• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-dimensional PT-symmetric acoustic heterostructure

    2022-12-28 09:53:58HaiXiaoZhang張海嘯WeiXiong熊威YingCheng程營andXiaoJunLiu劉曉峻
    Chinese Physics B 2022年12期
    關(guān)鍵詞:海嘯

    Hai-Xiao Zhang(張海嘯) Wei Xiong(熊威) Ying Cheng(程營) and Xiao-Jun Liu(劉曉峻)

    1Department of Physics,MOE Key Laboratory of Modern Acoustics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Electrical and Information Engineering,Changzhou Institute of Technology,Changzhou 213032,China

    3State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic PT-symmetric heterostructure, anisotropic transmission resonance, occasional bidirectional transmission resonance

    1. Introduction

    One of the most intriguing developments in quantum mechanics over the past few decades has been the discovery of a non-Hermitian HamiltonianHthat commutes with the parity-time (PT) operator, a property that leads to realenergy eigenvalues.[1–3]Recently, considerable efforts have been further motivated to investigate its classical analogy in photonics,[4–12]acoustics,[13–23]and many more areas[24–27]by means of interleaving balanced loss–gain regions. In contrast to the photonic gain that can be straightforwardly implemented in a locally controlled fashion through stimulated emission, which involves optical (electrical) pumping by an external source or via parametric processes,[28–31]no passive acoustic gain material exists in nature. General physical realizations of acousticPTsymmetry rely on the presence of electromechanical cone loudspeakers,[14–16]forced air flows,[17]or piezoelectric transducers.[19,20]Although the equivalent loss–gain balance can be circumvented by implementing unbalanced loss-only structures,[32,33]the absence of gain gives rise to the intrinsic loss of overall energy. More recently,the implementations of effective acoustic gain through electro-thermoacoustic[34–38]and photo-thermoacoustic[39,40]effects promise versatile routes for the exploration of acousticPTsymmetry.

    Up to now,all available designs ofPT-symmetric acoustics are constructed on the basis of balanced gain-loss pair coupled by elaborately configured interlayer, which take advantage of additional coupling mechanism. For example, the unidirectional transmission resonance in Ref. [13] is induced by thePTsymmetry and the Fabry–Perot (FP) resonance of the system.However,the bidirectional transmission resonance in Ref.[21]is the consequence of thePTsymmetry,FP resonance,and periodic structure of the system.Thus,the presence of exceptional points is investigated by varying the distancedbetween the gain and loss components, and their balance is achieved for specific values ofk0d, wherek0stands for the wave number in air. Therefore, the concise heterostructure without interlayer impling entirely disparate physics and design philosophies toPTsymmetry[9]urgently needs to be adequately exploited,according the degree of freedom of acoustic medium, geometry and frequency simultaneously via a generalized theoretical model.

    The purpose of this article is to explore the specific properties whenPTsymmetry imposes on the transmission and reflection in arbitrarilyPT-symmetric heterostructure,in both the symmetric and broken-symmetric phases by using an experimental parameter-related transfer matrix in acoustics. We first derive the conservation relations governing the one-dimensional (1D)PT-symmetric acoustic heterostructure, which could be employed to predominantly determine whetherPTsymmetry is achieved in a given physical structure. A set of transmission resonance patterns are demonstrated as a consequence of the derived conservation relations,in which the reflection vanishes only for waves incident from one side of the structure, referred to as anisotropic transmission resonances (ATRs). Last, we demonstrate an occasional bidirectional transmission resonance (OBTR) with bidirectional transparency but vastly different spatial pressure profiles for incidence from opposite sides. The findings may provide substantial support for the development ofPT-symmetric theory and prototype devices with richer acoustic phenomena.

    Fig.1. (a)Schematic diagram of a 1D PT-symmetric acoustic heterostructure,constructed by a pair of medium layers that are PT-symmetric about x=0, i.e., n(x)=n?(?x) in panel (b). Green and orange regions indicate gain and loss medium,respectively.

    2. Generalized unitary relation

    We begin with the scattering matrixSrdefined by[17]

    The overall transfer matrixΓ=Γ1Γ2can be obtained,[41]whereΓmis the transfer matrix expressed as

    Equations (5) and (6) are valid for all 1D acoustic heterostructures withPTsymmetry as following.

