• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-dimensional PT-symmetric acoustic heterostructure

    2022-12-28 09:53:58HaiXiaoZhang張海嘯WeiXiong熊威YingCheng程營andXiaoJunLiu劉曉峻
    Chinese Physics B 2022年12期
    關(guān)鍵詞:海嘯

    Hai-Xiao Zhang(張海嘯) Wei Xiong(熊威) Ying Cheng(程營) and Xiao-Jun Liu(劉曉峻)

    1Department of Physics,MOE Key Laboratory of Modern Acoustics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Electrical and Information Engineering,Changzhou Institute of Technology,Changzhou 213032,China

    3State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic PT-symmetric heterostructure, anisotropic transmission resonance, occasional bidirectional transmission resonance

    1. Introduction

    One of the most intriguing developments in quantum mechanics over the past few decades has been the discovery of a non-Hermitian HamiltonianHthat commutes with the parity-time (PT) operator, a property that leads to realenergy eigenvalues.[1–3]Recently, considerable efforts have been further motivated to investigate its classical analogy in photonics,[4–12]acoustics,[13–23]and many more areas[24–27]by means of interleaving balanced loss–gain regions. In contrast to the photonic gain that can be straightforwardly implemented in a locally controlled fashion through stimulated emission, which involves optical (electrical) pumping by an external source or via parametric processes,[28–31]no passive acoustic gain material exists in nature. General physical realizations of acousticPTsymmetry rely on the presence of electromechanical cone loudspeakers,[14–16]forced air flows,[17]or piezoelectric transducers.[19,20]Although the equivalent loss–gain balance can be circumvented by implementing unbalanced loss-only structures,[32,33]the absence of gain gives rise to the intrinsic loss of overall energy. More recently,the implementations of effective acoustic gain through electro-thermoacoustic[34–38]and photo-thermoacoustic[39,40]effects promise versatile routes for the exploration of acousticPTsymmetry.

    Up to now,all available designs ofPT-symmetric acoustics are constructed on the basis of balanced gain-loss pair coupled by elaborately configured interlayer, which take advantage of additional coupling mechanism. For example, the unidirectional transmission resonance in Ref. [13] is induced by thePTsymmetry and the Fabry–Perot (FP) resonance of the system.However,the bidirectional transmission resonance in Ref.[21]is the consequence of thePTsymmetry,FP resonance,and periodic structure of the system.Thus,the presence of exceptional points is investigated by varying the distancedbetween the gain and loss components, and their balance is achieved for specific values ofk0d, wherek0stands for the wave number in air. Therefore, the concise heterostructure without interlayer impling entirely disparate physics and design philosophies toPTsymmetry[9]urgently needs to be adequately exploited,according the degree of freedom of acoustic medium, geometry and frequency simultaneously via a generalized theoretical model.

    The purpose of this article is to explore the specific properties whenPTsymmetry imposes on the transmission and reflection in arbitrarilyPT-symmetric heterostructure,in both the symmetric and broken-symmetric phases by using an experimental parameter-related transfer matrix in acoustics. We first derive the conservation relations governing the one-dimensional (1D)PT-symmetric acoustic heterostructure, which could be employed to predominantly determine whetherPTsymmetry is achieved in a given physical structure. A set of transmission resonance patterns are demonstrated as a consequence of the derived conservation relations,in which the reflection vanishes only for waves incident from one side of the structure, referred to as anisotropic transmission resonances (ATRs). Last, we demonstrate an occasional bidirectional transmission resonance (OBTR) with bidirectional transparency but vastly different spatial pressure profiles for incidence from opposite sides. The findings may provide substantial support for the development ofPT-symmetric theory and prototype devices with richer acoustic phenomena.

    Fig.1. (a)Schematic diagram of a 1D PT-symmetric acoustic heterostructure,constructed by a pair of medium layers that are PT-symmetric about x=0, i.e., n(x)=n?(?x) in panel (b). Green and orange regions indicate gain and loss medium,respectively.

    2. Generalized unitary relation

    We begin with the scattering matrixSrdefined by[17]

    The overall transfer matrixΓ=Γ1Γ2can be obtained,[41]whereΓmis the transfer matrix expressed as

    Equations (5) and (6) are valid for all 1D acoustic heterostructures withPTsymmetry as following.

