• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs

    2022-12-28 09:54:14ShaoHuaYang楊少華ZhanGangZhang張戰(zhàn)剛ZhiFengLei雷志鋒YunHuang黃云KaiXi習(xí)凱SongLinWang王松林TianJiaoLiang梁天驕TengTong童騰XiaoHuiLi李曉輝ChaoPeng彭超FuGenWu吳福根andBinLi李斌
    Chinese Physics B 2022年12期
    關(guān)鍵詞:黃云天驕

    Shao-Hua Yang(楊少華) Zhan-Gang Zhang(張戰(zhàn)剛) Zhi-Feng Lei(雷志鋒) Yun Huang(黃云)Kai Xi(習(xí)凱) Song-Lin Wang(王松林) Tian-Jiao Liang(梁天驕) Teng Tong(童騰)Xiao-Hui Li(李曉輝) Chao Peng(彭超) Fu-Gen Wu(吳福根) and Bin Li(李斌)

    1School of Physics and Optoeletronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    2Science and Technology on Reliability Physics and Application of Electronic Component Laboratory,China Electronic Product Reliability and Environmental Testing Research Institute,Guangzhou 510370,China

    3Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Spallation Neutron Source Science Center,Dongguan 523803,China

    6School of Microelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: neutron,fin field-effect transistor(FinFET),single event upset(SEU),Monte–Carlo simulation

    1. Introduction

    Atmospheric neutron-induced single event effects (SEE)in avionics and key ground electronics are gaining increasing attention, due to the fact that the SEE performance of an integrated circuit (IC) becomes worse as the feature size shrinks.[1,2]Hence, the evaluation of real-time neutroninduced SEE sensitivity in the applied environments, especially for nanometric ICs,can be very important for the system reliability insurance.

    To measure the atmospheric radiation induced soft error rate(SER),accelerated testing can be conveniently performed by using the ground-based neutron sources.[3]While clear differences exist between neutrons from ground-based neutron sources and real atmosphere,such as incident direction,energy spectrum,etc.It can be predicted that single event upset(SEU)response is affected by the incident direction of neutron,since that upsets are produced by secondary particles generated by nuclear reactions between neutrons and their traversing materials. Consequently, understanding the impact of incident directions on SEE is critical in several aspects: (1)guiding the ground-based testing, and (2) selecting the “best incident direction”,which can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup.

    In the past, angular dependence of neutron-induced SEE was reported by several research groups.[4–8]In 2019, S.Abe[9]reported that the number of SEUs in 65 nm static random-access memory (SRAM) obtained by the board-side irradiation was approximately 20% to 30% smaller than that obtained by irradiation on the plastic package side, by using quasi-monoenergetic neutrons. Tibetan-Plateau based realtime testing[10]and accelerated testing of 65 nm quad data rate(QDR)SRAMs[11]were conducted to reveal the SEU characteristics and mechanisms in our previous publications. The 14 nm fin filed-effect transistor (FinFET) SRAMs were also irradiated by neutrons at normal incidence.[11]However, few publications focused on the impact of incident direction on neutron-induced SEE response in advanced FinFET technology.

    In this work,the impact of incident direction on neutroninduced single-bit upsets (SBU) and multiple-cell upsets(MCU)in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied in a comparative way, by experiments at the BL09 terminal of China Spallation Neutron Source (CSNS) and Monte–Carlo simulations.

    2. Experimental setup

    2.1. Devices under test

    Parameters of the tested SRAM devices are showed in Table 1. Note that,the 14 nm FinFET SRAM is packaged inflip-chip ball grid array (BGA), with the substrate thinned to 60μm(designed for previous heavy-ion testing). The 65 nm SRAM is packaged in wire-bonded BGA,and the plastic package above the chip was not etched before irradiation.

    Table 1. Parameters of the tested SRAM devices.

