• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solid–gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect

    2022-12-28 09:54:22XueZhao趙雪andJinWuJiang江進(jìn)武
    Chinese Physics B 2022年12期

    Xue Zhao(趙雪) and Jin-Wu Jiang(江進(jìn)武)

    1Shanghai Key Laboratory of Mechanics in Energy Engineering,Shanghai Institute of Applied Mathematics and Mechanics,School of Mechanics and Engineering Science,Shanghai University,Shanghai 200072,China

    2Zhejiang Laboratory,Hangzhou 311100,China

    Keywords: interface thermal conductance,thermal barrier coating,solid–gas interface,confinement effect

    1. Introduction

    Thermal barrier coating (TBC) is widely used in gas turbine engines.[1]TBC can reduce surface temperature of metal alloy substrates.[2]Higher operating temperature can increase the engine efficiency and extend the service time of the components.[3,4]There are two usual methods for spraying TBC on gas turbine components, i.e., air plasma spray(APS)[5]and electron beam physical vapor deposition (EBPVD).[6]There are plenty of intercolumnar pore structures in TBC layers prepared by EB-PVD,[7]and this intercolumnar pore structure is perpendicular to the coating plane.[8,9]

    This intercolumnar pore can influence the TBC interface. It is found that the elongated intercolumnar pore created by the EB-PVD enhances the flexibility of the coating on the substrate plane and improves the lifetime of the TBC.[7]Zhaoet al.studied the effect of the pore volume fraction on the silicate melt infiltration in yttria-stabilized zirconia(YSZ)TBC.[10]Zhanget al.found that the infiltrated calcium magnesium aluminosilicate melt can solidify and occupy the internal space in the EB-PVD coated columnar, which causes significant deterioration in the strain tolerance and the insulation performance.[11]The pore’s microstructure not only affects the mechanical properties but also has strong effects on the interface heat transfer of TBC.[12–14]The YSZ coating is usually exposed to high-temperature and high-pressure gases,so the heat transfer at the interface between the TBC and the hot gas is important.

    Kapitza discovered the temperature jump at the interface between solid and liquid,resulting in the temperature discontinuity at the interface.[15]Chenet al.comparatively measured the heat transport of graphene monolayers suspended in vacuum and air by Raman experiments, and they obtained the interface thermal conductance between graphene and air.[16]Chenget al.studied the heat loss rate at the nanowire-air interface by laser thermography and illustrated a general scaling relationship for gaseous heat dissipation from nanostructures.[17]The molecular dynamic (MD) simulation has been widely used to study the heat transfer of microstructures.[18–20]Markvoortet al.performed MD simulations to study the wetting effect on the heat transfer properties of the solid–gas interface.[21]Several works found that a better mass matching between the solid and gas can improve the efficiency of the heat exchange at the solid–gas interface.[22,23]Zhanget al.investigated the temperature jump at rough solid–gas interfaces, and the results show that the surface roughness is beneficial for the energy exchange at the solid–gas interface.[24]Some other effects on the solid–gas interface thermal conductance have also been studied, including the interface bonding strength[25,26]and the organic selfassembled monolayer.[27,28]

    It has been proved that the porous structure of the YSZ has important effects on thermal conductivity of solid YSZ coating.[29]However, porous structure of the YSZ has limited effects on the interface thermal conductance between YSZ and gas, because the interface thermal conductance is dominated by the properties of the interface,especially the coupling strength between the solid and the gas.[28]

    In this paper, we study the effect of surface roughness on the thermal conductance of the YSZ–gas interface, where the surface roughness is represented by rectangular pores. We focus on the pore’s geometry effect on the interface thermal conductance. The interface thermal conductance is determined by two major effects: the actual contact area effect and the confinement effect. More specifically,the increase of the pore depth will increase the actual contact area of the interface between the YSZ and gas, resulting in the enhancement of the interface thermal conductance. In contrast, the geometry-induced confinement effect can greatly reduce the thermal conductance for the YSZ–gas interface with narrower pores.

