• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene

    2022-12-28 09:54:32YezhuLv呂葉竹PeijiWang王培吉andChangwenZhang張昌文
    Chinese Physics B 2022年12期

    Yezhu Lv(呂葉竹), Peiji Wang(王培吉), and Changwen Zhang(張昌文)

    School of Physics and Technology,Institute of Spintronics,University of Jinan,Jinan 250022,China

    Keywords: MoYN2CSCl MXene,quantum anomalous Hall effect,topological phase,first-principles calculations

    1. Introduction

    Research on two-dimensional(2D)materials arises from the exploration of graphene,[1,2]which has different properties from three-dimensional(3D)structures.Following the synthesis of Ti3C2, MXenes have aroused extensive attention in the last few years.[3–5]It represents a great family of 2D transition metal (TM) carbides that are chemically exfoliated from the layered MAX phases. The MAX phases host a generic formula of Mn+1AXn, in which M refers to an early TM, while A usually corresponds to the group IIIA or IVA element, and X represents C or/and N, withn=1–3.[6,7]MXenes which contain a single TM element, for example, Ti2C, Nb2C and Ti3C2have firstly been synthesized in experiments.[3]In these days, a new kind of MXenes containing ordered double TM elements,for example,Mo2TiC2and Cr2TiC2,have also been found.[7,8]

    MXenes have exhibited an array of physical characters,for instance,metallicity owning excellent conductivity,[5]and half-metallic ferromagnetism.[9]The tantalizing topological properties of MXenes have been demonstrated theoretically.Undoubtedly, MXenes can be one of the best classes of materials for the exploration of the QAHE,[10]and it is possible to tune their spin–orbit coupling(SOC)strength and magnetism by replacing the transition metals or by changing the surfaces,[11]which opens rich possibilities of MXenes in numerous applications.

    Different from quantum spin Hall conductivity protected from time reversal symmetry,[12,13]an intriguing quantum phenomenon with topological property, QAHE, appears with intrinsically broken time reversal symmetry, and is generically introduced by the internal magnetism.[14]The QAHE was originally predicted in theory by Haldane,[15]and described by the quantized Hall conductance without magnetic field.[16]Some 2D materials like TM doped topological insulators,[17–19]and TM decorated graphene,[20,21]are reported to harbor the QAHE in theory. Among these materials,a global band gap is generated around the Fermi level due to the adoption of SOC,giving rise to the topologically nontrivial character. In addition, the QAHE insulators are known as Chern insulators as well,[22,23]because of their nonzero topological invariant Chern number.

    Owing to its dissipationless chiral edge state,the QAHE can be adopted to engineer next-generation high efficiency electronic devices.[24,25]Until now,diverse methods have been proposed to achieve the QAHE. Two recipes are frequently applied to combine magnetism with TIs, including doping magnetic atoms into TIs[17,26]and building a TI/magnet heterostructure.[27]The former is inclined to render the doped bulk inhomogeneous, leading to the low temperature for observation,which is detrimental to the formation of the QAHE.The latter may suffer from interfacial band bending.[27,28]Therefore,the acquired systems are usually not satisfactory.

    Here, according to the first-principles calculations,we present the discovery of the intrinsic QAHE in the 2D MoYN2CSCl MXene. It is found that the monolayer MoYN2CSCl is a ferromagnetic QAHE insulator manifesting a direct band gap around 37.3 meV with topologically nontrivial property, hosting a room-temperature estimated to be 619.1 K. We will present structure and stability, electronic structure of the monolayer MoYN2CSCl. The edge states,Berry curvature and the conductivity are considered to affirm that the nontrivial topological characters of the MoYN2CSCl possessing a Chern number ofC= 1. We also discuss the band structures and topological phases of the MoYN2CSCl with respect to changing strains and controlling of magnetic axis direction,as well as different electronic correlation effect.The obtained abundant physical properties make the monolayer MoYN2CSCl an excellent candidate for prospective applications of the QAHE and spintronics devices.

    2. Computational details

    The first-principles calculations were carried out by utilizing the projected augmented-wave method as implemented in the Viennaab initiosimulation package(VASP).[29,30]The generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof type was employed to describe the exchange–correlation interaction.[31]The vacuum buffer space larger than 15 ?A was applied to prevent the coupling between adjacent slabs. The kinetic energy cutoff of the plane wave was 500 eV.During the structural relaxation,each atom could relax until the Hellmann–Feynman force was smaller than 0.001 eV/?A.AΓ-centered 9×9×1 Monkhorst–Packk-point grid was utilized to sample the Brillouin zone. Besides, we included the van der Waals (vdW) interactions in all calculations. In consideration of the correlation effects of Y 3d electrons and Mo 3d electrons,we adopted the GGA+Uapproach withU=3 eV and 2.4 eV for Y and Mo atom, respectively.For the sake of better description on the topological characters,Berry curvature,edge states and anomalous Hall conductivity were also presented by the maximally localized Wannier functions by utilizing WANNIER90 package.[32,33]