    2.2. Experimental setup

    The experiment was conducted at the BL09 terminal of CSNS.The simulated neutron energy spectrum of BL09 at irradiation position is shown in Fig.1,which is obtained by simulation based on the actual setup. The beam flux during the experiments is fixed, with a total of 2.8×107n/(cm2·s). The flux of thermal neutrons (E<0.4 eV) is 2.7×106n/(cm2·s),and the flux of high energy neutrons (E> 10 MeV) is 1.1×105n/(cm2·s). During the irradiation, the thermal neutrons can be selected to be filtered,by inserting cadmium(Cd)film (~2 mm) into the beam. After passing through the Cd film,neutrons with energy below 0.4 eV are eliminated.While the energy spectrum in theE>10 MeV region is basically unchanged since Cd film has a cutoff energy of 0.4 eV.[3]Specifically,for the 14 nm FinFET SRAM,the thermal neutrons were not filtered during irradiation, since that the irradiated device under test(DUT)was sensitive to thermal neutrons. While for the 65 nm QDRII+SRAM,the thermal neutrons were filtered,since that the irradiated DUT was immune to thermal neutrons,as reported in our previous publication.[11]

    Fig. 1. The simulated neutron energy spectrum at irradiation position of the BL09 terminal of CSNS.

    Figure 2 illustrates three kinds of incident directions during neutron irradiation: front, back and side. Additionally,Table 2 lists the layers that neutrons penetrate before reaching the sensitive volume(SV),for different incident directions.Note that, due to the different package of the two DUTs (see Table 1), the layers that neutrons penetrate before reaching the SV can be quite different, even under the same incident direction. For the 14 nm FinFET SRAM, the BGA package includes solder ball (with a diameter of~0.8 mm), substrate (~0.7 mm), and small solder ball (with a diameter of~0.08 mm), along the direction of neutron incidence. The detailed metallization struture of the 14 nm FinFET SRAM is shown in Fig. 10(a). Eight layers of metal wiring can be seen,and the majority of the metal materials are copper.Tungsten plugs are found between M0 and the active silicon layer.The total depth of the mentalizations is about 6.3μm. For the 65 nm QDRII+SRAM,the BGA package includes solder ball(with a diameter of~0.9 mm)and substrate(~0.5 mm),following the direction of neutron incidence. Six layers of metallization are found,and the majority of the metal materials are copper. Tungsten plugs are found between M0 and the active silicon layer. The total depth of the mentalizations is about 7.1 μm. As examples, Figs. 3 and 4 show the pictures of the 14 nm FinFET SRAM and the 65 nm QDRII+SRAM under side direction irradiation,respectively.

    Fig.2. Three kinds of incident directions during neutron irradiation.

    Table 2. Layers that neutrons penetrate before reaching the SV,for different incident directions.

    Fig.3. The 14 nm FinFET SRAM under irradiation(side direction).

    Fig. 4. The 65 nm QDRII+SRAM under irradiation (side direction).Note that,the test board was designed also for high-altitude experiment and only the arrowed DUT of the 18 loaded devices was tested.

    Checkerboard pattern was written into the DUT before irradiation, and contents of the DUT were read and compared with the golden data periodically during the neutron bombardment. The detailed SEU information including the error time,address and data were reported. In addition, the device currents were monitored continuously and no single event latchup(SEL)was observed during all the tests. The ambient temperature was controlled at 25±5?C.

    3. Experimental results and analysis

    3.1. SEU cross sections

    Figure 5 shows the neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.Obviously,back incidence is the“worst case”,with SEU cross section 1.7–4.7 times higher than those of front and side incidences.The reason that side incidence exhibits the lowest SEU cross section is discussed here. In the 14 nm FinFET SRAM,neutron-induced electron–hole pairs are collected by both drift and diffusion processes. For side incidence,the generated secondary particles by high energy neutron tend to traverse the fin from the side. Hence,for most cases,the generated electron–hole pairs are collected by drift or diffusion process, depending on the location of the ion trajectory (in the fin or in the substrate). However,for front and back incidences,the trajectory of secondary particle tends to cross both the fin and the substrate. Electron–hole pairs can be collected by both drift and diffusion processes, resulting into higher SEU cross sections.

    Note that,the SEU cross section is calculated by counting the MCU as separate soft errors and using the total neutron flux of 2.8×107n/(cm2·s). It should be noted that the SEU cross sections include the contribution of thermal neutrons.

    Fig. 5. Neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.

    Fig. 6. Neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions.