    2. Structure and simulation details

    The schematic structure of the simulation model is shown in Fig. 1. We consider the zirconia stabilized by 8 wt%yttria. The lattice constants of the YSZ area= 7.187 ?A,b=12.448 ?A, andc=8.802 ?A. The size of the YSZ is denoted by three integers (nx,ny,nz), which are the number of the unit cell along thex,yandzdirections. The structure in our simulation has(nx,ny,nz)=(14,2,17).The similar size is used in the MD simulation for the heat transfer process across the solid–gas or solid-liquid interface.[22,30]Then the shape of the surface roughness can be sinusoidal function,triangle and rectangle.[31–33]To mimic the experimental sample,[34]we use a rectangular pore on the surface of the YSZ to represent the surface roughness. The pore is described by the depthdand the widthw. Here the rectangular pore is used to mimic the roughness of the YSZ surface. The top of the YSZ is filled with gas molecules,which contain 80%N2and 20%O2. The height of the gas region is 110 ?A.which includes the Coulomb electrostatic interaction, the short-range repulsion between ions, and the long-range van der Waals interaction. Here,qiandqjare the charges of ionsiandj,andrijis the distance between ionsiandj. The potential parametersAi j,ρ,andCijare listed in Table 1,which are from Ref.[36].

    Fig.1. Structure of the TBC-gas interface: (a)surface roughness of the TBC,(b)model for the molecular dynamics simulation.

    The intermolecular interaction of gas molecules in this paper is described by the 12–6 Lennard–Jones(LJ)potential

    whereKis the force constant, andxeis the equilibrium bond length of N2or O2. The values ofKandxeare obtained from the universal force field model.[37]The potential parameters of the gas are listed in Table 2. The Lorentz–Berthelot combining rule is used to calculate the potential parameters for the interaction between elements.[38,39]The potential parameters of the interface between the YSZ and gas are listed in Table 3.The cutoff distance for all LJ interactions is 10 ?A in this work.

    Table 1. Buckingham potential parameters for YSZ.

    Table 2. Potential parameters for nitrogen(N)and oxygen(O).

    Table 3. Lennard–Jones potential parameters for the YSZ–gas interface.

    The simulation is performed in two steps. Firstly, the solid is thermalized at 300 K within the NPT ensemble,while the gas is thermalized at 600 K within the NVT ensemble for 0.4 ns. The Nose–Hoover thermostat is used to realize constant temperature and pressure.[40,41]Secondly,the solid is allowed to evolve within the NVT ensemble at a constant temperature of 300 K.The gas evolves within the NVE ensemble and the thermal energy of the gas will dissipate into the YSZ during the simulation. The temperature of the gas will decrease gradually. The time dependence of the gas temperature is recorded to extract the interface thermal conductance.

    Periodic boundary conditions are used in MD simulations. The bottom region of the YSZ is fixed to avoid the shift of the solid during the simulation. All simulations are performed with LAMMPS,[42]and visualized by OVITO.[43]The equation of motion is integrated by the velocity Verlet algorithm with time steps of 1.0 fs.

    3. Results and discussion

    3.1. MD simulation results

    The thermal conductance is calculated by the heat dissipation method.[44]The solid is set to a constant low temperatureTc. The high temperature of the gas(Th)will decrease and approach to the solid’s temperature,as a result of the heat dissipation process.According to Fourier’s law and the definition of heat capacity,the gas temperatureThis governed by[44]

    whereCis the specific heat capacity,ρis the mass density,dis the thickness of solid,andGis the Kapitza conductance.From Eq.(4), the temperature difference between the solid and gas can be obtained as follows:

    where ?T0=Th(0)?Tc(0)is the initial temperature difference.The characteristic timeτis[44]

    In this work,the characteristic timeτis obtained by fitting MD simulation results to Eq. (5). Then the interface thermal conductance is calculated from Eq.(6). Figure 2(a)shows the MD results of the time-dependent temperature for the gas and YSZ without pore defect. Figure 2(b)shows that the numerical results can be well fitted to the exponential function for the temperature difference. The structure of the YSZ has(nx,ny,nz)=(41,24,3)in this figure. The height of the gas region is 100 ?A.The fitted characteristic time isτ=290.1 ps. The resultant interface thermal conductance is 0.0161 MW/(m2·K),which is comparable with the values of other solid–gas interfaces as listed in Table 4. We have used the gas density of 0.647 kg/m3, which corresponds to the ambient pressure. To reduce the statistical error,we have repeated five independent MD simulations for each model. The averaged value is used as the predicted result. The maximum value of the error is less than 10%.