    3. Results and discussion

    The equilibrium lattice constantsa=b=3.53 ?A of the monolayer MoYN2CSCl are obtained via energy calculation.The MoYN2CSCl constitutes by seven atomic layers that stack in the order of S–C–N–Y–N–Mo–Cl,as illustrate in Fig.1(a),

    where Y and Mo are transition metals. The local magnetic moment of the Mo atom is 2.089μB. Thus, Mo atom mainly contributes to the spin polarizations. After the structural relaxation, the atom sites and bond lengths slightly differ from those of the primitive structure.The structural stability is taken into consideration by calculating the phonon spectra, as is illustrated in Fig.1(b). No negative frequencies are found,indicating the dynamic stability of the MoYN2CSCl.

    Then we calculate the binding energies by

    whereEMoYN2CSClreprensents the total energy of the monolayer MoYN2CSCl, and other energies likeESandECrepresent the energies of atom S and C, respectively. The binding energy of the monolayer MoYN2CSCl has been determined to beEb=?30.98 eV,indicating that the monolayer can stably exist.

    Fig. 1. (a) Top and side views of the atomic structure of the MoYN2CSCl.(b)Phonon spectrum of the MoYN2CSCl.

    It is also important to examine the mechanical stability of the monolayer MoYN2CSCl by calculating elastic constants.In this 2D system, the elastic constants constitute a symmetric 6×6 tensor matrix.[34,35]The calculated results show thatC11,C12,C22,andC44are 560.3 N/m,167.8 N/m,540.7 N/m,and 194.9 N/m, respectively. The calculatedCijsatisfy with the Born criteria of mechanical stability[36]C11,C44>0 andC11C22?C212>0,which confirms the mechanical stability of the MoYN2CSCl. Due to the hexagonal symmetry,the monolayer MoYN2CSCl is mechanically isotropic. The 2D Youngs moduliC2D,shear modulusG2Dand Poisson’s ratiosv2Dcan be simply expressed as[37,38]

    The calculated Young’s moduliC2D, shear modulusG2Dand Poisson’s ratiov2Dare 510 N/m, 196.3 N/m, and 0.299, respectively. The measured MoYN2CSCl possesses an ultrahigh stiffness, which is critical to avoid the curling of the 2D material.[39,40]

    The magnetic ground state of the monolayer MoYN2CSCl is determined by comparing the energies of the ferromagnetic (FM) state and the three kinds of antiferromagnetic(AFM)configurations, as plotted in the Fig.2(a).The results determine that the FM order is the most stable magnetic state. To inspect the spin dynamical stability against temperature, Curie temperature (TC) is evaluated by utilizing Monte Carlo (MC) simulations, which is in the light of the standard 2D Heisenberg model expressed as

    whereSiandSjare spin operator at sitesiandj,respectively,andJis the exchange coupling. Here, we use the variant expression

    whereJijrefers to the exchange coupling constant fromisite tojsite,andArepresents the anisotropy energy parameter.SiandSjare the local magnetic moments atisite andjsite,whileSzimeans thezcomponent of spin vector. The summation runs over all nearest-neighbor Mo atoms. Taking into account the first nearest site pairs merely,for each magnetic atom,we can obtain

    For a 2×2×1 supercell, there are four magnetic atoms and corresponding to 32 pairs of exchange interaction. However,each magnetic atom in the supercell can be treated as the nearest neighbor twice. Considering the repeated calculation, we obtain

    Here,E′AFMandE′FMsignify the total energy of the AFM and FM configurations in the supercell, respectively. ThenJis calculated to be 14.63 meV,indicating the FM exchange coupling. At the same time, we calculate the heat capacity (CV)as follows:

    Here, ?ETrepresents that the alteration of the total energy accompanies the temperature rising fromTtoT+?T. Figure 2(b) shows thatTCis estimated to be 619.1 K, which is expected to become a feasible member for spintronic applications with the high-temperature QAHE.