    Fig.2. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=0.8±i0.05 and length L. The black dashed,red dashed-dotted, and blue solid curves show |rG|, |rL|, and |t|, respectively. Zeros of the reflections and corresponding anisotropic transmission resonances(|t|=1)are marked by vertical gray dashed lines and red dots.(b) Phases of rG, rL, and t in panel (a), demonstrating the reflection phase jumps at each ATR. (c) Absolute eigenvalues of scattering matrix St. The four resonances marked as modes L1,G1,G2,and L2 from low to high frequency in sequence correspond to the reflection valleys in panel(a)and the phase jump points in panel (b). |λ1| and |λ2| are labeled and indicated by the black dashed and red dashed-dotted curves,respectively. The white and orange backgrounds indicate that the system is in the PT-symmetric phase and broken phase,respectively.

    For|t|< 1, we getab> 0 from Eq. (5) and|t|2+|rG||rL| = 1 from Eq. (6). The former refers that?G=?L=?t±π/2, where?G,L,and?tare the phases of reflection and transmission coefficients. The latter is an intriguing generalization of the more familiar conservation relation|t|2+|r|2=1, which applies to a unitary(T-symmetric)matrix for which the left and right reflections (defined asr) are necessarily equal.[42]In thePT-symmetric case,the geometric mean of the two reflectances|rG||rL| replaces the single reflectance|r|2. Therefore, when|t|< 1, the scattering of a single incident wave from one side of the structure is subunitary(some flux is lost)while the scattering from the other side is superunitary(some flux is gained). It should be noted that an accidental degeneracy only appears at|rG|=|rL|, in which case the flux conservation of scattering from both sides cannot be accomplished (δ3/= 0) unless an introducing additional tuning parameter (e.g., the in-between air coupling layer in typicalPT-symmetric setup in Ref.[16]). The above mentioned phenomena are shown by the white background regions in Figs. 2(a) and 2(b), which describe the scattering properties of a 1DPT-symmetric heterostructure with indexn=0.8±i0.05 and lengthL.

    In contrast, when|t|> 1, all single-sided scattering processes are superunitary. Thus, we obtainab< 0 from Eq.(5)and the conservation relation of Eq.(6)becomes|t|2?|rG||rL|=1. Similarly,the former indicates that?G??L=πand?G,L=?t±π/2,while the latter describes a class of conservation relations that cannot exist in Hermitian systems. Accidental reflection degeneracies(|rG|=|rL|,requiringδ4=0)are possible in this regime,[42]leading to the usual pseudounitary conservation relation|t|2?|r|2=1, as shown by the orange background in Figs.2(a)and 2(b).

    To further explore thePTsymmetry of the structure,we consider the scattering matrix[13]

    3. Anisotropic transmission resonance

    As noted above,equation(6)implies an considerable interesting phenomenon: there exists a flux-conserving scattering process for incident waves if and only if|t|=1,while only a single one ofrGorrLvanishes. Such process can be referred as an ATR,[9]which is a generalization of the flux-conserving transmission resonances in unitary structures(β=0,|r|=0,and|t|=1)independent of the incidence direction.These ATR modes are marked by red dots in Figs.2(a)and 2(c)as modes L1, G1, G2, and L2 atk0L=9.59, 10.55, 11.32, and 11.66,respectively. It is convenient to distinguish these four modes:(i)Modes G1 and G2 are ATRs at the gain-side reflectionless state(rG=0)corresponding to the gain-side reflection phase jumps,whereas modes L1 and L2 are ATRs at loss-side reflectionless state (rL=0) associated with the loss-side reflection phase jumps. (ii)Modes G1 and L1 arise from a bidirectional transmission resonance(BTR)(β=0,ξ0=μπ/2α,andμis an odd number)of the unitary structure,while modes G2 and L2 arise from the other BTR of the unitary structure (β=0,ξ0=μπ/2α,andμis an even number).