    It should be noted that thermal radiation is an important factor for the thermal conductance, especially in a high temperature background.[46,47]In this work,we consider the contribution of the lattice heat transfer to the interface thermal conductance of the solid–gas interface.

    Table 4. The value of the interface thermal conductance of the YSZ–gas interface compared with other solid–gas interfaces.

    Fig.2. The heat dissipation process: (a)the time-dependent temperature of the YSZ and gas,(b)the temperature difference between the YSZ and gas.

    3.2. Initial temperature difference

    We first study the effect of the initial temperature difference ?T0on the thermal conductance of the YSZ–gas interface. For this set of simulations, the structure of the YSZ is(nx,ny,nz)=(27,16,2).The height of the gas region is 100 ?A.The gas density is 233.390 kg/m3. The initial temperature of the gas takes 400, 500, 600, 700 and 800 K.The relation between the initial temperature and the interface thermal conductance is shown in Fig.3. The results indicate that the interface thermal conductance increases gradually with increasing initial temperature difference. Because the increase in temperature results in higher kinetic energy of gas molecules,the collision frequency between the gas molecules and the solid wall is increased, which can promote the heat exchange. Hence,the interface thermal conductivity is increased. The nonlinear scattering among gas molecules is also one possible reason for the initial temperature dependence of the interface thermal conductance. We thus choose a proper value of ?T0=300 K in the following calculations.

    Fig.3. The relation between the interface thermal conductance and the initial temperature differences.

    3.3. Density effect

    We study the effect of density on the interface thermal conductance of the YSZ–gas interface. For this set of MD simulations,we have(nx,ny,nz)=(27,16,2). The height of the gas region is 100 ?A.The gas density takes 64.64,129.29,161.63,193.93,and 233.39 kg/m3. The value of the interface thermal conductance is shown in Fig.4.

    Fig.4. The relation between the interface thermal conductance and the gas density.

    We find that the interface thermal conductance increases with the increase of the gas density,because there are more gas molecules colliding with the YSZ surface for larger gas density, leading to stronger interface thermal transport. Furthermore,the collision among the gas molecules becomes stronger for larger gas density due to the nonlinear effect.

    3.4. Effect of pore size

    Figure 5(a) shows the thermal conductance of the YSZ–gas interface with pores of different depths. For this set of simulations, the depth of the pore isd=NdcwithNd=1, 2,3, 6, 9, 12, and 15. The widths of the pore isw=NwawithNw=1, 3, and 7. We note thataandcare the lattice constants as presented in the above section. The density of the gas is 233.511 kg/m3for these simulations. This density value is much larger than the gas density under the ambient condition,which saves the simulation cost.

    Fig.5. The depth dependence for(a)the thermal conductance and(b)the effective thermal conductance.

    Figure 6 shows the interface thermal conductance of the YSZ–gas interface of different pore widths. For this set of simulations, the width isw=NwawithNw=1, 2, 3, 5, 7,and 10. The depth isd=NdcwithNd=2, 9, and 15. We find that the interface thermal conductance remains almost unchanged with increasing width when the depth is a small value ofNd=2. This is because the actual contact area keeps the same for the surface with different pore depths. However,for larger pore depth ofNd=9 and 15,the interface thermal conductance increases considerably with the increase of the pore width, though the actual contact area is not changed. This is due to the confinement effect, which is discussed in the next section.

    Fig.6. Effect of the pore width on the interface thermal conductance.