    Figure 6 shows the neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions. Differently, front incidence is the “worst case”, with SEU cross section 1.7–1.8 times higher than those of back and side incidences. Note that, the SEU cross sections are calculated by using the high energy neutron(E>10 MeV) flux of 1.05×105n/(cm2·s). The reasons are that: (1) the 65 nm QDRII+SRAM is immune to thermal neutron, as reported in our previous publication,[11]and (2) high energy neutrons(E>10 MeV)are the main contribution of soft error rate, as specified in the JESD89A standard.[3]

    Comparing Figs.5 and 6,it seems that the worst incident direction for the 14 nm FinFET technology and the 65 nm planar technology is opposite. However, combining the above results with Table 2,it can be found that the worst incident direction corresponds to the case that neutrons traverse package and metallization before reaching the SV. In order to further reveal the underlying mechanisms, Monte–Carlo simulations are conducted,which are shown in Section 4.

    3.2. MCU characteristics

    MCU ratios of 14 nm FinFET SRAM and 65 nm QDRII+SRAM under different incident directions are shown in Figs.7 and 8, respectively. Obviously, most of the MCU events are double-bit upsets (i.e., MCU2). The largest MCU for the 14 nm FinFET SRAM involves 8 bits,while the largest MCU for the 65 nm QDRII+SRAM involves 4 bits. For MCU response,side incidence is the“worst case”. Here,“worst case”corresponds to the case with highest MCU ratio,because more MCU events mean more bit-flips, and more error correcting code(ECC)resource must be used to eliminate them.The phenomenon can be explained by that neutrons at side incidence are most likely to traverse and affect multiple SVs, since that majority of the secondary particles generated by the interactions between spallation neutrons and DUT are moving forward. Since that large MCU event is relatively rare,the probability of MCU≥4 under back incidence in Fig.7 is higher than that under side incidence,due to the poor statistics.

    Fig. 7. MCU ratios of the 14 nm FinFET SRAM under different incident directions.

    Fig.8. MCU ratios of the 65 nm QDRII+SRAM under different incident directions.

    4. Monte–Carlo simulations

    Aims of Monte–Carlo simulations of the neutron transport are investigating the characteristics of secondary ions in the device SV, including ion species, LET, range and making comparisons between different incident directions. This part mainly focuses on the research of 14 nm FinFET SRAM,since that Abe’s paper[9]can be referred to for the inner mechanisms of results of the 65 nm SRAM in the previous section.The main conclusions of Abe’s paper are that the atomic composition of the material placed in front of the memory chip has a considerable influence on the SER because production yields and angular distributions of secondary hydrogen (H)and helium(He)ions(the main causes of SEUs)depend on the composition. In particular, the existence of hydrides, such as plastic,considerably increases the SER because of the higher production yields of secondary H ions that are generated via elastic scattering of neutrons with hydrogen atoms.

    4.1. The 3D simulation model of DUT

    Simulation model of the 14 nm FinFET SRAM is built based on the reverse-technique result of DUT (see Fig. 9)and experimental setup. Reverse-technique processes include cross-section analysis and layer-grinding analysis. Crosssection analysis is used to obtain Fig. 9(a), by cutting the DUT and observing by scanning electron microscopy(SEM).Layer-grinding analysis is used to obtained Fig.9(b),by grinding the DUT to polysilicon layer and observing by SEM. In Fig.9(a),eight layers of metallization can be seen,and the majority of the metal materials are copper. Tungsten (W) plugs are found between M0 and the active silicon layer. On the top of the Fin,high-Kmetal gate(HKMG)exists. Material of the high-Kgate oxide is HfO2with a depth of 1.9 nm. Material of the metal gate is TiN with a depth of 4.6 nm. The total depth of the mentalizations is about 6.3μm.

    Table 3 shows the memory cell sizes and SV parameters of the 14 nm FinFET SRAM. The drain of the off-state Nchannel metal oxide semiconductor(NMOS)transistor is considered to be the SV of one memory cell. The depth of the SV is set as the fin height. Importantly,note that the LET threshold of the DUT is smaller than 0.5 MeV·cm2/mg, making it sensitive to proton direct-ionization effect.

    Fig.9. (a)Cross section and(b)polysilicon layer images of the 14 nm FinFET SRAM.

    Table 3. Memory cell sizes and SV parameters for the 14 nm FinFET SRAM.

