• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-dimensional PT-symmetric acoustic heterostructure

    2022-12-28 09:53:58HaiXiaoZhang張海嘯WeiXiong熊威YingCheng程營andXiaoJunLiu劉曉峻
    Chinese Physics B 2022年12期
    關(guān)鍵詞:海嘯

    Hai-Xiao Zhang(張海嘯) Wei Xiong(熊威) Ying Cheng(程營) and Xiao-Jun Liu(劉曉峻)

    1Department of Physics,MOE Key Laboratory of Modern Acoustics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Electrical and Information Engineering,Changzhou Institute of Technology,Changzhou 213032,China

    3State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic PT-symmetric heterostructure, anisotropic transmission resonance, occasional bidirectional transmission resonance

    1. Introduction

    One of the most intriguing developments in quantum mechanics over the past few decades has been the discovery of a non-Hermitian HamiltonianHthat commutes with the parity-time (PT) operator, a property that leads to realenergy eigenvalues.[1–3]Recently, considerable efforts have been further motivated to investigate its classical analogy in photonics,[4–12]acoustics,[13–23]and many more areas[24–27]by means of interleaving balanced loss–gain regions. In contrast to the photonic gain that can be straightforwardly implemented in a locally controlled fashion through stimulated emission, which involves optical (electrical) pumping by an external source or via parametric processes,[28–31]no passive acoustic gain material exists in nature. General physical realizations of acousticPTsymmetry rely on the presence of electromechanical cone loudspeakers,[14–16]forced air flows,[17]or piezoelectric transducers.[19,20]Although the equivalent loss–gain balance can be circumvented by implementing unbalanced loss-only structures,[32,33]the absence of gain gives rise to the intrinsic loss of overall energy. More recently,the implementations of effective acoustic gain through electro-thermoacoustic[34–38]and photo-thermoacoustic[39,40]effects promise versatile routes for the exploration of acousticPTsymmetry.

    Up to now,all available designs ofPT-symmetric acoustics are constructed on the basis of balanced gain-loss pair coupled by elaborately configured interlayer, which take advantage of additional coupling mechanism. For example, the unidirectional transmission resonance in Ref. [13] is induced by thePTsymmetry and the Fabry–Perot (FP) resonance of the system.However,the bidirectional transmission resonance in Ref.[21]is the consequence of thePTsymmetry,FP resonance,and periodic structure of the system.Thus,the presence of exceptional points is investigated by varying the distancedbetween the gain and loss components, and their balance is achieved for specific values ofk0d, wherek0stands for the wave number in air. Therefore, the concise heterostructure without interlayer impling entirely disparate physics and design philosophies toPTsymmetry[9]urgently needs to be adequately exploited,according the degree of freedom of acoustic medium, geometry and frequency simultaneously via a generalized theoretical model.

    The purpose of this article is to explore the specific properties whenPTsymmetry imposes on the transmission and reflection in arbitrarilyPT-symmetric heterostructure,in both the symmetric and broken-symmetric phases by using an experimental parameter-related transfer matrix in acoustics. We first derive the conservation relations governing the one-dimensional (1D)PT-symmetric acoustic heterostructure, which could be employed to predominantly determine whetherPTsymmetry is achieved in a given physical structure. A set of transmission resonance patterns are demonstrated as a consequence of the derived conservation relations,in which the reflection vanishes only for waves incident from one side of the structure, referred to as anisotropic transmission resonances (ATRs). Last, we demonstrate an occasional bidirectional transmission resonance (OBTR) with bidirectional transparency but vastly different spatial pressure profiles for incidence from opposite sides. The findings may provide substantial support for the development ofPT-symmetric theory and prototype devices with richer acoustic phenomena.

    Fig.1. (a)Schematic diagram of a 1D PT-symmetric acoustic heterostructure,constructed by a pair of medium layers that are PT-symmetric about x=0, i.e., n(x)=n?(?x) in panel (b). Green and orange regions indicate gain and loss medium,respectively.