    The comprehension of the microscopic origin of FM coupling in the MoYN2CSCl is that there exists a contest between direct exchange coupling (Mo–Mo) and the superexchange coupling (Mo–X–Mo,X= N or Cl), according to Fig. 3(a). There is a direct coupling between the nearestneighbor Mo, whose d orbitals have a direct overlap, leading to AFM coupling. It is proposed by the Goodenough–Kanamori–Anderson(GKA)rule[41,42]that the FM coupling is energy favorable with 90?bond angle. Based on the Heitler–London model,[43]the approximate form ofJ ≈2k+4βSis reported,whereJrefers to the exchange integral in a 2D material. And the first termkis known as a potential exchange that is positive according to the Hund’s first rule.[44]The second term composes of the hopping integralβand overlap integralS. On account of the bond angles of Mo–N–Mo (102.14?)and Mo–Cl–Mo (85.50?) closed to 90?, the Mo-d orbitals seem to be approximately orthogonal to the p orbitals of N and Cl, giving rise to an inappreciable overlap integral, then consequently a positiveJ ≈2k. As a result, the 2D monolayer MoYN2CSCl possesses an ordering of ferromagnetism according to the comparatively large FM superexchange interaction.

    Fig.2.(a)Four magnetic configurations(FM and AFM-I,AFM-II,AFM-III).The arrows indicate the orientations of magnetic moment. (b)The simulated magnetic moment and specific heat(CV)as functions of temperature.

    Fig. 3. (a) Schematic diagrams of direct exchange Mo–Mo (black arrows)and superexchange Mo–N(Cl)–Mo(red arrows)interactions. (b)Mechanism of superexchange interaction for the Mo–N(Cl)–Mo bond angle. (c)and(d)Variation of the MAE for the pristine MoYN2CSCl on the polar angle θ and azimuth angle ?,respectively.

    Besides,magnetic anisotropy energy(MAE)denotes the energy required to change the magnetic moment orientation from the easy axis to the hard axis. The MAE, regulated by MAE(θ,?)=E(θ,?)?E(θ=0?,?=0?)[E(θ,?)refers to the total energy when the spin magnetic momentSpoints to the polar angleθand azimuthal angle?],is computed by rotating the spin magnetic moment along thexyandxz/yzplanes,as can be seen in Figs.3(c)and 3(d).We observe that the MAE strongly depends onθ,and hardly depends on?. MAE is calculated to be 0 atθ=0?or 180?, and attains a maximum value around 169 μeV within thexyplane, manifesting that the monolayer MoYN2CSCl is along out of the plane direction. The long-range order can be damaged if the heat fluctuation exists, but the large MAE obtained here is in favor of stabilizing this ordering at a relatively high temperature.

    To get an in-depth understanding on electronic characters of the FM MoYN2CSCl MXene,we investigate the band structure in detail. Both GGA+Uand GGA+U+SOC band structures of the MoYN2CSCl are illustrated in Figs.4(a)and 4(b), as well as the corresponding partial band projections.The electronic structures of the spin-up and spin-down electronic orbits reveal distinct conducting behaviors. The monolayer MoYN2CSCl is a half-metal which offers 100% spin polarization intrinsically around the Fermi level. The spinup bands show a wide band gap, manifesting the insulating character,while the other channel possesses metallic conduction. According to theC3symmetry, the d orbitals of the Mo atom enclosed by the octahedral with distortion are divided into three parts dz2,(dxy,dx2?y2),and(dxz,dyz). Without SOC,the system is gapless with the degenerated Mo-dxz/dyzorbitals around theΓpoint between the valence and conduction bands.Additionally,we can see that the valence band at theKpoint is mainly contributed by Mo-dz2, as displayed in Fig.4(c). The degeneracy of dxzand dyzorbitals atΓpoint is protected byC3symmetry. When considering the effect of SOC,C3symmetry is broken, thus the doubly degenerate Mo-dxz/dyzorbitals split into two parts,leading to an energy gap with band inversion between them. Prominently,theEFin Fig.4(d)is within the SOC-induced band gap. The SOC induced band inversion is identified as the common mechanism of TIs. It is the heavy atom Mo in the MoYN2CSCl produces the strong SOC and results in an inverted energy gap. The energy gap of the MoYN2CSCl reaches 37.3 meV,which is crucial for the realization of the QAHE.

    To testify their topological nature,the chiral edge state of the MoYN2CSCl is exhibited in Fig.5(a). We can clearly observe one metallic edge state existing along theΓ →Mpath,corresponding to the QAHE insulators. The QAH conductanceσxycan also be obtained in the light of Chern numberCas[45]andu(k)represents the periodic part of the Bloch function.

    Within the energy gap range, the value ofσxyis exactly quantized toe2/h, and consistent withC=1, as plotted in Fig.5(b).At the same time,figure 5(c)indicates that a nonzero Berry curvature appears around theΓpoint,which agrees with the calculated chiral edge states.

    Applying diverse strain may have an impact on the electronic structures of materials. Figure 6 exhibits the energy gaps of the FM monolayer MoYN2CSCl at different strains.The isotropic strain is defined as

    whereaanda0denote the lattice constants of the strained and unstrained,respectively. Depending on Eq.(14),a negativeεrepresents the strain with compression, and a positiveεindicates the strain with tension.