    3.5. Confinement effect

    From the above discussions,we have understood that the interface thermal conductance can be enhanced by increasing the actual contact area,especially for larger pore depths.However, we have also found that the interface thermal conductance can be affected by different pore widths, although the actual contact area is the same for pores with different widths.Besides the actual contact area effect, the geometry-induced confinement effect is also important for the heat dissipation through the interface between the solid and gas.

    To explain the confinement effect, we monitor the motion of the gas molecules inside the pore. At timet=0, all molecules in the pore are marked. These marked molecules will exchange with other molecules outside the pore, so the ratio of the marked molecules inside the pore will decrease with time evolution. Figure 7(a) shows the time dependence for the ratio of the marked molecules,which decreases gradually with time.The decrease of the ratio is slower for narrower pores, because the gas molecules in narrower pores are more difficult to exchange with external molecules. This is a direct result from the confinement effect. The time history of the ratio of the marked molecules can be fitted to the exponential functiony=c1+c2exp(?t/τcon),withc1,c2,andτconas fitting parameters. The parameterτconis the characteristic time for the confinement effect, which represents the typical time for the gas molecule to stay in the pore. A larger value ofτconindicates that the gas molecule is confined in the pore for a longer time, which means that the confinement effect is stronger. Figure 7(b)shows that the confinement time is larger for pores with smaller widths. The confinement time is also sensitive to the pore depth. We thus introduce the width to depth ratio,γ=w/d, to estimate the degree of confinement for the pore. Figure 7(c)shows that the confinement time decreases exponentially with the structural ratioγ.

    Fig.7. Confinement effect on the interface thermal conductance: (a)time dependence for the ratio of the marked gas molecules left inside the pore,(b)the pore width dependence for the confinement characteristic time, (c)the confinement characteristic time versus the width-to-depth ratio.

    A longer confinement time implies that the gas molecules confined in the pore exchange their thermal energy with external molecules more slowly.As a result,the inner surface of the pore makes less contribution to the heat dissipation process.This is the origin for the reduction of the interface thermal conductance by the confinement effect.According to Fig.7(c),the interface thermal conductance is larger for the pore with a larger structural ratioγ.

    As a result of the confinement effect, the temperature is not uniform for the molecules confined inside the pore. To describe this temperature nonuniform phenomenon,we divide the pore into the top region and the bottom region, and calculate the temperature for these two regions. Figure 8 shows that the temperature of the top region is obviously higher than that of the bottom region, which further confirms the above confinement effect.

    4. Conclusions

    In summary, we have studied the heat transfer on the YSZ–gas interface with the heat dissipation method by MD simulations. We examine the effect of the microstructure of the pore at the interface on the interface thermal conductance.It is found that the interface thermal conductance increases gradually with increasing initial temperature difference and gas density. We explore two important mechanisms for the interface thermal conductance: (i) The increase of the actual contact area at the YSZ–gas interface can enhance the interface thermal conductance.As a result,the interface with a pore of larger depth has larger interface thermal conductance,while the pore width is less important. (ii) The geometry-induced confinement effect will greatly reduce the interface thermal conductance. We disclose that the confinement strength decreases exponentially with the width-to-depth ratio of the pore.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11822206 and 12072182),the Innovation Program of the Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019), the Key Research Project of Zhejiang Laboratory,and the National Supercomputing Center in Zhengzhou(Grant No.2021PE0AC02).