    4.2. Neutron transport simulations

    Neutron transport process is simulated by the Geant4 toolkit.[12]Thex×yscale of the device model is set as scales of the SV,in order to improve the simulation efficiency. A total number of 109neutrons strike the surface of device model normally. Typical neutron energies are selected in the simulation, including 5 MeV, 100 MeV, 500 MeV, and 1 GeV.The reasons are that for the 14 nm FinFET SRAM,upsets are mainly induced by thermal neutrons and high energy neutrons.Considering the low critical charge of the device,5 MeV neutrons are also simulated. Thermal neutrons are not simulated because that thermal neutrons induce upsets by the products of the10B(n,α)7Li reaction. In this reaction,the alpha particle and the lithium(Li)nucleus are emitted in roughly opposite directions to conserve momentum.[13]The outgoing directions of the products exhibit random distribution. Thus,under different incident directions of thermal neutrons, characteristics of the reaction products in the device SV are basically the same.

    The characteristics of secondary ions in the device SV,including ion species, LET, and range under different incident directions are obtained. Note that, side incidence is not simulated in this paper and will be investigated in the future,because that under side incidence, neutrons traverse different depths of silicon before reaching the SVs of the DUT, which means that the situations for all the SVs are not same. Nevertheless,as can be seen in Table 2,front incidence is similar to side incidence for the 14 nm FinFET SRAM,and the simulation results can be referred to.

    5. Simulation results

    Figures 1 and 11 compare the secondary ion species in SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. The impact of incident direction is obviously shown. The total yield of secondary ions for back incidence is clearly higher than that for front incidence, by about 6×.Note the log-scale ofY-axis in Figs.1 and 11,majority of the reaction products are n,p,α,Si,Al,etc.The p andαare capable of inducing soft errors in the 14 nm FinFET SRAM,with a critical charge of 0.05 fC (see Table 3). This explains the phenomenon in Fig.5 that neutron-induced SEU cross section in the 14 nm FinFET SRAM under back incidence is higher,since that neutrons at back incidence are capable of creating more“useful”secondary ions in the device SV,and thus more upsets are induced.

    Fig.10. Secondary ion species in the SV induced by incident neutrons with various energies(front incidence).

    Fig.11. Secondary ion species in the SV induced by incident neutrons with various energies(back incidence).

    It can also be observed that neutrons with higher energy are capable of creating more diverse secondary ion species,for both front and back incidences. Besides, for the front incidence, the heaviest secondary ion is Si. While for the back incidence, the heaviest secondary ion is W. Compared to the neutrons at front incidence, neutrons at back incidence create more various secondary ions in the SV,ranging from p to W.The inner reasons can be found in Table 2,which lists the layers that neutrons penetrate before reaching the SV of the 14 nm FinFET SRAM, for different incident directions. For the front incidence, the material that neutrons traverse before reaching the SV is Si substrate, while for the back incidence,the intermediates are more complicated and contain various materials with high-Zelements,such as W plugs and Hf in the high-Kgate oxide. It can be confirmed that secondary ions heavier than Si are induced by nuclear reactions between incident neutrons and the metallization&HKMG on the top of the fins. This explains the phenomenon in Fig. 7 that MCU ratio of the 14 nm FinFET SRAM under back incidence is higher than that under front incidence,since(1)the total yield of secondary ions for back incidence is clearly higher than that for front incidence,including both light and heavy secondary ions, and (2) light secondary ions with long range and heavy secondary ions with enough range are both capable of inducing MCU events.

    Figures 12 and 13 show the LET and range of secondary ions in the SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. One symbol in the figure represents one secondary ion in the SV.It is obvious that neutrons with higher energy are capable of generating secondary ions with larger LET values, longer ranges, and thus more generated charges in the SV,with also higher probability.Moreover,clear differences can be seen between the front incidence and the back incidence.For the back incidence,the LET and range of secondary ions in the SV are showing wider distribution than that of the front incidence case,which is consistent with the previous experimental results.

    Fig.12.LET and range of secondary ions in the SV induced by incident neutrons with various energies(front incidence).

    Fig.13.LET and range of secondary ions in the SV induced by incident neutrons with various energies(back incidence).

    6. Implications for application

    In the previous sections,we find that for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction,with the highest MCU ratio.