    A surprising property of ATRs is that their intensity profile is spatially symmetric. For a spatial profilep(x)of a left-(right-)going transmission resonance,p?(?x)after aPToperation is also a left-(right-)going transmission resonance of the same structure. Since these two states occur at the same frequency,they must be identical(up to a phaseφ)by the requirement of uniqueness:

    Hence,the amplitude satisfies|p?(?x)|=|p(x)|. This is consistent with the intuitive expectation that to conserve flux,the acoustic energy must spend an equal amount of time on average in the loss and gain regions of the heterostructure. Except at the ATRs,intensities do exhibit asymmetry for bidirectional incidence,and in particular this is the case for a wave incident from the side with nonvanishing reflection.

    Fig.3. (a)–(b)Spatial profiles of ATR modes G1 and G2,indicating unidirectional reflectionless from the gain side. (c)–(d) Spatial profiles of ATR modes L1 and L2,indicating unidirectional reflectionless from the loss side.The top(bottom)panel shows wave incidence from the gain(loss)side.

    The spatial profiles of gain-side invisibilities,corresponding to the aforementioned ATRs of modes G1 and G2, are shown in Figs.3(a)and 3(b).The top panels exhibit the spatial symmetry of their pressure amplitude profile and the bottom panels identify the asymmetry under non-ATR condition. For comparison,figures 3(c)and 3(d)carry out a disparate vision of loss-side invisibilities, associated with the aforementioned ATRs of modes L1 and L2. To our surprise,in modes G1 and L1,the spatial profiles reach minimums at the gain–loss interface,which is consistent with the spatial profile of their corresponding BTR.As expected,modes G2 and L2 have a similar phenomenon, where the spatial profiles reach maximums at the gain-loss interface.

    4. Occasional bidirectional transmission resonance

    Owing toPTsymmetry,a couple of ATRs therefore arise from the BTR of the unitary structure(β=0),resulting in unidirectional invisibility at different frequencies and incident directions (e.g., modes G1 and L1). Further exploration shows that, there exists a series of occasional bidirectional transmission resonances(OBTRs),which inherit the characteristic scattering properties of the unitary structure at a hand-to-hand frequency, but exhibit obvious differences in the amplitude profiles. The implementation of this phenomenon depends on the precondition ofa=b=0 (δ3=δ4=0), which cannot be demonstrated strictly via the equation evolution. Nevertheless, this phenomenon can still be simulated under approximate conditions: (i)β ?α;(ii)βξ ~0(low normalized frequency); (iii)ξ ~μπ/2α, andμmust be an even number;(iv)β ~0. We illustrate the mathematical and physical mechanisms that underline this phenomenon in detail.

    According to the transfer matrix model,provided that the first three conditions are fulfilled, the scattering parameters can be reduced to

    It is much more complicated to implement an OBTR in the current case than in the previous case unless 4β/α ~0.

    Based on the above four assumptions, we explore the scattering properties and spatial profiles of an OBTR inPTsymmetric heterostructure and its mirrored BTR in a unitary structure. Figures 4(a)–4(c) show the scattering amplitudes,phases, and absolute eigenvalues of thePT-symmetric heterostructure with indexn=1.2±i0.05, while figures 4(d)–4(f) exhibit the corresponding properties of unitary structure with indexn=1.2. Definitely, the OBTR shares an exceptional point (EP) with the initial BTR atξ=2.64 (~π/α),however the scattering behavior near the EP is widely divergent. It is interesting to note that although the bidirectional reflection and transmission coefficients around EP are discrepant,the initial conservation relationship|t|2+|rG||rL|=1 is still maintained, indicating that both structures undergo a symmetric phase [Figs. 4(a) and 4(d)]. This verdict can also be simply caught from the phases of scattering parameters, as shown in Figs. 4(b) and 4(e). Another point worth noting is that when OBTR occurs, the phase of the bidirectional transmission coefficient is?t=0,which has never been demonstrated in a singlePT-symmetric structure but periodic cell units.[43,44]Whereas ATRs achieve unidirectional reflectionless (unitary transmission) in thePT-symmetric heterostructure, OBTR approaches bidirectional invisibility, despite their acoustic pressure amplitude distribution in the gainloss medium being different. Figure 4(c) shows the absolute eigenvalues ofStfor thePT-symmetric structure,and there is a perturbation in the OBTR around the EP,which is consistent with the prediction that the OBTR is an approximate solution.On the contrary, for the unitary structure, the absolute eigenvalues are always one in the whole frequency range,as shown in Fig.4(f).