    久久久久久久久中文| 亚洲国产精品成人综合色| 久久久久久久久久黄片| 国产主播在线观看一区二区| 国产精品久久久久久亚洲av鲁大| 大型黄色视频在线免费观看| 身体一侧抽搐| 日本免费一区二区三区高清不卡| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩无卡精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲片人在线观看| 国产免费av片在线观看野外av| 亚洲av美国av| 中文字幕熟女人妻在线| 首页视频小说图片口味搜索| 欧美绝顶高潮抽搐喷水| 国产一区二区在线观看日韩| 夜夜爽天天搞| 精品久久久久久久久久久久久| 国产精品国产高清国产av| 国产男靠女视频免费网站| 久久精品综合一区二区三区| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清专用| 久久久久久国产a免费观看| av国产免费在线观看| 中文亚洲av片在线观看爽| 不卡一级毛片| 我的老师免费观看完整版| 亚洲国产精品999在线| 美女大奶头视频| 久久精品国产亚洲av香蕉五月| 国产伦精品一区二区三区视频9| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 免费人成视频x8x8入口观看| 18禁裸乳无遮挡免费网站照片| 一本久久中文字幕| 国产人妻一区二区三区在| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 亚洲经典国产精华液单 | 性插视频无遮挡在线免费观看| 亚洲av电影不卡..在线观看| 亚洲经典国产精华液单 | 亚洲精品乱码久久久v下载方式| 91九色精品人成在线观看| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 日韩亚洲欧美综合| 99久久99久久久精品蜜桃| 91午夜精品亚洲一区二区三区 | 天堂动漫精品| 搡老岳熟女国产| 赤兔流量卡办理| 欧美日本视频| 变态另类成人亚洲欧美熟女| 亚洲专区国产一区二区| 国产一区二区三区视频了| av中文乱码字幕在线| 亚洲自拍偷在线| 国产成年人精品一区二区| 97超视频在线观看视频| av在线天堂中文字幕| 欧美成人性av电影在线观看| 国产亚洲精品久久久com| 能在线免费观看的黄片| 亚洲精品456在线播放app | 99热6这里只有精品| 赤兔流量卡办理| 午夜福利在线在线| 亚洲av熟女| 精品99又大又爽又粗少妇毛片 | 久久这里只有精品中国| 男插女下体视频免费在线播放| av在线老鸭窝| 此物有八面人人有两片| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 嫁个100分男人电影在线观看| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看| 亚洲自偷自拍三级| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 丝袜美腿在线中文| 美女高潮的动态| 欧美+日韩+精品| www日本黄色视频网| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 熟女电影av网| 国产一区二区在线av高清观看| 日韩有码中文字幕| 搞女人的毛片| 黄片小视频在线播放| 成年人黄色毛片网站| 国产激情偷乱视频一区二区| 亚洲精品成人久久久久久| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 亚洲无线在线观看| 欧美极品一区二区三区四区| 精品一区二区三区视频在线观看免费| 露出奶头的视频| 免费看日本二区| 亚洲最大成人中文| 亚洲av免费在线观看| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 男女做爰动态图高潮gif福利片| 禁无遮挡网站| 一本综合久久免费| 最新中文字幕久久久久| 久久午夜福利片| 欧美成人免费av一区二区三区| 一个人看视频在线观看www免费| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 成熟少妇高潮喷水视频| 黄色女人牲交| 少妇的逼好多水| 日本 欧美在线| 老司机午夜福利在线观看视频| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 性色av乱码一区二区三区2| 51国产日韩欧美| 精品久久久久久久久久免费视频| 内射极品少妇av片p| 日本黄大片高清| 欧美日韩黄片免| 村上凉子中文字幕在线| 九色成人免费人妻av| 一区二区三区高清视频在线| 丁香欧美五月| 日本五十路高清| 中文字幕人成人乱码亚洲影| 舔av片在线| 可以在线观看的亚洲视频| 极品教师在线视频| 成人高潮视频无遮挡免费网站| 18禁黄网站禁片免费观看直播| 