    2. Generalized unitary relation

    We begin with the scattering matrixSrdefined by[17]

    The overall transfer matrixΓ=Γ1Γ2can be obtained,[41]whereΓmis the transfer matrix expressed as

    Equations (5) and (6) are valid for all 1D acoustic heterostructures withPTsymmetry as following.

    Fig.2. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=0.8±i0.05 and length L. The black dashed,red dashed-dotted, and blue solid curves show |rG|, |rL|, and |t|, respectively. Zeros of the reflections and corresponding anisotropic transmission resonances(|t|=1)are marked by vertical gray dashed lines and red dots.(b) Phases of rG, rL, and t in panel (a), demonstrating the reflection phase jumps at each ATR. (c) Absolute eigenvalues of scattering matrix St. The four resonances marked as modes L1,G1,G2,and L2 from low to high frequency in sequence correspond to the reflection valleys in panel(a)and the phase jump points in panel (b). |λ1| and |λ2| are labeled and indicated by the black dashed and red dashed-dotted curves,respectively. The white and orange backgrounds indicate that the system is in the PT-symmetric phase and broken phase,respectively.

    For|t|< 1, we getab> 0 from Eq. (5) and|t|2+|rG||rL| = 1 from Eq. (6). The former refers that?G=?L=?t±π/2, where?G,L,and?tare the phases of reflection and transmission coefficients. The latter is an intriguing generalization of the more familiar conservation relation|t|2+|r|2=1, which applies to a unitary(T-symmetric)matrix for which the left and right reflections (defined asr) are necessarily equal.[42]In thePT-symmetric case,the geometric mean of the two reflectances|rG||rL| replaces the single reflectance|r|2. Therefore, when|t|< 1, the scattering of a single incident wave from one side of the structure is subunitary(some flux is lost)while the scattering from the other side is superunitary(some flux is gained). It should be noted that an accidental degeneracy only appears at|rG|=|rL|, in which case the flux conservation of scattering from both sides cannot be accomplished (δ3/= 0) unless an introducing additional tuning parameter (e.g., the in-between air coupling layer in typicalPT-symmetric setup in Ref.[16]). The above mentioned phenomena are shown by the white background regions in Figs. 2(a) and 2(b), which describe the scattering properties of a 1DPT-symmetric heterostructure with indexn=0.8±i0.05 and lengthL.

    In contrast, when|t|> 1, all single-sided scattering processes are superunitary. Thus, we obtainab< 0 from Eq.(5)and the conservation relation of Eq.(6)becomes|t|2?|rG||rL|=1. Similarly,the former indicates that?G??L=πand?G,L=?t±π/2,while the latter describes a class of conservation relations that cannot exist in Hermitian systems. Accidental reflection degeneracies(|rG|=|rL|,requiringδ4=0)are possible in this regime,[42]leading to the usual pseudounitary conservation relation|t|2?|r|2=1, as shown by the orange background in Figs.2(a)and 2(b).

    To further explore thePTsymmetry of the structure,we consider the scattering matrix[13]

    3. Anisotropic transmission resonance

    As noted above,equation(6)implies an considerable interesting phenomenon: there exists a flux-conserving scattering process for incident waves if and only if|t|=1,while only a single one ofrGorrLvanishes. Such process can be referred as an ATR,[9]which is a generalization of the flux-conserving transmission resonances in unitary structures(β=0,|r|=0,and|t|=1)independent of the incidence direction.These ATR modes are marked by red dots in Figs.2(a)and 2(c)as modes L1, G1, G2, and L2 atk0L=9.59, 10.55, 11.32, and 11.66,respectively. It is convenient to distinguish these four modes:(i)Modes G1 and G2 are ATRs at the gain-side reflectionless state(rG=0)corresponding to the gain-side reflection phase jumps,whereas modes L1 and L2 are ATRs at loss-side reflectionless state (rL=0) associated with the loss-side reflection phase jumps. (ii)Modes G1 and L1 arise from a bidirectional transmission resonance(BTR)(β=0,ξ0=μπ/2α,andμis an odd number)of the unitary structure,while modes G2 and L2 arise from the other BTR of the unitary structure (β=0,ξ0=μπ/2α,andμis an even number).