    Fig.2. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=0.8±i0.05 and length L. The black dashed,red dashed-dotted, and blue solid curves show |rG|, |rL|, and |t|, respectively. Zeros of the reflections and corresponding anisotropic transmission resonances(|t|=1)are marked by vertical gray dashed lines and red dots.(b) Phases of rG, rL, and t in panel (a), demonstrating the reflection phase jumps at each ATR. (c) Absolute eigenvalues of scattering matrix St. The four resonances marked as modes L1,G1,G2,and L2 from low to high frequency in sequence correspond to the reflection valleys in panel(a)and the phase jump points in panel (b). |λ1| and |λ2| are labeled and indicated by the black dashed and red dashed-dotted curves,respectively. The white and orange backgrounds indicate that the system is in the PT-symmetric phase and broken phase,respectively.

    For|t|< 1, we getab> 0 from Eq. (5) and|t|2+|rG||rL| = 1 from Eq. (6). The former refers that?G=?L=?t±π/2, where?G,L,and?tare the phases of reflection and transmission coefficients. The latter is an intriguing generalization of the more familiar conservation relation|t|2+|r|2=1, which applies to a unitary(T-symmetric)matrix for which the left and right reflections (defined asr) are necessarily equal.[42]In thePT-symmetric case,the geometric mean of the two reflectances|rG||rL| replaces the single reflectance|r|2. Therefore, when|t|< 1, the scattering of a single incident wave from one side of the structure is subunitary(some flux is lost)while the scattering from the other side is superunitary(some flux is gained). It should be noted that an accidental degeneracy only appears at|rG|=|rL|, in which case the flux conservation of scattering from both sides cannot be accomplished (δ3/= 0) unless an introducing additional tuning parameter (e.g., the in-between air coupling layer in typicalPT-symmetric setup in Ref.[16]). The above mentioned phenomena are shown by the white background regions in Figs. 2(a) and 2(b), which describe the scattering properties of a 1DPT-symmetric heterostructure with indexn=0.8±i0.05 and lengthL.

    In contrast, when|t|> 1, all single-sided scattering processes are superunitary. Thus, we obtainab< 0 from Eq.(5)and the conservation relation of Eq.(6)becomes|t|2?|rG||rL|=1. Similarly,the former indicates that?G??L=πand?G,L=?t±π/2,while the latter describes a class of conservation relations that cannot exist in Hermitian systems. Accidental reflection degeneracies(|rG|=|rL|,requiringδ4=0)are possible in this regime,[42]leading to the usual pseudounitary conservation relation|t|2?|r|2=1, as shown by the orange background in Figs.2(a)and 2(b).

    To further explore thePTsymmetry of the structure,we consider the scattering matrix[13]

    3. Anisotropic transmission resonance

    As noted above,equation(6)implies an considerable interesting phenomenon: there exists a flux-conserving scattering process for incident waves if and only if|t|=1,while only a single one ofrGorrLvanishes. Such process can be referred as an ATR,[9]which is a generalization of the flux-conserving transmission resonances in unitary structures(β=0,|r|=0,and|t|=1)independent of the incidence direction.These ATR modes are marked by red dots in Figs.2(a)and 2(c)as modes L1, G1, G2, and L2 atk0L=9.59, 10.55, 11.32, and 11.66,respectively. It is convenient to distinguish these four modes:(i)Modes G1 and G2 are ATRs at the gain-side reflectionless state(rG=0)corresponding to the gain-side reflection phase jumps,whereas modes L1 and L2 are ATRs at loss-side reflectionless state (rL=0) associated with the loss-side reflection phase jumps. (ii)Modes G1 and L1 arise from a bidirectional transmission resonance(BTR)(β=0,ξ0=μπ/2α,andμis an odd number)of the unitary structure,while modes G2 and L2 arise from the other BTR of the unitary structure (β=0,ξ0=μπ/2α,andμis an even number).

    A surprising property of ATRs is that their intensity profile is spatially symmetric. For a spatial profilep(x)of a left-(right-)going transmission resonance,p?(?x)after aPToperation is also a left-(right-)going transmission resonance of the same structure. Since these two states occur at the same frequency,they must be identical(up to a phaseφ)by the requirement of uniqueness:

    Hence,the amplitude satisfies|p?(?x)|=|p(x)|. This is consistent with the intuitive expectation that to conserve flux,the acoustic energy must spend an equal amount of time on average in the loss and gain regions of the heterostructure. Except at the ATRs,intensities do exhibit asymmetry for bidirectional incidence,and in particular this is the case for a wave incident from the side with nonvanishing reflection.