    This information can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup. Specially, for avionic or ground application, atmospheric neutrons are mainly flying from top to down. Thus,for most boards,placing in a reverse way(i.e.,with front side downward) seems to be a good choice since most of the ICs are not in flip-chip package. Moreover, upright setup of the board should be avoided,especially for MCU-sensitive ICs.

    7. Conclusions

    In this work,the impact of incident direction on neutroninduced SBUs and MCUs in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied,by both irradiation experiment and Monte–Carlo simulation. It is found that,for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction, with the highest MCU ratio. Further, Monte–Carlo simulations show that the presence of package and metallization results into high amount of diverse secondary ions in the device SV,and thus higher SEU and MCU cross sections. Majority of the reaction products are p,α,Si,and Al.

    It seems that side incidence of neutron is the“best direction”,but the MCUs should be paid special attention to.

    Acknowledgements

    Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2019B010145001),the National Natural Science Foundation of China (Grant Nos. 12075065 and 12175045), and the Applied Fundamental Research Project of Guangzhou City,China(Grant No.202002030299).

    猜你喜歡
    黃云天驕
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    別董大
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    社交牛人癥該怎么治
    意林彩版(2022年2期)2022-05-03 10:25:08
    長(zhǎng)沙市六藝天驕星城園學(xué)生作品展示
    我還差一票
    “平行線及其判定”檢測(cè)題
    競(jìng)寫
    黃云:一個(gè)學(xué)者型官員的墮落史
    新西部(2009年1期)2009-03-31 02:53:46
    被熟人套牢的區(qū)長(zhǎng)黃云
    最新中文字幕久久久久| 亚洲精品国产av成人精品| 可以在线观看的亚洲视频| 午夜久久久久精精品| 色5月婷婷丁香| 亚洲电影在线观看av| 五月伊人婷婷丁香| 免费看美女性在线毛片视频| 在现免费观看毛片| 亚洲天堂国产精品一区在线| 中文亚洲av片在线观看爽| 最新中文字幕久久久久| 日韩欧美精品免费久久| 国产一级毛片在线| 日韩成人伦理影院| 国产高潮美女av| 国产精品av视频在线免费观看| 综合色丁香网| 99热这里只有精品一区| 变态另类成人亚洲欧美熟女| av免费在线看不卡| 99久久精品国产国产毛片| 亚洲图色成人| 成年版毛片免费区| 精品人妻视频免费看| 久久久久久伊人网av| 春色校园在线视频观看| 美女高潮的动态| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 91麻豆精品激情在线观看国产| 国产精品久久久久久av不卡| 成熟少妇高潮喷水视频| 内射极品少妇av片p| 欧美又色又爽又黄视频| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 特级一级黄色大片| 国产不卡一卡二| 日本av手机在线免费观看| 国产91av在线免费观看| 少妇熟女aⅴ在线视频| 久久久午夜欧美精品| 亚洲熟妇中文字幕五十中出| 一本久久精品| 精品久久久噜噜| 午夜福利在线观看免费完整高清在 | 国产成人影院久久av| 欧美另类亚洲清纯唯美| 夫妻性生交免费视频一级片| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 亚洲图色成人| 国产伦精品一区二区三区视频9| 久久欧美精品欧美久久欧美| 男的添女的下面高潮视频| 国产午夜精品久久久久久一区二区三区| 少妇被粗大猛烈的视频| 黑人高潮一二区| 精品久久久久久久久av| 偷拍熟女少妇极品色| 欧美成人a在线观看| 午夜爱爱视频在线播放| 校园春色视频在线观看| 精品久久久噜噜| 国产成人freesex在线| 