    Figures 4(g) and 4(h) demonstrate the spatial profiles of the EPs of mode “OBTR” in Fig. 4(c) and mode “BTR”in Fig. 4(f), respectively. The results indicate that both thePT-symmetric heterostructure and the unitary structure exhibit unitary transmission at the unidirectional invisibility frequency, regardless of whether the incident wave initially passes through a waveguide with loss or gain. As shown in the top panel of Fig. 4(g), the incident wave with normalized frequencyξ=2.64 passes through the gain portion from the left side, and the amplitude of the acoustic pressure increases to 1.118 (at the gain–loss interface). The amplitude then decreases to 1 in the loss portion. On the other hand, in the bottom panel of Fig. 4(g), the incident wave with identical normalized frequency first passes through the loss portion from the right side, and the amplitude of the acoustic wave decreases to 0.9 (at the loss–gain interface). The amplitude then increases to 1 in the gain portion. The spatially symmetric amplitude of acoustic waves indicates that the energy amplified (absorbed) in the gain (loss) waveguide is completely reproduced in the loss (gain) waveguide at the mirrored position, leading to unitary transmission and reflectionlessness.This is distinct from the manifestation of the initial BTR in a unitary structure,in which the spatial profiles of bidirectional incidence are exactly reciprocal and the intensity at the gain–loss interface is undoubtedly 1[Fig.4(h)].The conclusion further proves that OBTR in aPT-symmetric heterostructure and BTR in unitary structure are two different physical processes,although their scattering matrices are identical,including amplitudes and phases.

    Fig.4. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=1.2±i0.05 and length L. Zero of the reflection corresponding to OBTR are marked by red dots. (b) Phases of rG, rL, and t in panel (a) demonstrate the reflection phase jump at EP. (c) Absolute eigenvalues of scattering matrix λ1,2. The single mode marked as mode“OBTR”corresponds to the reflection valley in panel(a)and the phase jump point in panel(b). Inset:zoomed-in around the OBTR at ξ =2.64. (d)–(f)Same as panels(a)–(c)but for unitary structure with index n=1.2 and length 2L. (g)The unitary nonrecopical transmission resonance of mode“OBTR”labeled in panel(c). (h)The profiles of mode“BTR”labeled in panel(f).

    5. Conclusion and discussion

    To conclude,we have derived the generalized unitary relation for the scattering matrix of arbitrary 1DPT-symmetric acoustic heterostructure from the transfer matrix, including a conservation relation between the transmission and the gain(loss)side reflection. The conservation relation leads to a simple criterion for identifying the EPs at which thePTsymmetry is spontaneously broken or restored. These EPs are shown to be closely related to thePT-symmetry-breaking transition of the underlying effective Hamiltonian of the structure. In addition,the discovery of four patterns of ATRs has enhanced our physical understanding ofPT-symmetric heterostructure and its scattering EPs. The existence of the OBTR can also provide a theoretical basis for the realization of bidirectional transmission under non-Hermitian conditions and can be used as one of the methods of acoustic gain(loss)discrimination.

    In practical realization, both types of components in thePT-symmetric heterostructure can be realized by designing suitable circuits duo to the emergence of the active acoustic metamaterials,[14,16]which manifest the possibility of realizing the metamaterials with the required effective parameters.Our methodology can be applied to relevant fields such as electronics, optics, microwaves, and elastic metamaterials. Especially in recent years,preliminary studies have been made onPTsymmetry in elastic wave system.[45–47]In view of the correlation between elastic and sound waves,elastic metamaterials may also provide potential ideas for experimental realization of acousticPTsymmetry,andvice versa. Our results are useful in predicting the propagation features ofPT-symmetric structures and designing devices of asymmetric responses.

    Acknowledgements

    Project supported by the National Basic Research Program of China(Grant No.2017YFA0303702)and the National Natural Science Foundation of China (Grant Nos. 12225408,12074183,11922407,11904035,11834008,and 11874215).