一个人免费在线观看的高清视频| 51国产日韩欧美| 成人美女网站在线观看视频| 国产精品亚洲一级av第二区| 亚洲av美国av| 久9热在线精品视频| 国产69精品久久久久777片| 亚洲av中文字字幕乱码综合| 日韩欧美国产一区二区入口| 国产av不卡久久| 51国产日韩欧美| 色5月婷婷丁香| 最好的美女福利视频网| 亚洲av熟女| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 男女做爰动态图高潮gif福利片| av在线天堂中文字幕| 国产成人aa在线观看| 亚洲在线观看片| 搞女人的毛片| 日韩中字成人| 久久久久国内视频| 一本精品99久久精品77| 久久香蕉精品热| 免费电影在线观看免费观看| 欧美色视频一区免费| 免费一级毛片在线播放高清视频| 在线观看av片永久免费下载| 一区福利在线观看| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 两个人的视频大全免费| 亚洲熟妇熟女久久| 99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| 一级黄色大片毛片| av在线观看视频网站免费| or卡值多少钱| 在线免费观看不下载黄p国产 | 亚洲欧美日韩高清在线视频| 人妻夜夜爽99麻豆av| 天堂动漫精品| 色播亚洲综合网| 色尼玛亚洲综合影院| 看片在线看免费视频| 亚洲av成人不卡在线观看播放网| 国产一区二区亚洲精品在线观看| 很黄的视频免费| 天堂av国产一区二区熟女人妻| 亚洲中文字幕日韩| 亚洲自偷自拍三级| 俄罗斯特黄特色一大片| 亚洲精品乱码久久久v下载方式| 国产精品1区2区在线观看.| 久久精品久久久久久噜噜老黄 | 国产免费一级a男人的天堂| 国产精品一及| 精品欧美国产一区二区三| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 乱人视频在线观看| 国产成人av教育| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 97超级碰碰碰精品色视频在线观看| 国产精品99久久久久久久久| 最新中文字幕久久久久| 高清毛片免费观看视频网站| 级片在线观看| 亚洲经典国产精华液单 | 男人狂女人下面高潮的视频| 国语自产精品视频在线第100页| 久久精品国产清高在天天线| 亚洲国产色片| 日日夜夜操网爽| 在线观看免费视频日本深夜| 亚洲18禁久久av| bbb黄色大片| 国产精品一区二区免费欧美| 亚洲中文字幕一区二区三区有码在线看| АⅤ资源中文在线天堂| 亚洲人成伊人成综合网2020| 色5月婷婷丁香| 国产av在哪里看| 最近视频中文字幕2019在线8| 两人在一起打扑克的视频| 国产精品不卡视频一区二区 | 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| АⅤ资源中文在线天堂| 亚洲欧美日韩高清专用| 中文字幕高清在线视频| av在线观看视频网站免费| 精品久久国产蜜桃| 美女 人体艺术 gogo| 亚洲三级黄色毛片| 九九在线视频观看精品| a级毛片免费高清观看在线播放| 欧美日韩亚洲国产一区二区在线观看| 99久久九九国产精品国产免费| 国产精品一及| 国产淫片久久久久久久久 | 18禁黄网站禁片免费观看直播| 亚洲狠狠婷婷综合久久图片| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 国产伦人伦偷精品视频| 色尼玛亚洲综合影院| 亚洲成人久久性| 久久精品综合一区二区三区| 欧美黄色淫秽网站| 亚洲经典国产精华液单 | 中文字幕久久专区| 黄色配什么色好看| 亚洲激情在线av| 一本一本综合久久| 丰满人妻熟妇乱又伦精品不卡| 99久久久亚洲精品蜜臀av| 一夜夜www| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 嫩草影院新地址| 真实男女啪啪啪动态图| 好男人电影高清在线观看| 亚洲av熟女| 欧美一级a爱片免费观看看| 亚洲狠狠婷婷综合久久图片| 国产主播在线观看一区二区| 国产亚洲精品久久久com| 中文字幕高清在线视频| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久 | 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 日韩中文字幕欧美一区二区| 精品久久国产蜜桃| 国内毛片毛片毛片毛片毛片| 日韩亚洲欧美综合| 成人高潮视频无遮挡免费网站| 少妇的逼好多水| 欧美3d第一页| 天堂av国产一区二区熟女人妻| 亚洲精品在线观看二区| 女人十人毛片免费观看3o分钟| 精品午夜福利视频在线观看一区| 小说图片视频综合网站| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 一进一出抽搐gif免费好疼| 亚洲最大成人av| 