成年版毛片免费区| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 国产精品永久免费网站| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产视频首页在线观看| 最近的中文字幕免费完整| 日韩欧美在线乱码| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 男女下面进入的视频免费午夜| 亚洲av一区综合| 又爽又黄无遮挡网站| 99热这里只有是精品50| 免费观看在线日韩| 噜噜噜噜噜久久久久久91| 99热全是精品| 色5月婷婷丁香| 一区二区三区免费毛片| 麻豆av噜噜一区二区三区| 国产片特级美女逼逼视频| 极品教师在线视频| 校园春色视频在线观看| 欧美一级a爱片免费观看看| 久久鲁丝午夜福利片| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看| 久久久午夜欧美精品| 亚洲av免费在线观看| 色哟哟·www| 好男人视频免费观看在线| 成人二区视频| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 亚洲精品成人久久久久久| 国产成人a∨麻豆精品| 午夜久久久久精精品| 寂寞人妻少妇视频99o| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 欧美日韩乱码在线| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 99热全是精品| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 在线国产一区二区在线| avwww免费| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 91aial.com中文字幕在线观看| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| 爱豆传媒免费全集在线观看| 国产v大片淫在线免费观看| 99热全是精品| 最近最新中文字幕大全电影3| 麻豆成人av视频| 日韩欧美 国产精品| 日韩精品有码人妻一区| 中文字幕熟女人妻在线| 国产淫片久久久久久久久| 久久精品国产鲁丝片午夜精品| av在线亚洲专区| 在线观看av片永久免费下载| 国产高清激情床上av| 免费看美女性在线毛片视频| 国产人妻一区二区三区在| 国内久久婷婷六月综合欲色啪| 国产精品99久久久久久久久| 日本黄大片高清| 18禁黄网站禁片免费观看直播| 国产精品久久久久久av不卡| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 97超碰精品成人国产| 久久国产乱子免费精品| 亚洲欧美清纯卡通| 久久久久久久久中文| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 看黄色毛片网站| 少妇人妻一区二区三区视频| 99在线视频只有这里精品首页| 欧美日本视频| 97超视频在线观看视频| 国产精品伦人一区二区| 国产成人精品久久久久久| 在线播放国产精品三级| 成年女人看的毛片在线观看| 哪个播放器可以免费观看大片| 免费电影在线观看免费观看| 女人十人毛片免费观看3o分钟| 中文字幕精品亚洲无线码一区| 波多野结衣巨乳人妻| 欧美区成人在线视频| 在线观看一区二区三区| 青春草亚洲视频在线观看| 亚洲国产色片| 日韩大尺度精品在线看网址| 国产成人精品久久久久久| 爱豆传媒免费全集在线观看| 男插女下体视频免费在线播放| av专区在线播放| 黄片无遮挡物在线观看| 在现免费观看毛片| 少妇高潮的动态图| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 身体一侧抽搐| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 桃色一区二区三区在线观看| 中文在线观看免费www的网站| 欧美+日韩+精品| 22中文网久久字幕| 在线免费观看的www视频| 久久6这里有精品| 男女视频在线观看网站免费| 久久久国产成人精品二区| 国产精品久久久久久久久免| 日韩一区二区视频免费看| ponron亚洲| 国产精品一区二区三区四区久久| 美女内射精品一级片tv| 人妻久久中文字幕网| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 乱人视频在线观看| 日韩视频在线欧美| 精品一区二区免费观看| 极品教师在线视频| 午夜福利在线在线| 久久九九热精品免费| 欧美+日韩+精品| 亚洲自偷自拍三级| 干丝袜人妻中文字幕| 欧美+日韩+精品| 如何舔出高潮| 97超视频在线观看视频| 亚洲精品色激情综合| 欧美zozozo另类| 校园春色视频在线观看| 白带黄色成豆腐渣| 久久精品夜夜夜夜夜久久蜜豆| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 免费看光身美女| 日本色播在线视频| 91在线精品国自产拍蜜月| 国产一级毛片在线| 看十八女毛片水多多多| 男女下面进入的视频免费午夜| 亚洲最大成人av| 美女 人体艺术 gogo| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 一区二区三区高清视频在线| 久久午夜福利片| 免费av观看视频| 日韩欧美三级三区| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 国产精品一区www在线观看| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频 | 99久久精品国产国产毛片| 一进一出抽搐gif免费好疼| 日韩av不卡免费在线播放| 国产毛片a区久久久久| www.