    猜你喜歡
    海嘯
    “海嘯來了”等十一則
    雜文月刊(2021年10期)2021-01-07 02:58:29
    一個基于GPU并行加速的海嘯數(shù)值模型
    海洋通報(2020年2期)2020-09-04 09:22:24
    英倫海嘯
    新民周刊(2019年4期)2019-01-30 20:46:12
    連續(xù)的海嘯
    引發(fā)海嘯(下)
    引發(fā)海嘯(上)
    Feasibility study on optical vortex generation at Shanghai deep ultraviolet free-electron laser?
    金融大海嘯
    意林(2008年23期)2008-05-14 16:48:31
    這次為什么沒有引發(fā)海嘯?
    久久久久九九精品影院| 精品乱码久久久久久99久播| 搡老岳熟女国产| 亚洲精品久久成人aⅴ小说| 1024香蕉在线观看| 亚洲人成77777在线视频| 国内毛片毛片毛片毛片毛片| 亚洲精品国产精品久久久不卡| 听说在线观看完整版免费高清| 亚洲一码二码三码区别大吗| 黄片大片在线免费观看| 丝袜人妻中文字幕| 精品无人区乱码1区二区| 午夜激情福利司机影院| www.精华液| 亚洲人成网站高清观看| 欧美乱色亚洲激情| 国产99白浆流出| 亚洲成人久久性| 在线视频色国产色| 十八禁网站免费在线| 国产精品爽爽va在线观看网站| 免费看美女性在线毛片视频| 欧美乱妇无乱码| 国产区一区二久久| 国产亚洲欧美98| 午夜久久久久精精品| 免费观看精品视频网站| 12—13女人毛片做爰片一| 欧美av亚洲av综合av国产av| 亚洲无线在线观看| 制服诱惑二区| 真人一进一出gif抽搐免费| 国产单亲对白刺激| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 亚洲欧洲精品一区二区精品久久久| 亚洲av电影不卡..在线观看| 搡老妇女老女人老熟妇| 黄片小视频在线播放| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合一区二区三区| 日本熟妇午夜| 日本一本二区三区精品| 精品久久久久久成人av| 久9热在线精品视频| 男女之事视频高清在线观看| 久久精品综合一区二区三区| 国产在线观看jvid| 欧美三级亚洲精品| 激情在线观看视频在线高清| 国产精品亚洲美女久久久| 欧美日韩黄片免| 亚洲国产精品sss在线观看| 深夜精品福利| 欧美zozozo另类| 欧美日韩一级在线毛片| 精品久久久久久久久久久久久| 男男h啪啪无遮挡| 在线观看66精品国产| 人人妻,人人澡人人爽秒播| 婷婷六月久久综合丁香| 一夜夜www| 99在线视频只有这里精品首页| 99热这里只有精品一区 | 久久久国产成人免费| 亚洲av电影不卡..在线观看| 99国产精品99久久久久| 国产精品免费视频内射| av福利片在线观看| 亚洲片人在线观看| 黄频高清免费视频| 久久久久性生活片| 精品国产乱子伦一区二区三区| 亚洲av成人一区二区三| 老司机靠b影院| 亚洲自拍偷在线| 免费高清视频大片| 色精品久久人妻99蜜桃| 成人亚洲精品av一区二区| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av| 亚洲真实伦在线观看| 老汉色av国产亚洲站长工具| 欧美日韩亚洲国产一区二区在线观看| aaaaa片日本免费| 国产亚洲欧美98| 老司机午夜十八禁免费视频| 久久久国产成人免费| 亚洲一码二码三码区别大吗| 我要搜黄色片| www.999成人在线观看| 日韩欧美三级三区| 在线免费观看的www视频| 久久这里只有精品中国| 亚洲国产精品sss在线观看| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 中文字幕精品亚洲无线码一区| 一本一本综合久久| 欧美久久黑人一区二区| 全区人妻精品视频| 免费在线观看影片大全网站| 国产高清激情床上av| 露出奶头的视频| 99riav亚洲国产免费| 中出人妻视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文字幕日韩| 亚洲成人国产一区在线观看| 69av精品久久久久久| 午夜福利在线观看吧| 免费在线观看亚洲国产| 91九色精品人成在线观看| ponron亚洲| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 看黄色毛片网站| 亚洲熟女毛片儿| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 丝袜人妻中文字幕| 免费看日本二区| 中文字幕av在线有码专区| 小说图片视频综合网站| 国产一区在线观看成人免费| 午夜福利免费观看在线| 欧美人与性动交α欧美精品济南到| www.