欧美极品一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 色吧在线观看| 亚洲人成伊人成综合网2020| 波野结衣二区三区在线| 国产三级黄色录像| 国产成人欧美在线观看| 国产精品98久久久久久宅男小说| 女生性感内裤真人,穿戴方法视频| 内地一区二区视频在线| 国产一区二区三区视频了| 综合色av麻豆| 亚洲久久久久久中文字幕| 国产亚洲精品久久久久久毛片| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 九九久久精品国产亚洲av麻豆| 最后的刺客免费高清国语| 久久久久久久久中文| 亚洲片人在线观看| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 美女大奶头视频| 成人性生交大片免费视频hd| 婷婷亚洲欧美| 亚洲av美国av| 久久久色成人| 波多野结衣巨乳人妻| 99久久精品热视频| 午夜福利在线观看吧| 99久久精品一区二区三区| av欧美777| 一区二区三区四区激情视频 | 男女做爰动态图高潮gif福利片| 国产精品久久视频播放| 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 日本一本二区三区精品| 嫩草影视91久久| 亚洲精华国产精华精| 久久久久久久亚洲中文字幕 | 黄色视频,在线免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 欧美三级亚洲精品| 69人妻影院| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区 | 久久性视频一级片| 91狼人影院| 久久久久久久久久黄片| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| or卡值多少钱| 夜夜夜夜夜久久久久| 熟女电影av网| 99国产综合亚洲精品| 国产在视频线在精品| 精品人妻偷拍中文字幕| 亚洲国产精品成人综合色| 日日夜夜操网爽| 日韩中字成人| a在线观看视频网站| 免费人成在线观看视频色| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| 亚洲美女搞黄在线观看 | 级片在线观看| 美女免费视频网站| 男人舔女人下体高潮全视频| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 动漫黄色视频在线观看| 欧美激情在线99| 日日摸夜夜添夜夜添av毛片 | 欧美一区二区国产精品久久精品| 99热这里只有是精品50| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 精品一区二区三区人妻视频| 嫩草影院入口| 欧美绝顶高潮抽搐喷水| 在线免费观看的www视频| 久久草成人影院| 嫩草影视91久久| 禁无遮挡网站| 国内精品一区二区在线观看| 亚洲最大成人av| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 69av精品久久久久久| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 不卡一级毛片| 欧美午夜高清在线| 男女视频在线观看网站免费| 男女那种视频在线观看| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 桃色一区二区三区在线观看| 国产精品野战在线观看| 亚洲综合色惰| 久久久国产成人精品二区| av在线观看视频网站免费| 51国产日韩欧美| 国产爱豆传媒在线观看| 亚洲人成电影免费在线| 精品一区二区三区人妻视频| 99riav亚洲国产免费| 日韩精品中文字幕看吧| 99久久九九国产精品国产免费| 最近视频中文字幕2019在线8| 窝窝影院91人妻| 亚洲熟妇中文字幕五十中出| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av香蕉五月| 国产淫片久久久久久久久 | 国产私拍福利视频在线观看| 丰满乱子伦码专区| 中文在线观看免费www的网站| 成人三级黄色视频| 亚洲国产色片| 亚洲精品一卡2卡三卡4卡5卡| 国产高清有码在线观看视频| 国产精品电影一区二区三区| av国产免费在线观看| 一级a爱片免费观看的视频| 国产精品自产拍在线观看55亚洲| 99久国产av精品| 人妻制服诱惑在线中文字幕| 国产一区二区激情短视频| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| av在线天堂中文字幕| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| 99热这里只有是精品50| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 