色视频.com| 亚洲国产色片| 国产精品人妻久久久久久| 只有这里有精品99| 一夜夜www| 99热这里只有是精品在线观看| 国产激情偷乱视频一区二区| 91午夜精品亚洲一区二区三区| 欧美性猛交黑人性爽| 少妇熟女欧美另类| 麻豆成人av视频| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 国产精品综合久久久久久久免费| 少妇的逼好多水| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 日产精品乱码卡一卡2卡三| 久久久精品大字幕| 男人舔奶头视频| 国产黄色小视频在线观看| 欧美成人精品欧美一级黄| 亚洲国产精品合色在线| 最近视频中文字幕2019在线8| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 成人亚洲精品av一区二区| 免费av不卡在线播放| 国产精品女同一区二区软件| 免费观看精品视频网站| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 亚洲综合色惰| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站 | 秋霞在线观看毛片| 悠悠久久av| 亚洲精品影视一区二区三区av| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看 | 国产精华一区二区三区| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 久久久久久久久久久免费av| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 男人狂女人下面高潮的视频| 深夜a级毛片| 99热全是精品| 亚洲精品久久久久久婷婷小说 | 久久99热6这里只有精品| ponron亚洲| 99久国产av精品国产电影| 亚洲成人av在线免费| 久久久久久大精品| 国产色婷婷99| 精品午夜福利在线看| 亚洲av不卡在线观看| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| videossex国产| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 久久久国产成人精品二区| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 一级毛片aaaaaa免费看小| 在线免费观看的www视频| 直男gayav资源| 免费观看a级毛片全部| 日本黄色片子视频| 欧美日韩在线观看h| 最近的中文字幕免费完整| 国产高潮美女av| 在现免费观看毛片| 亚洲成人久久性| 春色校园在线视频观看| 国产午夜福利久久久久久| 插阴视频在线观看视频| 日本黄色视频三级网站网址| 久久国内精品自在自线图片| av天堂中文字幕网| 久久久久九九精品影院| 高清午夜精品一区二区三区 | 欧美日韩一区二区视频在线观看视频在线 | 一个人观看的视频www高清免费观看| 人人妻人人看人人澡| 黑人高潮一二区| 尤物成人国产欧美一区二区三区| www.色视频.com| 别揉我奶头 嗯啊视频| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 在线观看一区二区三区| 精品久久久久久成人av| 午夜a级毛片| 免费看日本二区| 深夜a级毛片| 女人被狂操c到高潮| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 久久久久久久久久久免费av| 少妇丰满av| 国产一级毛片在线| 最新中文字幕久久久久| 国产av一区在线观看免费| 久久99热这里只有精品18| 亚洲欧美精品综合久久99| 日韩一本色道免费dvd| 亚洲人与动物交配视频| 久久久午夜欧美精品| 免费在线观看成人毛片| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 成年版毛片免费区| 午夜老司机福利剧场| h日本视频在线播放| 两个人视频免费观看高清| 日日摸夜夜添夜夜添av毛片| 嫩草影院新地址| 亚洲性久久影院| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 免费人成视频x8x8入口观看| 99久久九九国产精品国产免费| 99久久无色码亚洲精品果冻| 在线观看免费视频日本深夜| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 在现免费观看毛片| 男人舔奶头视频| 人妻系列 视频| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 国产三级在线视频| 国产91av在线免费观看| 高清日韩中文字幕在线| 黄色欧美视频在线观看| 久久久久久大精品| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 亚洲最大成人中文| av卡一久久| 亚洲人成网站在线播放欧美日韩| 午夜老司机福利剧场| 国产午夜福利久久久久久| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 国产视频内射| 欧美bdsm另类| 中文在线观看免费www的网站| 黑人高潮一二区| 99热精品在线国产| av在线天堂中文字幕| 国产成人freesex在线| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 久久午夜福利片| 亚洲天堂国产精品一区在线| 哪里可以看免费的av片| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 1024手机看黄色片| 最好的美女福利视频网| 欧美高清性xxxxhd video| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 