久久精品国产亚洲av涩爱 | 亚洲精品色激情综合| 天堂影院成人在线观看| 色吧在线观看| 窝窝影院91人妻| 在线观看美女被高潮喷水网站 | 欧美bdsm另类| 中出人妻视频一区二区| 久久国产乱子免费精品| 一级黄片播放器| 亚洲精品一区av在线观看| 亚洲精品456在线播放app | 久久久久久久久久黄片| 丁香六月欧美| 18禁在线播放成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 两个人视频免费观看高清| 亚洲色图av天堂| 欧美成狂野欧美在线观看| 此物有八面人人有两片| 午夜福利成人在线免费观看| 十八禁网站免费在线| 色5月婷婷丁香| 狠狠狠狠99中文字幕| 精品人妻偷拍中文字幕| 午夜久久久久精精品| 51午夜福利影视在线观看| 在线观看av片永久免费下载| 天堂影院成人在线观看| 嫩草影院新地址| 中文字幕av成人在线电影| 国产在视频线在精品| 69人妻影院| 波多野结衣高清无吗| 成人美女网站在线观看视频| 夜夜爽天天搞| 色在线成人网| 99久久精品一区二区三区| 久久久久九九精品影院| 久久精品国产自在天天线| 亚洲成av人片在线播放无| 真人一进一出gif抽搐免费| 久久99热这里只有精品18| 久久精品国产亚洲av涩爱 |