    A surprising property of ATRs is that their intensity profile is spatially symmetric. For a spatial profilep(x)of a left-(right-)going transmission resonance,p?(?x)after aPToperation is also a left-(right-)going transmission resonance of the same structure. Since these two states occur at the same frequency,they must be identical(up to a phaseφ)by the requirement of uniqueness:

    Hence,the amplitude satisfies|p?(?x)|=|p(x)|. This is consistent with the intuitive expectation that to conserve flux,the acoustic energy must spend an equal amount of time on average in the loss and gain regions of the heterostructure. Except at the ATRs,intensities do exhibit asymmetry for bidirectional incidence,and in particular this is the case for a wave incident from the side with nonvanishing reflection.

    Fig.3. (a)–(b)Spatial profiles of ATR modes G1 and G2,indicating unidirectional reflectionless from the gain side. (c)–(d) Spatial profiles of ATR modes L1 and L2,indicating unidirectional reflectionless from the loss side.The top(bottom)panel shows wave incidence from the gain(loss)side.

    The spatial profiles of gain-side invisibilities,corresponding to the aforementioned ATRs of modes G1 and G2, are shown in Figs.3(a)and 3(b).The top panels exhibit the spatial symmetry of their pressure amplitude profile and the bottom panels identify the asymmetry under non-ATR condition. For comparison,figures 3(c)and 3(d)carry out a disparate vision of loss-side invisibilities, associated with the aforementioned ATRs of modes L1 and L2. To our surprise,in modes G1 and L1,the spatial profiles reach minimums at the gain–loss interface,which is consistent with the spatial profile of their corresponding BTR.As expected,modes G2 and L2 have a similar phenomenon, where the spatial profiles reach maximums at the gain-loss interface.

    4. Occasional bidirectional transmission resonance

    Owing toPTsymmetry,a couple of ATRs therefore arise from the BTR of the unitary structure(β=0),resulting in unidirectional invisibility at different frequencies and incident directions (e.g., modes G1 and L1). Further exploration shows that, there exists a series of occasional bidirectional transmission resonances(OBTRs),which inherit the characteristic scattering properties of the unitary structure at a hand-to-hand frequency, but exhibit obvious differences in the amplitude profiles. The implementation of this phenomenon depends on the precondition ofa=b=0 (δ3=δ4=0), which cannot be demonstrated strictly via the equation evolution. Nevertheless, this phenomenon can still be simulated under approximate conditions: (i)β ?α;(ii)βξ ~0(low normalized frequency); (iii)ξ ~μπ/2α, andμmust be an even number;(iv)β ~0. We illustrate the mathematical and physical mechanisms that underline this phenomenon in detail.

    According to the transfer matrix model,provided that the first three conditions are fulfilled, the scattering parameters can be reduced to

    It is much more complicated to implement an OBTR in the current case than in the previous case unless 4β/α ~0.

    Based on the above four assumptions, we explore the scattering properties and spatial profiles of an OBTR inPTsymmetric heterostructure and its mirrored BTR in a unitary structure. Figures 4(a)–4(c) show the scattering amplitudes,phases, and absolute eigenvalues of thePT-symmetric heterostructure with indexn=1.2±i0.05, while figures 4(d)–4(f) exhibit the corresponding properties of unitary structure with indexn=1.2. Definitely, the OBTR shares an exceptional point (EP) with the initial BTR atξ=2.64 (~π/α),however the scattering behavior near the EP is widely divergent. It is interesting to note that although the bidirectional reflection and transmission coefficients around EP are discrepant,the initial conservation relationship|t|2+|rG||rL|=1 is still maintained, indicating that both structures undergo a symmetric phase [Figs. 4(a) and 4(d)]. This verdict can also be simply caught from the phases of scattering parameters, as shown in Figs. 4(b) and 4(e). Another point worth noting is that when OBTR occurs, the phase of the bidirectional transmission coefficient is?t=0,which has never been demonstrated in a singlePT-symmetric structure but periodic cell units.[43,44]Whereas ATRs achieve unidirectional reflectionless (unitary transmission) in thePT-symmetric heterostructure, OBTR approaches bidirectional invisibility, despite their acoustic pressure amplitude distribution in the gainloss medium being different. Figure 4(c) shows the absolute eigenvalues ofStfor thePT-symmetric structure,and there is a perturbation in the OBTR around the EP,which is consistent with the prediction that the OBTR is an approximate solution.On the contrary, for the unitary structure, the absolute eigenvalues are always one in the whole frequency range,as shown in Fig.4(f).