    Fig.3. (a)–(b)Spatial profiles of ATR modes G1 and G2,indicating unidirectional reflectionless from the gain side. (c)–(d) Spatial profiles of ATR modes L1 and L2,indicating unidirectional reflectionless from the loss side.The top(bottom)panel shows wave incidence from the gain(loss)side.

    The spatial profiles of gain-side invisibilities,corresponding to the aforementioned ATRs of modes G1 and G2, are shown in Figs.3(a)and 3(b).The top panels exhibit the spatial symmetry of their pressure amplitude profile and the bottom panels identify the asymmetry under non-ATR condition. For comparison,figures 3(c)and 3(d)carry out a disparate vision of loss-side invisibilities, associated with the aforementioned ATRs of modes L1 and L2. To our surprise,in modes G1 and L1,the spatial profiles reach minimums at the gain–loss interface,which is consistent with the spatial profile of their corresponding BTR.As expected,modes G2 and L2 have a similar phenomenon, where the spatial profiles reach maximums at the gain-loss interface.

    4. Occasional bidirectional transmission resonance

    Owing toPTsymmetry,a couple of ATRs therefore arise from the BTR of the unitary structure(β=0),resulting in unidirectional invisibility at different frequencies and incident directions (e.g., modes G1 and L1). Further exploration shows that, there exists a series of occasional bidirectional transmission resonances(OBTRs),which inherit the characteristic scattering properties of the unitary structure at a hand-to-hand frequency, but exhibit obvious differences in the amplitude profiles. The implementation of this phenomenon depends on the precondition ofa=b=0 (δ3=δ4=0), which cannot be demonstrated strictly via the equation evolution. Nevertheless, this phenomenon can still be simulated under approximate conditions: (i)β ?α;(ii)βξ ~0(low normalized frequency); (iii)ξ ~μπ/2α, andμmust be an even number;(iv)β ~0. We illustrate the mathematical and physical mechanisms that underline this phenomenon in detail.

    According to the transfer matrix model,provided that the first three conditions are fulfilled, the scattering parameters can be reduced to

    It is much more complicated to implement an OBTR in the current case than in the previous case unless 4β/α ~0.

    Based on the above four assumptions, we explore the scattering properties and spatial profiles of an OBTR inPTsymmetric heterostructure and its mirrored BTR in a unitary structure. Figures 4(a)–4(c) show the scattering amplitudes,phases, and absolute eigenvalues of thePT-symmetric heterostructure with indexn=1.2±i0.05, while figures 4(d)–4(f) exhibit the corresponding properties of unitary structure with indexn=1.2. Definitely, the OBTR shares an exceptional point (EP) with the initial BTR atξ=2.64 (~π/α),however the scattering behavior near the EP is widely divergent. It is interesting to note that although the bidirectional reflection and transmission coefficients around EP are discrepant,the initial conservation relationship|t|2+|rG||rL|=1 is still maintained, indicating that both structures undergo a symmetric phase [Figs. 4(a) and 4(d)]. This verdict can also be simply caught from the phases of scattering parameters, as shown in Figs. 4(b) and 4(e). Another point worth noting is that when OBTR occurs, the phase of the bidirectional transmission coefficient is?t=0,which has never been demonstrated in a singlePT-symmetric structure but periodic cell units.[43,44]Whereas ATRs achieve unidirectional reflectionless (unitary transmission) in thePT-symmetric heterostructure, OBTR approaches bidirectional invisibility, despite their acoustic pressure amplitude distribution in the gainloss medium being different. Figure 4(c) shows the absolute eigenvalues ofStfor thePT-symmetric structure,and there is a perturbation in the OBTR around the EP,which is consistent with the prediction that the OBTR is an approximate solution.On the contrary, for the unitary structure, the absolute eigenvalues are always one in the whole frequency range,as shown in Fig.4(f).