日韩强制内射视频| 九草在线视频观看| 一边摸一边抽搐一进一小说| 日本黄大片高清| 51国产日韩欧美| av天堂在线播放| 欧美成人精品欧美一级黄| 男女做爰动态图高潮gif福利片| 欧美成人免费av一区二区三区| 久久久成人免费电影| 天堂网av新在线| 国产高清视频在线观看网站| 少妇的逼水好多| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 亚洲欧美清纯卡通| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 26uuu在线亚洲综合色| 亚洲国产精品久久男人天堂| 亚洲综合色惰| 久久久精品大字幕| 国产一区二区亚洲精品在线观看| 日韩国内少妇激情av| 我要搜黄色片| 日日摸夜夜添夜夜添av毛片| 美女大奶头视频| 欧美日韩在线观看h| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 黄色视频,在线免费观看| 久久这里有精品视频免费| 亚洲精品色激情综合| 丝袜喷水一区| 久久精品国产自在天天线| 此物有八面人人有两片| 男插女下体视频免费在线播放| 成年版毛片免费区| 我要搜黄色片| 看黄色毛片网站| 又粗又硬又长又爽又黄的视频 | 天堂av国产一区二区熟女人妻| 亚州av有码| 中文字幕制服av| 精品人妻视频免费看| 三级毛片av免费| 精品不卡国产一区二区三区| av女优亚洲男人天堂| 黄片无遮挡物在线观看| 天堂影院成人在线观看| 国产精品三级大全| 国产精品乱码一区二三区的特点| 午夜老司机福利剧场| 久久热精品热| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄 | 看免费成人av毛片| 日本欧美国产在线视频| 免费看a级黄色片| 色尼玛亚洲综合影院| 国产精品人妻久久久影院| 日韩成人伦理影院| 在线观看午夜福利视频| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 深夜精品福利| 国产成人一区二区在线| 欧美xxxx黑人xx丫x性爽| 精品人妻偷拍中文字幕| 亚洲人成网站在线播| 免费av观看视频| 天堂中文最新版在线下载 | 亚洲国产精品国产精品| 国产一区二区在线av高清观看| 内射极品少妇av片p| 最近手机中文字幕大全| 波多野结衣高清无吗| 亚洲精品乱码久久久v下载方式| 99在线人妻在线中文字幕| 国产探花极品一区二区| 毛片女人毛片| 久久国产乱子免费精品| 亚洲在线观看片| 日本免费a在线| 免费观看在线日韩| 又爽又黄无遮挡网站| 国产蜜桃级精品一区二区三区| a级一级毛片免费在线观看| 丝袜美腿在线中文| 人妻夜夜爽99麻豆av| 干丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻系列 视频| 22中文网久久字幕| 麻豆精品久久久久久蜜桃| 精品人妻视频免费看| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 极品教师在线视频| 少妇被粗大猛烈的视频| 日本三级黄在线观看| 爱豆传媒免费全集在线观看| 亚洲,欧美,日韩| 欧美成人一区二区免费高清观看| 国产高清不卡午夜福利| 一个人观看的视频www高清免费观看| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 免费看光身美女| 嫩草影院新地址| 特级一级黄色大片| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 好男人视频免费观看在线| 99久久成人亚洲精品观看| 国产蜜桃级精品一区二区三区| 日韩欧美国产在线观看| 哪里可以看免费的av片| 看片在线看免费视频| 久久精品综合一区二区三区| 少妇的逼水好多| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 一个人看视频在线观看www免费| 亚洲无线在线观看| 成人一区二区视频在线观看| 国产男人的电影天堂91| 亚洲在线观看片| 久久精品影院6| 免费人成在线观看视频色| 亚洲无线在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av一区综合| 国内精品美女久久久久久| 国产精品一区www在线观看| 成人国产麻豆网| 日韩视频在线欧美| 岛国在线免费视频观看| 一进一出抽搐gif免费好疼| 欧美极品一区二区三区四区| 有码 亚洲区| 婷婷亚洲欧美| 精品人妻熟女av久视频| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片aaaaaa免费看小| 91在线精品国自产拍蜜月| 我的老师免费观看完整版| 精品日产1卡2卡| 久久人人爽人人爽人人片va| 国产毛片a区久久久久| 精品人妻熟女av久视频| 久久这里只有精品中国| 免费av观看视频| 午夜免费激情av| av天堂在线播放| 久久久a久久爽久久v久久| 我要搜黄色片| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影 | 欧美日韩乱码在线| 国产午夜福利久久久久久| 成熟少妇高潮喷水视频| 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 国产精品一区二区性色av| 午夜福利成人在线免费观看| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看| 久99久视频精品免费| 搡女人真爽免费视频火全软件| 国产在线男女| 欧美成人一区二区免费高清观看| 只有这里有精品99| 国产色婷婷99| 99国产精品一区二区蜜桃av| 又粗又爽又猛毛片免费看| 中文字幕人妻熟人妻熟丝袜美| 我要看日韩黄色一级片| 免费观看在线日韩| 成熟少妇高潮喷水视频| 久久久久久国产a免费观看| 高清午夜精品一区二区三区 |