    Figures 4(g) and 4(h) demonstrate the spatial profiles of the EPs of mode “OBTR” in Fig. 4(c) and mode “BTR”in Fig. 4(f), respectively. The results indicate that both thePT-symmetric heterostructure and the unitary structure exhibit unitary transmission at the unidirectional invisibility frequency, regardless of whether the incident wave initially passes through a waveguide with loss or gain. As shown in the top panel of Fig. 4(g), the incident wave with normalized frequencyξ=2.64 passes through the gain portion from the left side, and the amplitude of the acoustic pressure increases to 1.118 (at the gain–loss interface). The amplitude then decreases to 1 in the loss portion. On the other hand, in the bottom panel of Fig. 4(g), the incident wave with identical normalized frequency first passes through the loss portion from the right side, and the amplitude of the acoustic wave decreases to 0.9 (at the loss–gain interface). The amplitude then increases to 1 in the gain portion. The spatially symmetric amplitude of acoustic waves indicates that the energy amplified (absorbed) in the gain (loss) waveguide is completely reproduced in the loss (gain) waveguide at the mirrored position, leading to unitary transmission and reflectionlessness.This is distinct from the manifestation of the initial BTR in a unitary structure,in which the spatial profiles of bidirectional incidence are exactly reciprocal and the intensity at the gain–loss interface is undoubtedly 1[Fig.4(h)].The conclusion further proves that OBTR in aPT-symmetric heterostructure and BTR in unitary structure are two different physical processes,although their scattering matrices are identical,including amplitudes and phases.

    Fig.4. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=1.2±i0.05 and length L. Zero of the reflection corresponding to OBTR are marked by red dots. (b) Phases of rG, rL, and t in panel (a) demonstrate the reflection phase jump at EP. (c) Absolute eigenvalues of scattering matrix λ1,2. The single mode marked as mode“OBTR”corresponds to the reflection valley in panel(a)and the phase jump point in panel(b). Inset:zoomed-in around the OBTR at ξ =2.64. (d)–(f)Same as panels(a)–(c)but for unitary structure with index n=1.2 and length 2L. (g)The unitary nonrecopical transmission resonance of mode“OBTR”labeled in panel(c). (h)The profiles of mode“BTR”labeled in panel(f).

    5. Conclusion and discussion

    To conclude,we have derived the generalized unitary relation for the scattering matrix of arbitrary 1DPT-symmetric acoustic heterostructure from the transfer matrix, including a conservation relation between the transmission and the gain(loss)side reflection. The conservation relation leads to a simple criterion for identifying the EPs at which thePTsymmetry is spontaneously broken or restored. These EPs are shown to be closely related to thePT-symmetry-breaking transition of the underlying effective Hamiltonian of the structure. In addition,the discovery of four patterns of ATRs has enhanced our physical understanding ofPT-symmetric heterostructure and its scattering EPs. The existence of the OBTR can also provide a theoretical basis for the realization of bidirectional transmission under non-Hermitian conditions and can be used as one of the methods of acoustic gain(loss)discrimination.

    In practical realization, both types of components in thePT-symmetric heterostructure can be realized by designing suitable circuits duo to the emergence of the active acoustic metamaterials,[14,16]which manifest the possibility of realizing the metamaterials with the required effective parameters.Our methodology can be applied to relevant fields such as electronics, optics, microwaves, and elastic metamaterials. Especially in recent years,preliminary studies have been made onPTsymmetry in elastic wave system.[45–47]In view of the correlation between elastic and sound waves,elastic metamaterials may also provide potential ideas for experimental realization of acousticPTsymmetry,andvice versa. Our results are useful in predicting the propagation features ofPT-symmetric structures and designing devices of asymmetric responses.