    Figures 4(g) and 4(h) demonstrate the spatial profiles of the EPs of mode “OBTR” in Fig. 4(c) and mode “BTR”in Fig. 4(f), respectively. The results indicate that both thePT-symmetric heterostructure and the unitary structure exhibit unitary transmission at the unidirectional invisibility frequency, regardless of whether the incident wave initially passes through a waveguide with loss or gain. As shown in the top panel of Fig. 4(g), the incident wave with normalized frequencyξ=2.64 passes through the gain portion from the left side, and the amplitude of the acoustic pressure increases to 1.118 (at the gain–loss interface). The amplitude then decreases to 1 in the loss portion. On the other hand, in the bottom panel of Fig. 4(g), the incident wave with identical normalized frequency first passes through the loss portion from the right side, and the amplitude of the acoustic wave decreases to 0.9 (at the loss–gain interface). The amplitude then increases to 1 in the gain portion. The spatially symmetric amplitude of acoustic waves indicates that the energy amplified (absorbed) in the gain (loss) waveguide is completely reproduced in the loss (gain) waveguide at the mirrored position, leading to unitary transmission and reflectionlessness.This is distinct from the manifestation of the initial BTR in a unitary structure,in which the spatial profiles of bidirectional incidence are exactly reciprocal and the intensity at the gain–loss interface is undoubtedly 1[Fig.4(h)].The conclusion further proves that OBTR in aPT-symmetric heterostructure and BTR in unitary structure are two different physical processes,although their scattering matrices are identical,including amplitudes and phases.

    Fig.4. (a)Reflection and transmission spectra of a 1D PT-symmetric heterostructure with index n=1.2±i0.05 and length L. Zero of the reflection corresponding to OBTR are marked by red dots. (b) Phases of rG, rL, and t in panel (a) demonstrate the reflection phase jump at EP. (c) Absolute eigenvalues of scattering matrix λ1,2. The single mode marked as mode“OBTR”corresponds to the reflection valley in panel(a)and the phase jump point in panel(b). Inset:zoomed-in around the OBTR at ξ =2.64. (d)–(f)Same as panels(a)–(c)but for unitary structure with index n=1.2 and length 2L. (g)The unitary nonrecopical transmission resonance of mode“OBTR”labeled in panel(c). (h)The profiles of mode“BTR”labeled in panel(f).

    5. Conclusion and discussion

    To conclude,we have derived the generalized unitary relation for the scattering matrix of arbitrary 1DPT-symmetric acoustic heterostructure from the transfer matrix, including a conservation relation between the transmission and the gain(loss)side reflection. The conservation relation leads to a simple criterion for identifying the EPs at which thePTsymmetry is spontaneously broken or restored. These EPs are shown to be closely related to thePT-symmetry-breaking transition of the underlying effective Hamiltonian of the structure. In addition,the discovery of four patterns of ATRs has enhanced our physical understanding ofPT-symmetric heterostructure and its scattering EPs. The existence of the OBTR can also provide a theoretical basis for the realization of bidirectional transmission under non-Hermitian conditions and can be used as one of the methods of acoustic gain(loss)discrimination.

    In practical realization, both types of components in thePT-symmetric heterostructure can be realized by designing suitable circuits duo to the emergence of the active acoustic metamaterials,[14,16]which manifest the possibility of realizing the metamaterials with the required effective parameters.Our methodology can be applied to relevant fields such as electronics, optics, microwaves, and elastic metamaterials. Especially in recent years,preliminary studies have been made onPTsymmetry in elastic wave system.[45–47]In view of the correlation between elastic and sound waves,elastic metamaterials may also provide potential ideas for experimental realization of acousticPTsymmetry,andvice versa. Our results are useful in predicting the propagation features ofPT-symmetric structures and designing devices of asymmetric responses.

    Acknowledgements

    Project supported by the National Basic Research Program of China(Grant No.2017YFA0303702)and the National Natural Science Foundation of China (Grant Nos. 12225408,12074183,11922407,11904035,11834008,and 11874215).