熟女人妻精品国产| 国语自产精品视频在线第100页| 色在线成人网| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 波多野结衣巨乳人妻| 999精品在线视频| 久久婷婷人人爽人人干人人爱| 叶爱在线成人免费视频播放| 亚洲免费av在线视频| 亚洲av中文字字幕乱码综合| 人妻夜夜爽99麻豆av| 99精品欧美一区二区三区四区| 免费人成视频x8x8入口观看| 成人三级做爰电影| 亚洲国产日韩欧美精品在线观看 | 日本黄色视频三级网站网址| 亚洲av中文字字幕乱码综合| 啦啦啦观看免费观看视频高清| 高清在线国产一区| 欧美日韩亚洲国产一区二区在线观看| 校园春色视频在线观看| 色综合欧美亚洲国产小说| 国产97色在线日韩免费| 老司机午夜福利在线观看视频| 桃红色精品国产亚洲av| 又大又爽又粗| 亚洲九九香蕉| 免费av毛片视频| 亚洲,欧美精品.| 国产精品日韩av在线免费观看| 这个男人来自地球电影免费观看| 精品久久久久久久久久久久久| 国产精品1区2区在线观看.| 美女午夜性视频免费| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩一级在线毛片| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 久久久久久久久久黄片| 免费在线观看亚洲国产| 国产午夜精品论理片| 99国产极品粉嫩在线观看| a级毛片a级免费在线| 国产成人av教育| 黄色毛片三级朝国网站| 999久久久国产精品视频| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美精品济南到| 欧美大码av| 777久久人妻少妇嫩草av网站| 久久婷婷人人爽人人干人人爱| 欧美在线一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 国内精品一区二区在线观看| 亚洲美女视频黄频| 欧美成狂野欧美在线观看| 欧美国产日韩亚洲一区| 国产亚洲精品久久久久久毛片| АⅤ资源中文在线天堂| 两性夫妻黄色片| 国产av一区在线观看免费| 国产精品乱码一区二三区的特点| 国产野战对白在线观看| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 免费av毛片视频| 在线观看免费日韩欧美大片| 久久精品国产亚洲av香蕉五月| 国产精品av视频在线免费观看| 亚洲乱码一区二区免费版| 激情在线观看视频在线高清| 夜夜躁狠狠躁天天躁| 波多野结衣巨乳人妻| 久久久久国产精品人妻aⅴ院| 久久久久免费精品人妻一区二区| 亚洲最大成人中文| 成年版毛片免费区| 久热爱精品视频在线9| 日本熟妇午夜| 老司机在亚洲福利影院| 久久久久久人人人人人| 999精品在线视频| 一本大道久久a久久精品| 欧美精品亚洲一区二区| 久久久久久九九精品二区国产 | 久久中文字幕人妻熟女| 这个男人来自地球电影免费观看| 两人在一起打扑克的视频| 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 天天添夜夜摸| 丁香六月欧美| 国产91精品成人一区二区三区| 国产亚洲欧美98| 亚洲电影在线观看av| 久久中文字幕一级| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 国产成人av教育| 小说图片视频综合网站| 国产高清有码在线观看视频 | 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 亚洲最大成人中文| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 1024香蕉在线观看| √禁漫天堂资源中文www| 18禁观看日本| 青草久久国产| 欧美性长视频在线观看| 国产精品精品国产色婷婷| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| 午夜亚洲福利在线播放| 日本三级黄在线观看| 精品国产亚洲在线| 国产精品日韩av在线免费观看| 亚洲免费av在线视频| 欧美激情久久久久久爽电影| 在线免费观看的www视频| 久99久视频精品免费| 9191精品国产免费久久| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 亚洲专区中文字幕在线| 成人午夜高清在线视频| 一本精品99久久精品77| 国产av在哪里看| 99国产综合亚洲精品| 51午夜福利影视在线观看| www.精华液| 久久久久久免费高清国产稀缺| 亚洲国产欧洲综合997久久,| 在线观看日韩欧美| 亚洲一区中文字幕在线| avwww免费| 给我免费播放毛片高清在线观看| 欧美中文日本在线观看视频| 人妻丰满熟妇av一区二区三区| 日日摸夜夜添夜夜添小说| 波多野结衣巨乳人妻| 中文亚洲av片在线观看爽| 三级国产精品欧美在线观看 | 国产v大片淫在线免费观看| 久久久精品大字幕| 亚洲va日本ⅴa欧美va伊人久久| 曰老女人黄片| 一二三四在线观看免费中文在| 在线观看www视频免费| 精品电影一区二区在线| 国产真人三级小视频在线观看| 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 国产av不卡久久| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 人人妻人人澡欧美一区二区| 1024视频免费在线观看| xxxwww97欧美| 午夜两性在线视频| 