    Acknowledgements

    Project supported by the National Basic Research Program of China(Grant No.2017YFA0303702)and the National Natural Science Foundation of China (Grant Nos. 12225408,12074183,11922407,11904035,11834008,and 11874215).

    猜你喜歡
    海嘯
    “海嘯來了”等十一則
    雜文月刊(2021年10期)2021-01-07 02:58:29
    一個基于GPU并行加速的海嘯數(shù)值模型
    海洋通報(2020年2期)2020-09-04 09:22:24
    英倫海嘯
    新民周刊(2019年4期)2019-01-30 20:46:12
    連續(xù)的海嘯
    引發(fā)海嘯(下)
    引發(fā)海嘯(上)
    Feasibility study on optical vortex generation at Shanghai deep ultraviolet free-electron laser?
    金融大海嘯
    意林(2008年23期)2008-05-14 16:48:31
    這次為什么沒有引發(fā)海嘯?
    99久久中文字幕三级久久日本| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 成人国语在线视频| 桃花免费在线播放| 一本色道久久久久久精品综合| 国产精品免费大片| 国产综合精华液| 亚洲综合精品二区| 下体分泌物呈黄色| 久热久热在线精品观看| 亚洲国产欧美日韩在线播放| 精品亚洲成国产av| 国产不卡av网站在线观看| 成人亚洲精品一区在线观看| 国产一区二区激情短视频 | 熟女av电影| 99精国产麻豆久久婷婷| 国产精品 国内视频| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 两个人看的免费小视频| 一区二区三区乱码不卡18| 免费黄色在线免费观看| 欧美 日韩 精品 国产| videos熟女内射| 伦精品一区二区三区| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线观看99| 久久久久久久久久人人人人人人| 90打野战视频偷拍视频| 香蕉精品网在线| 人妻人人澡人人爽人人| 99热全是精品| 精品99又大又爽又粗少妇毛片| 国产又爽黄色视频| 伦精品一区二区三区| 一级毛片黄色毛片免费观看视频| 日韩av在线免费看完整版不卡| 69精品国产乱码久久久| 久久久久国产一级毛片高清牌| 两个人看的免费小视频| 欧美精品av麻豆av| 国产人伦9x9x在线观看 | 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 亚洲一区中文字幕在线| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| 色哟哟·www| 国产精品久久久久久精品电影小说| 一级爰片在线观看| 天天操日日干夜夜撸| 国产精品免费大片| 另类精品久久| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码 | 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜爱| www.自偷自拍.com| 最近中文字幕2019免费版| 亚洲av.av天堂| 大片免费播放器 马上看| av线在线观看网站| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合一区二区三区 | 精品久久蜜臀av无| 超碰成人久久| 青春草视频在线免费观看| 天天操日日干夜夜撸| 亚洲欧洲日产国产| 免费看av在线观看网站| 久久久久久久久久人人人人人人| 日韩三级伦理在线观看| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 日本wwww免费看| 色播在线永久视频| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 国产人伦9x9x在线观看 | 色婷婷av一区二区三区视频| av女优亚洲男人天堂| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 七月丁香在线播放| 最近的中文字幕免费完整| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 国产成人a∨麻豆精品| 老熟女久久久| 边亲边吃奶的免费视频| 91久久精品国产一区二区三区| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 少妇的丰满在线观看| av女优亚洲男人天堂| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| av电影中文网址| 欧美在线黄色| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久 | 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 日韩制服丝袜自拍偷拍| 在线天堂最新版资源| 亚洲精品国产一区二区精华液| 免费黄色在线免费观看| 90打野战视频偷拍视频| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 精品少妇黑人巨大在线播放| 日韩三级伦理在线观看| 亚洲av综合色区一区| 性高湖久久久久久久久免费观看| 日韩一卡2卡3卡4卡2021年| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| 精品一区二区免费观看| 亚洲一区中文字幕在线| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 色婷婷久久久亚洲欧美| 亚洲国产日韩一区二区| 少妇的丰满在线观看| 97精品久久久久久久久久精品| 黄片小视频在线播放| 观看av在线不卡| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 制服诱惑二区| 在现免费观看毛片| 黄色一级大片看看| 国产男女内射视频| 精品99又大又爽又粗少妇毛片| 中文字幕人妻丝袜制服| 国产成人av激情在线播放| 免费黄网站久久成人精品| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| 91久久精品国产一区二区三区| 国产白丝娇喘喷水9色精品| 秋霞在线观看毛片| 在线亚洲精品国产二区图片欧美| 亚洲少妇的诱惑av| 亚洲经典国产精华液单| 午夜久久久在线观看| 不卡av一区二区三区| 欧美97在线视频| 精品视频人人做人人爽| 国产精品一国产av| 王馨瑶露胸无遮挡在线观看| 国产免费又黄又爽又色| 母亲3免费完整高清在线观看 | 男女午夜视频在线观看| 国产成人精品久久二区二区91 | 久久午夜综合久久蜜桃| 亚洲图色成人| 亚洲激情五月婷婷啪啪| 亚洲成人手机| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 精品视频人人做人人爽| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| av在线app专区| 国产福利在线免费观看视频| 午夜免费鲁丝| 欧美av亚洲av综合av国产av | 丰满乱子伦码专区| 日日啪夜夜爽| 国产精品偷伦视频观看了| 一区二区三区四区激情视频| 精品一品国产午夜福利视频| 一区在线观看完整版| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 日韩一卡2卡3卡4卡2021年| 久久久久网色| 伦理电影大哥的女人| 一本色道久久久久久精品综合| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 99热网站在线观看| 啦啦啦啦在线视频资源| 黄频高清免费视频| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 国产精品无大码| videossex国产| 午夜福利一区二区在线看| 久久精品国产自在天天线| 高清欧美精品videossex| 久久久精品免费免费高清| 日本色播在线视频| 国产精品嫩草影院av在线观看| 欧美激情 高清一区二区三区| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 国产深夜福利视频在线观看| 视频在线观看一区二区三区| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 夫妻午夜视频| 97在线人人人人妻| 日本av免费视频播放| 最近手机中文字幕大全| 91精品三级在线观看| 国产97色在线日韩免费| 中文字幕亚洲精品专区| 高清黄色对白视频在线免费看| av网站在线播放免费| 国产日韩欧美视频二区| 天堂中文最新版在线下载| 天美传媒精品一区二区| 一区福利在线观看| 又大又黄又爽视频免费| 午夜激情av网站| 精品酒店卫生间| 久久热在线av| 午夜激情av网站| 国产精品.久久久| 国产亚洲欧美精品永久| 日韩制服丝袜自拍偷拍| 亚洲美女黄色视频免费看| 婷婷色综合www| 亚洲第一青青草原| 亚洲综合色网址| 韩国高清视频一区二区三区| 国产成人精品久久二区二区91 | 免费日韩欧美在线观看| 精品酒店卫生间| 免费av中文字幕在线| 成年av动漫网址| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 亚洲成av片中文字幕在线观看 | 精品国产超薄肉色丝袜足j| 亚洲成色77777| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 青春草国产在线视频| 中文字幕人妻丝袜制服| 久久午夜综合久久蜜桃| 国产淫语在线视频| 成人国产av品久久久| 久久久久久久国产电影| 亚洲av国产av综合av卡| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| 女人高潮潮喷娇喘18禁视频| av福利片在线| 国产精品国产三级国产专区5o| 99国产综合亚洲精品| 