    猜你喜歡
    海嘯
    “海嘯來了”等十一則
    雜文月刊(2021年10期)2021-01-07 02:58:29
    一個基于GPU并行加速的海嘯數(shù)值模型
    海洋通報(2020年2期)2020-09-04 09:22:24
    英倫海嘯
    新民周刊(2019年4期)2019-01-30 20:46:12
    連續(xù)的海嘯
    引發(fā)海嘯(下)
    引發(fā)海嘯(上)
    Feasibility study on optical vortex generation at Shanghai deep ultraviolet free-electron laser?
    金融大海嘯
    意林(2008年23期)2008-05-14 16:48:31
    這次為什么沒有引發(fā)海嘯?
    两个人看的免费小视频| 中国三级夫妇交换| 无遮挡黄片免费观看| 国产在线一区二区三区精| 欧美精品高潮呻吟av久久| 国产一区有黄有色的免费视频| 亚洲美女搞黄在线观看| 最近的中文字幕免费完整| 亚洲熟女毛片儿| 国产无遮挡羞羞视频在线观看| 在现免费观看毛片| 美女福利国产在线| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区三区在线| 欧美97在线视频| 久久久国产精品麻豆| 你懂的网址亚洲精品在线观看| 国产精品久久久久久人妻精品电影 | 丰满迷人的少妇在线观看| 国产精品嫩草影院av在线观看| 国产精品av久久久久免费| 欧美黑人精品巨大| 久久天堂一区二区三区四区| 国产一区二区激情短视频 | 中国国产av一级| 黑人猛操日本美女一级片| 伦理电影免费视频| 国产一区二区 视频在线| 亚洲国产精品成人久久小说| 不卡av一区二区三区| 国产精品嫩草影院av在线观看| 中文乱码字字幕精品一区二区三区| 一级毛片电影观看| 精品亚洲成国产av| 欧美变态另类bdsm刘玥| 亚洲国产精品999| 免费观看人在逋| 香蕉丝袜av| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线进入| 国产成人一区二区在线| 99re6热这里在线精品视频| 亚洲国产日韩一区二区| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻丝袜制服| 街头女战士在线观看网站| 午夜老司机福利片| 天天躁日日躁夜夜躁夜夜| 99久久人妻综合| 美女高潮到喷水免费观看| 99香蕉大伊视频| 国产99久久九九免费精品| 婷婷色av中文字幕| 美女高潮到喷水免费观看| 又大又黄又爽视频免费| 无限看片的www在线观看| 精品亚洲成国产av| 在线看a的网站| 色综合欧美亚洲国产小说| 超碰成人久久| 熟妇人妻不卡中文字幕| kizo精华| 久久av网站| 中文字幕最新亚洲高清| netflix在线观看网站| 在线观看www视频免费| 亚洲精品国产av蜜桃| 亚洲精品久久成人aⅴ小说| 女人久久www免费人成看片| 国产精品 国内视频| 国产一区亚洲一区在线观看| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜一区二区 | 中文字幕最新亚洲高清| 午夜福利视频精品| 高清欧美精品videossex| 9热在线视频观看99| 国产精品嫩草影院av在线观看| 国产精品久久久久久精品电影小说| 色婷婷久久久亚洲欧美| 美女视频免费永久观看网站| 十八禁高潮呻吟视频| 国产亚洲av片在线观看秒播厂| 欧美黑人精品巨大| 亚洲在久久综合| 国产免费福利视频在线观看| 国产极品粉嫩免费观看在线| 777米奇影视久久| a级毛片黄视频| 午夜免费观看性视频| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 成年av动漫网址| 午夜福利在线免费观看网站| 中文精品一卡2卡3卡4更新| 国产片特级美女逼逼视频| av视频免费观看在线观看| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 狠狠婷婷综合久久久久久88av| 亚洲av福利一区| 国产 精品1| 国产又色又爽无遮挡免| bbb黄色大片| 日韩欧美精品免费久久| 日韩 欧美 亚洲 中文字幕| 美女大奶头黄色视频| 伦理电影免费视频| 国产深夜福利视频在线观看| 一级片免费观看大全| av天堂久久9| 亚洲精品中文字幕在线视频| 在线天堂最新版资源| 国产男人的电影天堂91| 丝袜在线中文字幕| 丝袜美腿诱惑在线| 大码成人一级视频| 超碰97精品在线观看| 欧美激情极品国产一区二区三区| 午夜激情久久久久久久| 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 国产日韩一区二区三区精品不卡| 国产精品久久久久久久久免| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 国产亚洲av片在线观看秒播厂| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 女人被躁到高潮嗷嗷叫费观| 人体艺术视频欧美日本| 国产人伦9x9x在线观看| 97在线人人人人妻| 国产精品国产三级专区第一集| 