成人无遮挡网站| 免费看日本二区| 91午夜精品亚洲一区二区三区 | 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 不卡一级毛片| 久久久久久久精品吃奶| 9191精品国产免费久久| 十八禁网站免费在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 日本精品一区二区三区蜜桃| 级片在线观看| 久久精品久久久久久噜噜老黄 | 最近最新免费中文字幕在线| 亚洲国产精品合色在线| 超碰av人人做人人爽久久| 在线国产一区二区在线| 色综合站精品国产| 国产伦精品一区二区三区四那| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 亚洲乱码一区二区免费版| 99热6这里只有精品| 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 久久午夜福利片| .国产精品久久| 欧美成人a在线观看| 一个人看的www免费观看视频| 日本a在线网址| 在线播放无遮挡| 亚洲最大成人av| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看 | 不卡一级毛片| 久久久色成人| 两个人的视频大全免费| 国产淫片久久久久久久久 | 极品教师在线免费播放| 少妇的逼水好多| 女人十人毛片免费观看3o分钟| 亚洲中文字幕一区二区三区有码在线看| 欧美色欧美亚洲另类二区| avwww免费| 99热精品在线国产| 两个人视频免费观看高清| 国产午夜福利久久久久久| 夜夜夜夜夜久久久久| 丰满的人妻完整版| 午夜日韩欧美国产| 18美女黄网站色大片免费观看| 国产高清视频在线播放一区| 人妻久久中文字幕网| 日本精品一区二区三区蜜桃| 欧美绝顶高潮抽搐喷水| 给我免费播放毛片高清在线观看| av天堂在线播放| 国产av一区在线观看免费| 成人特级av手机在线观看| 亚洲色图av天堂| 能在线免费观看的黄片| 久久精品夜夜夜夜夜久久蜜豆| 国产精品电影一区二区三区| 日韩av在线大香蕉| 日韩免费av在线播放| 欧美另类亚洲清纯唯美| 国产av不卡久久| 欧美日韩瑟瑟在线播放| 99精品久久久久人妻精品| 午夜福利欧美成人| 亚洲三级黄色毛片| 一区二区三区四区激情视频 | 精品午夜福利视频在线观看一区| www.999成人在线观看| 9191精品国产免费久久| 91在线精品国自产拍蜜月| h日本视频在线播放| www.www免费av| 亚洲国产高清在线一区二区三| 久9热在线精品视频| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 久久久久久久亚洲中文字幕 | 婷婷丁香在线五月| 99久久精品热视频| 国产色婷婷99| 噜噜噜噜噜久久久久久91| 99国产精品一区二区三区| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 免费电影在线观看免费观看| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 人妻制服诱惑在线中文字幕| 一本久久中文字幕| 中文字幕av成人在线电影| 91麻豆av在线| 日韩欧美三级三区| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| 国产精品一区二区三区四区免费观看 | 欧美激情久久久久久爽电影| 偷拍熟女少妇极品色| 成年版毛片免费区| 精品欧美国产一区二区三| 久久久久国产精品人妻aⅴ院| 亚洲av熟女| 国产一区二区三区视频了| 国产日本99.免费观看| 日韩中字成人| av在线老鸭窝| 最近视频中文字幕2019在线8| 亚洲av二区三区四区| 亚洲人成电影免费在线| 成人三级黄色视频| 国产精品久久电影中文字幕| 天堂√8在线中文| 色综合婷婷激情| 欧美成人a在线观看| 国产极品精品免费视频能看的| 欧美日韩福利视频一区二区| 亚洲美女黄片视频| 尤物成人国产欧美一区二区三区| 国产黄a三级三级三级人| 欧美激情国产日韩精品一区| 舔av片在线| 人人妻人人澡欧美一区二区| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 别揉我奶头 嗯啊视频| 床上黄色一级片| 国产精品乱码一区二三区的特点| 性色avwww在线观看| 亚洲av成人不卡在线观看播放网| 中文字幕免费在线视频6| 亚洲国产欧洲综合997久久,| 亚洲无线观看免费| 97热精品久久久久久| 大型黄色视频在线免费观看| 蜜桃亚洲精品一区二区三区| 99热只有精品国产| 亚洲国产日韩欧美精品在线观看| 欧美在线一区亚洲| 999久久久精品免费观看国产| 51国产日韩欧美| 亚洲片人在线观看| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 国产男靠女视频免费网站| 免费黄网站久久成人精品 | 亚洲av成人精品一区久久|