在线观看国产h片| 国产乱人偷精品视频| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 色哟哟·www| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到 | 中国国产av一级| 久久久国产欧美日韩av| 日韩精品有码人妻一区| 久热久热在线精品观看| 国产精品成人在线| 在线 av 中文字幕| 精品国产乱码久久久久久男人| 午夜免费鲁丝| 国产伦理片在线播放av一区| 久久久精品94久久精品| 青春草视频在线免费观看| 国产麻豆69| 韩国高清视频一区二区三区| 午夜日本视频在线| 国产精品久久久久久精品电影小说| 国产成人精品在线电影| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 老女人水多毛片| 婷婷色综合大香蕉| 蜜桃国产av成人99| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久| 日本黄色日本黄色录像| 91在线精品国自产拍蜜月| 亚洲精品一二三| 国产精品人妻久久久影院| av线在线观看网站| 日本vs欧美在线观看视频| 亚洲国产欧美日韩在线播放| 黄片无遮挡物在线观看| 久久人人爽人人片av| 国产成人精品无人区| 国产在视频线精品| 欧美激情高清一区二区三区 | 精品亚洲成a人片在线观看| 最新中文字幕久久久久| 久久久久久人妻| 成人黄色视频免费在线看| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 99国产精品免费福利视频| 精品一区在线观看国产| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看 | 欧美国产精品一级二级三级| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 日日啪夜夜爽| 一本—道久久a久久精品蜜桃钙片| 国产深夜福利视频在线观看| 美女国产视频在线观看| 日本91视频免费播放| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 精品国产一区二区久久| 99久久人妻综合| 欧美bdsm另类| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 亚洲欧美精品综合一区二区三区 | 人妻人人澡人人爽人人| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 亚洲av电影在线进入| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 黄色毛片三级朝国网站| 九草在线视频观看| 嫩草影院入口| 日本免费在线观看一区| 热99国产精品久久久久久7| 永久网站在线| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 又黄又粗又硬又大视频| 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 精品国产露脸久久av麻豆| av国产久精品久网站免费入址| 大陆偷拍与自拍| 亚洲综合精品二区| 高清黄色对白视频在线免费看| 中文乱码字字幕精品一区二区三区| 国产成人精品无人区| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 午夜av观看不卡| 亚洲国产成人一精品久久久| 少妇人妻 视频| www.自偷自拍.com| 色吧在线观看| 秋霞伦理黄片| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产毛片av蜜桃av| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 日本猛色少妇xxxxx猛交久久| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 国产精品二区激情视频| 国产成人a∨麻豆精品| videosex国产| 夜夜骑夜夜射夜夜干| 国产福利在线免费观看视频| 国产黄色视频一区二区在线观看| 只有这里有精品99| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 国产野战对白在线观看| 欧美精品国产亚洲| 考比视频在线观看| 人人澡人人妻人| 亚洲国产日韩一区二区| 日韩欧美精品免费久久| 大话2 男鬼变身卡| 一边摸一边做爽爽视频免费| 亚洲熟女精品中文字幕| 老熟女久久久| 又粗又硬又长又爽又黄的视频| 80岁老熟妇乱子伦牲交| xxxhd国产人妻xxx| 波野结衣二区三区在线| 老司机影院成人| a级毛片在线看网站| 欧美成人午夜精品| 久久精品久久久久久噜噜老黄| 乱人伦中国视频| 99久久中文字幕三级久久日本| 美女午夜性视频免费| 色哟哟·www| 欧美黄色片欧美黄色片| 美女福利国产在线| 国产成人精品久久久久久| 人妻少妇偷人精品九色| 亚洲美女黄色视频免费看| 天天躁夜夜躁狠狠躁躁| 免费播放大片免费观看视频在线观看| 亚洲精品一区蜜桃| 色吧在线观看| av视频免费观看在线观看| 精品第一国产精品| 