午夜福利一区二区在线看| 成人毛片60女人毛片免费| 国产极品天堂在线| 高清在线视频一区二区三区| 婷婷成人精品国产| 久久狼人影院| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| av在线老鸭窝| 国产成人午夜福利电影在线观看| 精品福利永久在线观看| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 一级爰片在线观看| 国产免费福利视频在线观看| 久久久国产一区二区| 欧美精品亚洲一区二区| 国产精品香港三级国产av潘金莲 | 欧美激情 高清一区二区三区| 久久狼人影院| 亚洲国产欧美一区二区综合| 2018国产大陆天天弄谢| av不卡在线播放| 免费黄网站久久成人精品| 两个人免费观看高清视频| 考比视频在线观看| 亚洲av电影在线进入| 久久天躁狠狠躁夜夜2o2o | 国产精品一国产av| 成人三级做爰电影| 王馨瑶露胸无遮挡在线观看| 一区二区三区激情视频| 精品视频人人做人人爽| 夫妻性生交免费视频一级片| 香蕉国产在线看| 亚洲欧洲日产国产| 一本大道久久a久久精品| 欧美 日韩 精品 国产| 亚洲第一青青草原| 国产福利在线免费观看视频| 成人国产av品久久久| 国产成人午夜福利电影在线观看| 亚洲免费av在线视频| 国产精品免费视频内射| 欧美日韩综合久久久久久| 一级毛片电影观看| 亚洲专区中文字幕在线 | 免费看av在线观看网站| 你懂的网址亚洲精品在线观看| 国产精品一区二区在线不卡| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 亚洲精品日本国产第一区| 高清视频免费观看一区二区| 大码成人一级视频| 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看 | 交换朋友夫妻互换小说| av卡一久久| 国产精品香港三级国产av潘金莲 | 国产成人免费无遮挡视频| 亚洲欧美色中文字幕在线| 91国产中文字幕| 美国免费a级毛片| 国产一卡二卡三卡精品 | 18禁动态无遮挡网站| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 无遮挡黄片免费观看| 91国产中文字幕| 无限看片的www在线观看| 男人添女人高潮全过程视频| 精品免费久久久久久久清纯 | 亚洲精品,欧美精品| 久久ye,这里只有精品| 丝袜脚勾引网站| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜| 十分钟在线观看高清视频www| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 国产男女内射视频| 嫩草影院入口| 晚上一个人看的免费电影| av视频免费观看在线观看| 欧美日韩一区二区视频在线观看视频在线| 99热国产这里只有精品6| 天美传媒精品一区二区| 99热全是精品| 亚洲成人国产一区在线观看 | 欧美人与性动交α欧美精品济南到| 精品第一国产精品| 一二三四在线观看免费中文在| 在线观看免费视频网站a站| 免费观看人在逋| 各种免费的搞黄视频| 一本大道久久a久久精品| 91成人精品电影| 天堂中文最新版在线下载| 各种免费的搞黄视频| 国产一级毛片在线| 最新的欧美精品一区二区| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| av在线观看视频网站免费| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 国产一区二区 视频在线| 国产又爽黄色视频| 女人精品久久久久毛片| 久久精品国产a三级三级三级| 一区二区三区精品91| 在现免费观看毛片| 中文字幕另类日韩欧美亚洲嫩草| 嫩草影院入口| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 91成人精品电影| 一区在线观看完整版| 亚洲中文av在线| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 最近最新中文字幕免费大全7| 蜜桃国产av成人99| 91国产中文字幕| 一边摸一边抽搐一进一出视频| 90打野战视频偷拍视频| 日日爽夜夜爽网站| 国产在线视频一区二区| 国产一区二区 视频在线| 精品一区二区三卡| 大码成人一级视频| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| a级毛片在线看网站| 人妻人人澡人人爽人人| 色94色欧美一区二区| 黄片播放在线免费| 欧美老熟妇乱子伦牲交| 国产片内射在线| 午夜影院在线不卡| 亚洲伊人久久精品综合| 女性被躁到高潮视频| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 亚洲专区中文字幕在线 | 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| 精品国产露脸久久av麻豆| 亚洲精品国产一区二区精华液| 国产在视频线精品| 久久狼人影院| 亚洲av国产av综合av卡| 精品一区二区三区av网在线观看 | 久久久久久久大尺度免费视频| 国产成人精品在线电影| 