最近最新中文字幕大全免费视频| 50天的宝宝边吃奶边哭怎么回事| 久久欧美精品欧美久久欧美| 一级片免费观看大全| 50天的宝宝边吃奶边哭怎么回事| 久久国产乱子伦精品免费另类| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 一本大道久久a久久精品| 此物有八面人人有两片| 亚洲熟妇中文字幕五十中出| 亚洲色图 男人天堂 中文字幕| 99热这里只有精品一区 | 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 日本黄色视频三级网站网址| 国产精品电影一区二区三区| 亚洲色图av天堂| 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 熟女电影av网| 88av欧美| 中出人妻视频一区二区| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 特大巨黑吊av在线直播| 身体一侧抽搐| 久久人妻福利社区极品人妻图片| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| 99热6这里只有精品| 又黄又粗又硬又大视频| 99re在线观看精品视频| 午夜福利在线观看吧| 91老司机精品| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 欧美成人一区二区免费高清观看 | 亚洲aⅴ乱码一区二区在线播放 | 日本成人三级电影网站| 不卡一级毛片| 琪琪午夜伦伦电影理论片6080| 美女 人体艺术 gogo| 国产午夜精品论理片| 久久亚洲精品不卡| 毛片女人毛片| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 婷婷丁香在线五月| 国产视频一区二区在线看| 久久久水蜜桃国产精品网| 午夜激情福利司机影院| 757午夜福利合集在线观看| 午夜影院日韩av| 老鸭窝网址在线观看| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 一个人免费在线观看电影 | 欧美zozozo另类| 91大片在线观看| 欧美日韩精品网址| 婷婷六月久久综合丁香| 国产一区二区在线av高清观看| 一级作爱视频免费观看| 中文字幕高清在线视频| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 看免费av毛片| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 国产成人系列免费观看| 久久精品成人免费网站| 一本精品99久久精品77| 成年版毛片免费区| 在线免费观看的www视频| 成人av在线播放网站| 国产伦一二天堂av在线观看| ponron亚洲| 欧美性猛交╳xxx乱大交人| 午夜成年电影在线免费观看| 亚洲成人免费电影在线观看| 亚洲中文av在线| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 国产精品av视频在线免费观看| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| av福利片在线观看| 亚洲av美国av| 国产麻豆成人av免费视频| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频 | 丁香六月欧美| 最好的美女福利视频网| 两个人视频免费观看高清| 伦理电影免费视频| 亚洲精品在线美女| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 国产精品乱码一区二三区的特点| 国产精品免费一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品综合一区在线观看 | 日韩精品免费视频一区二区三区| 日本免费a在线| 国产aⅴ精品一区二区三区波| 好男人电影高清在线观看| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 成人av一区二区三区在线看| 一级片免费观看大全| 色综合婷婷激情| 搡老岳熟女国产| 在线视频色国产色| 久9热在线精品视频| 国产精品亚洲美女久久久| 十八禁网站免费在线| 欧美三级亚洲精品| 亚洲精品国产精品久久久不卡| 亚洲天堂国产精品一区在线| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区精品| 手机成人av网站| 90打野战视频偷拍视频| 观看免费一级毛片| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 香蕉久久夜色| 一二三四社区在线视频社区8| 亚洲国产中文字幕在线视频| av天堂在线播放| 久久香蕉激情| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 日本五十路高清| 在线观看日韩欧美| 在线a可以看的网站| 久久精品国产亚洲av高清一级| 免费一级毛片在线播放高清视频| 欧美午夜高清在线| 91麻豆av在线| 色在线成人网| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看 | 五月伊人婷婷丁香| 亚洲人成伊人成综合网2020| 不卡一级毛片| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 香蕉丝袜av| 国产成人精品久久二区二区免费| 波多野结衣高清作品| 日本在线视频免费播放| 国产一区在线观看成人免费| 国产成人aa在线观看| 全区人妻精品视频| 少妇裸体淫交视频免费看高清 | 国内少妇人妻偷人精品xxx网站 | 精品欧美国产一区二区三| 国产精品免费视频内射| 51午夜福利影视在线观看| 无限看片的www在线观看| 国产精品日韩av在线免费观看| 99热这里只有是精品50| 草草在线视频免费看| 狂野欧美激情性xxxx| 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产 | 亚洲精品在线美女| 一边摸一边抽搐一进一小说| av福利片在线观看| 啪啪无遮挡十八禁网站| 超碰成人久久| 一夜夜www| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 成人一区二区视频在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产一区二区精华液| 精华霜和精华液先用哪个| 国产麻豆成人av免费视频| 亚洲专区中文字幕在线| 在线观看日韩欧美| 黄色 视频免费看| 十八禁人妻一区二区| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 日本熟妇午夜| 两个人视频免费观看高清| 国产精品国产高清国产av| 国产亚洲精品久久久久5区| 国产成人精品久久二区二区免费| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 欧美大码av| 岛国视频午夜一区免费看| 国产在线精品亚洲第一网站| 深夜精品福利| 人妻丰满熟妇av一区二区三区| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 久久精品国产清高在天天线| 美女扒开内裤让男人捅视频| 巨乳人妻的诱惑在线观看| 午夜福利成人在线免费观看| 国产一区二区在线观看日韩 | 男人舔奶头视频| 在线观看免费午夜福利视频| 国产午夜福利久久久久久| 香蕉国产在线看| 一进一出抽搐gif免费好疼| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看 | 1024香蕉在线观看| 黑人欧美特级aaaaaa片| 香蕉av资源在线| 淫妇啪啪啪对白视频| 哪里可以看免费的av片| 一级毛片精品| 国产一区二区三区在线臀色熟女| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 国产av麻豆久久久久久久| 久久久精品欧美日韩精品| 亚洲成av人片在线播放无| 欧美性猛交╳xxx乱大交人| 亚洲成av人片在线播放无| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 一级片免费观看大全| 又紧又爽又黄一区二区| www.www免费av| 亚洲中文字幕一区二区三区有码在线看 | 国产精品日韩av在线免费观看| 中文字幕高清在线视频| 亚洲av电影在线进入| 成人欧美大片| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 91成年电影在线观看| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 老熟妇乱子伦视频在线观看| 欧美成人一区二区免费高清观看 | 在线观看www视频免费| 91国产中文字幕| 免费在线观看影片大全网站| 99精品久久久久人妻精品| 午夜免费成人在线视频| 99久久综合精品五月天人人| 亚洲精品久久成人aⅴ小说| 亚洲人成网站高清观看| 国产精品三级大全| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 国产毛片a区久久久久| 性插视频无遮挡在线免费观看| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 黄色配什么色好看| 成人无遮挡网站| 身体一侧抽搐| 人妻系列 视频| avwww免费| 真实男女啪啪啪动态图| 国国产精品蜜臀av免费| 成人永久免费在线观看视频| а√天堂www在线а√下载| 国产老妇女一区| 人妻少妇偷人精品九色| 日日啪夜夜撸| 中文字幕免费在线视频6| 国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 色综合站精品国产| 亚洲性久久影院| 美女内射精品一级片tv| 国产一级毛片七仙女欲春2| 国产中年淑女户外野战色| 亚洲精品成人久久久久久| 天堂影院成人在线观看| 又粗又硬又长又爽又黄的视频 | 亚洲自拍偷在线| 又爽又黄a免费视频| 男女边吃奶边做爰视频| 久久精品国产亚洲av涩爱 | 免费无遮挡裸体视频| 午夜精品在线福利| 日本五十路高清| 国产精品永久免费网站| АⅤ资源中文在线天堂| 91狼人影院| 一边摸一边抽搐一进一小说| 在线观看av片永久免费下载| a级毛色黄片|