黄色配什么色好看| 日韩免费高清中文字幕av| av网站免费在线观看视频| 韩国av在线不卡| 99香蕉大伊视频| 国产深夜福利视频在线观看| 一级片'在线观看视频| 少妇被粗大的猛进出69影院| 国产av国产精品国产| 欧美最新免费一区二区三区| 国产精品熟女久久久久浪| 亚洲av中文av极速乱| 韩国高清视频一区二区三区| 久久久精品国产亚洲av高清涩受| 国产成人精品一,二区| av一本久久久久| 国产探花极品一区二区| 精品国产国语对白av| 午夜福利网站1000一区二区三区| 国产日韩欧美视频二区| 亚洲欧美成人综合另类久久久| 精品亚洲成国产av| 夫妻午夜视频| 岛国毛片在线播放| 春色校园在线视频观看| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 少妇的丰满在线观看| 午夜免费男女啪啪视频观看| 91精品国产国语对白视频| 午夜福利在线观看免费完整高清在| 欧美精品亚洲一区二区| av福利片在线| 国产色婷婷99| 综合色丁香网| 你懂的网址亚洲精品在线观看| 狂野欧美激情性bbbbbb| 少妇被粗大猛烈的视频| 丁香六月天网| 少妇 在线观看| 国产精品无大码| av在线app专区| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 一级毛片我不卡| 久久免费观看电影| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 永久免费av网站大全| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 永久免费av网站大全| 国产一级毛片在线| 日韩伦理黄色片| 日本欧美视频一区| 久久久久久久精品精品| 亚洲欧美一区二区三区黑人 | 精品国产一区二区久久| 久热这里只有精品99| 免费观看无遮挡的男女| 天天操日日干夜夜撸| 日韩中文字幕欧美一区二区 | 看非洲黑人一级黄片| 免费少妇av软件| 亚洲国产精品一区三区| 国产av码专区亚洲av| 777久久人妻少妇嫩草av网站| 日本午夜av视频| 国产野战对白在线观看| 两个人看的免费小视频| 夫妻性生交免费视频一级片| 中文乱码字字幕精品一区二区三区| 日本色播在线视频| 巨乳人妻的诱惑在线观看| 天堂8中文在线网| 香蕉丝袜av| 久久人人爽人人片av| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 王馨瑶露胸无遮挡在线观看| 18在线观看网站| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 久久人妻熟女aⅴ| 蜜桃国产av成人99| 国产亚洲欧美精品永久| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 久久这里只有精品19| 国产av一区二区精品久久| av卡一久久| 日韩av不卡免费在线播放| 亚洲图色成人| 在线观看国产h片| 在线天堂最新版资源| 一区二区三区激情视频| 桃花免费在线播放| 亚洲第一青青草原| 欧美 亚洲 国产 日韩一| 欧美日韩视频精品一区| 国产乱人偷精品视频| 亚洲av电影在线观看一区二区三区| 久久久久久久久久人人人人人人| 国产片特级美女逼逼视频| 成人黄色视频免费在线看| 亚洲三级黄色毛片| 在线观看免费高清a一片| 狠狠婷婷综合久久久久久88av| 久久精品夜色国产| 亚洲国产av影院在线观看| 日韩在线高清观看一区二区三区| 人妻人人澡人人爽人人| 国产一区二区三区av在线| 精品国产一区二区三区四区第35| 国产成人免费无遮挡视频| 亚洲激情五月婷婷啪啪| 91成人精品电影| 久久久久久久精品精品| 久久久久久久久久久久大奶| 伊人久久国产一区二区| 亚洲国产精品一区三区| 久久精品国产亚洲av高清一级| 中文字幕亚洲精品专区| av一本久久久久| 欧美激情高清一区二区三区 | 国产成人精品福利久久| 黄色视频在线播放观看不卡| 亚洲国产av影院在线观看| 免费在线观看完整版高清| 2021少妇久久久久久久久久久| 如日韩欧美国产精品一区二区三区| 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| 男女免费视频国产| 久久久久久久国产电影| av天堂久久9| 精品国产乱码久久久久久男人| 国产成人欧美| 久久久精品94久久精品| 精品国产乱码久久久久久男人| 香蕉精品网在线| 日韩av免费高清视频| 成年人免费黄色播放视频| 少妇人妻精品综合一区二区| 免费不卡的大黄色大毛片视频在线观看| 看免费成人av毛片| 最近2019中文字幕mv第一页| 中国三级夫妇交换| 亚洲精品美女久久av网站| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 岛国毛片在线播放| 欧美成人午夜精品| 又粗又硬又长又爽又黄的视频| 波野结衣二区三区在线| 激情视频va一区二区三区| 国产男女内射视频| 亚洲av电影在线进入| 亚洲精品中文字幕在线视频| 97在线视频观看| av.在线天堂| 如何舔出高潮| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花| 香蕉精品网在线| 国产片内射在线| 最近最新中文字幕大全免费视频 |