大码成人一级视频| 涩涩av久久男人的天堂| 日韩精品有码人妻一区| 久久久久久人人人人人| 欧美精品一区二区免费开放| 一级a爱视频在线免费观看| 男女之事视频高清在线观看 | 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 最近手机中文字幕大全| 一本一本久久a久久精品综合妖精| 夫妻午夜视频| 久久久精品免费免费高清| 国产成人欧美在线观看 | 欧美激情高清一区二区三区 | 国产精品 国内视频| 热99国产精品久久久久久7| 久久女婷五月综合色啪小说| 丁香六月欧美| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 尾随美女入室| 亚洲精品国产色婷婷电影| 成年动漫av网址| 国产精品人妻久久久影院| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 91成人精品电影| 极品人妻少妇av视频| 亚洲国产成人一精品久久久| 日本一区二区免费在线视频| 男人舔女人的私密视频| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线 | 国产免费又黄又爽又色| 午夜激情久久久久久久| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| 午夜福利乱码中文字幕| 欧美少妇被猛烈插入视频| 久久狼人影院| 欧美少妇被猛烈插入视频| avwww免费| 大片电影免费在线观看免费| 一级爰片在线观看| 一级片'在线观看视频| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 国产成人精品久久久久久| 国产视频首页在线观看| 女的被弄到高潮叫床怎么办| 亚洲七黄色美女视频| 人人澡人人妻人| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 亚洲国产欧美网| 国产又爽黄色视频| 亚洲天堂av无毛| 99久国产av精品国产电影| 亚洲第一青青草原| 女人精品久久久久毛片| 一级a爱视频在线免费观看| 久久久久久久久久久免费av| 国产精品欧美亚洲77777| 悠悠久久av| 亚洲av欧美aⅴ国产| 色播在线永久视频| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 亚洲国产精品一区三区| 国产精品二区激情视频| 久久国产亚洲av麻豆专区| 亚洲av日韩精品久久久久久密 | 啦啦啦中文免费视频观看日本| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| 一二三四中文在线观看免费高清| 九草在线视频观看| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 成年人午夜在线观看视频| 男女下面插进去视频免费观看| 曰老女人黄片| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 欧美日韩福利视频一区二区| 老熟女久久久| 日韩大片免费观看网站| 美女中出高潮动态图| 大片电影免费在线观看免费| 久久天堂一区二区三区四区| xxxhd国产人妻xxx| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲综合一区二区三区_| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 亚洲欧美中文字幕日韩二区| av在线观看视频网站免费| 免费看av在线观看网站| 亚洲欧洲国产日韩| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av免费高清视频| 秋霞伦理黄片| 青青草视频在线视频观看| 黄色视频不卡| 精品久久久精品久久久| 精品福利永久在线观看| 精品国产超薄肉色丝袜足j| 男人操女人黄网站| 亚洲精品国产av蜜桃| 精品一区二区免费观看| 欧美av亚洲av综合av国产av | 亚洲成av片中文字幕在线观看| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 最近2019中文字幕mv第一页| 18在线观看网站| 国产一级毛片在线| 免费不卡黄色视频| 精品国产乱码久久久久久男人| 美国免费a级毛片| 男女免费视频国产| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 国产亚洲一区二区精品| 久久99一区二区三区| 一级a爱视频在线免费观看| 一区二区三区精品91| 女的被弄到高潮叫床怎么办| 十分钟在线观看高清视频www| 男人添女人高潮全过程视频| 国产一区二区 视频在线| 啦啦啦 在线观看视频| av在线播放精品| 黑丝袜美女国产一区| www日本在线高清视频| 国产精品 国内视频| 性色av一级| 国产欧美日韩综合在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产人伦9x9x在线观看| 伦理电影大哥的女人| 亚洲综合精品二区| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 爱豆传媒免费全集在线观看| 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 欧美激情高清一区二区三区 | 美女主播在线视频| av在线老鸭窝| 在线观看国产h片| 日韩,欧美,国产一区二区三区| 久久精品国产综合久久久| 国产成人精品无人区| 建设人人有责人人尽责人人享有的| 操出白浆在线播放| 国产精品麻豆人妻色哟哟久久| 久久久精品94久久精品| av有码第一页| 中文乱码字字幕精品一区二区三区| 免费人妻精品一区二区三区视频| 亚洲av成人不卡在线观看播放网 | 国产成人91sexporn| 精品一区二区三卡| 成人漫画全彩无遮挡| 大香蕉久久网| 成年人午夜在线观看视频| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频| 丰满少妇做爰视频| 亚洲精品视频女| 18禁动态无遮挡网站| 可以免费在线观看a视频的电影网站 | 七月丁香在线播放| 国产成人午夜福利电影在线观看| 91精品国产国语对白视频| 亚洲国产精品一区二区三区在线| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| a级片在线免费高清观看视频| 国产1区2区3区精品| 天堂中文最新版在线下载| 国产精品国产三级国产专区5o| 一区二区av电影网| 日韩精品免费视频一区二区三区| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 亚洲成人一二三区av| 十分钟在线观看高清视频www| 国产又色又爽无遮挡免| 99久久综合免费| 精品福利永久在线观看| 中文字幕亚洲精品专区| 2018国产大陆天天弄谢| 国产欧美亚洲国产| 美女国产高潮福利片在线看| 亚洲天堂av无毛| 国产精品久久久av美女十八| 综合色丁香网| 欧美xxⅹ黑人| 国产精品久久久久久久久免| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一青青草原| 午夜福利影视在线免费观看| 久久精品亚洲av国产电影网| 无遮挡黄片免费观看| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 建设人人有责人人尽责人人享有的| 少妇人妻久久综合中文| 午夜福利一区二区在线看| 美女福利国产在线| 日韩av不卡免费在线播放| 天天躁夜夜躁狠狠躁躁| 日本猛色少妇xxxxx猛交久久| 欧美激情极品国产一区二区三区| 欧美日韩av久久| 国产欧美日韩综合在线一区二区| 午夜免费观看性视频| 少妇猛男粗大的猛烈进出视频| 欧美精品人与动牲交sv欧美| 日韩制服丝袜自拍偷拍| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲| 日韩av免费高清视频| 欧美变态另类bdsm刘玥| √禁漫天堂资源中文www| 国产爽快片一区二区三区| 亚洲av国产av综合av卡| 亚洲精品第二区| 一级片免费观看大全| 一级a爱视频在线免费观看| 久久99精品国语久久久| 人妻人人澡人人爽人人| 国产在线视频一区二区| 黄色毛片三级朝国网站| 国产成人一区二区在线| 熟女少妇亚洲综合色aaa.| av在线老鸭窝| 亚洲欧洲日产国产| 国产一卡二卡三卡精品 | 妹子高潮喷水视频| 观看av在线不卡| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 日本欧美视频一区| 黑人猛操日本美女一级片| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 久久国产精品大桥未久av| 免费在线观看视频国产中文字幕亚洲 | 丁香六月欧美| 免费观看人在逋| 老汉色∧v一级毛片| 欧美日韩亚洲国产一区二区在线观看 | 狠狠精品人妻久久久久久综合| 国产成人91sexporn| 国产深夜福利视频在线观看| 亚洲成人国产一区在线观看 | 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 亚洲精品,欧美精品| 亚洲图色成人| 日本猛色少妇xxxxx猛交久久| 欧美激情 高清一区二区三区| 久久精品久久精品一区二区三区| 秋霞伦理黄片| 国产精品成人在线| 一本—道久久a久久精品蜜桃钙片| 一区福利在线观看| 午夜免费鲁丝| 国产日韩欧美在线精品| 欧美另类一区| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 免费高清在线观看日韩| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 国产精品秋霞免费鲁丝片| 日本91视频免费播放| 男女边吃奶边做爰视频| 欧美人与善性xxx| 毛片一级片免费看久久久久| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影 | 国产成人精品久久久久久| 免费黄色在线免费观看| 69精品国产乱码久久久| 丝袜喷水一区| 伦理电影免费视频| 国产在线免费精品| 国产精品久久久久成人av| 18在线观看网站| 九九爱精品视频在线观看| 精品久久蜜臀av无| 欧美老熟妇乱子伦牲交| 99久久综合免费| 母亲3免费完整高清在线观看| 妹子高潮喷水视频| 99久久精品国产亚洲精品|