    Fig. 4. Band structure of the MoYN2CSCl with U =2.40 eV (a) DFT+U and(b)DFT+U+SOC. (c)and(d)The partial band projections of(a)and(b),respectively.

    Fig. 5. (a) The chiral edge state of the MoYN2CSCl. (b) Calculated Anomalous Hall conductance of the MoYN2CSCl. (c) Berry curvature distribution within the first Brillouin zone.

    Fig. 6. Band structures of the monolayer MoYN2CSCl in the presence of SOC in ε =?5%(a),ε =?2.5%(b),ε =2.5%(c),ε =5%(d). (e)Monolayer energy gap as a function of biaxial in-plane strain.

    For a monolayer MoYN2CSCl, the threefold rotation symmetry preserves with the varying biaxial strain. In the absence of SOC,the degenerate point near theΓpoint is insensitive with strain. In the presence of SOC,the bands around the Fermi level are really sensitive to applied strains,as plotted in Fig. 6. The energy gap decreases monotonously as the strain changes fromε=?5% toε=5%. In this case, the valence band energy at theKpoint decreases significantly.

    However,the character of band inversion atΓpoint preserves. When applying the tensile strain, asεvaries from 0 to 5.0%,the monolayer structure possesses the robust QAHE.However,under small compressive strains,the nontrivial band topology vanishes atε=?5%, due to the gapless state between the bottom of conduction band and the top of valence band.

    Besides,we consider the effect of magnetic orientation on the topological property. When the magnetic axis is in thezdirection,the monolayer MoYN2CSCl shows a Chern-number(C=1)phase. By turning the magnetization tox-direction,it reveals that the nontrivial topological property disappears,and the trivial topological property of the MoYN2CSCl originates from no band inversion between the dxzand dyzbands.

    In this work, the electronic correlation[46–48]on band structures of the monolayer MoYN2CSCl are considered comprehensively by the GGA+U+SOC approach.The GGA+Ucalculation indicates their exchange energies are in connection with the effectiveUvalues. DiverseUranging from 0 eV to 3 eV are used for the Mo atom. Upon further increasingU,we find that without SOC the degenerate parts are getting close to the Fermi level,as plotted in Figs.7(a),7(c),and 7(e). When electronic structures of the MoYN2CSCl monolayer with SOC are calculated,the degenerate part atΓpoint turns to an energy gap,whose size is in direct proportion to theUvalue. As we can see in Fig.7(f),the gap reaches 43.1 meV whenU=3 eV.

    Fig.7.Band structures of the monolayer MoYN2CSCl in the absence of SOC in U=1 eV(a),U=2 eV(c),U=3 eV(e). (b),(d)and(f)Bands with SOC corresponding to(a),(c),and(e),respectively.

    Fig.8. (a)and(b)Electronic structures of the monolayer MoYN2CSCl without and with SOC in U =0 eV. Red and blue curves denote spin-up and spin-down channels, respectively. (c) The corresponding three-dimensional view of the MoYN2CSCl. (d) The chiral edge state of the MoYN2CSCl in U =0 eV.

    While there is a difference inU= 0 eV, without considering SOC, the electronic structure of the monolayer MoYN2CSCl is investigated, as illustrated in Fig. 8(a). Near the Fermi level, there are two inverted bands possessing opposite spins crossing, demonstrating the appearance of a 2D nodal-line semimetal.[49–53]While turning on SOC,figure 8(b)shows that a SOC band gap (~111 meV) is produced along the nodal line and leads to the QAHE withC=1. One can observe that an edge state with nontrivial topological property appears inside the SOC-induced gap.

    4. Conclusion and perspectives

    According to the first-principles DFT calculations, we systematically investigate a 2D MoYN2CSCl monolayer,which is an intrinsic FM QAHE insulator with Curie temperature estimated to be 619.1 K.Significantly,the SOC induces a topologically nontrivial band gap of 37.3 meV possessing a Chern numberC= 1 induced by band inversion between dxzand dyzorbitals. Additionally, we research the manipulation of nontrivial band gap by utilizing strain and regulating magnetic axis from thez-direction tox-direction, which leads to a vanishing of nontrivial topological property. Including different HubbardU,we find that whenU=0 eV the MoYN2CSCl transforms to a nodal-line semimetal with Chern numberC=1. Furthermore, providing guidelines for future discovery and design,we expect experimental verifications of the QAHE in the monolayer MoYN2CSCl.

    Acknowledgments

    Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City(Grant No. 2021GXRC043), Shandong Provincial Natural Science Foundation (Grant No. ZR2020QA052), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200).

    中国国产av一级| 夜夜爽夜夜爽视频| 久久草成人影院| 国语对白做爰xxxⅹ性视频网站| 爱豆传媒免费全集在线观看| 亚洲自拍偷在线| 最近中文字幕2019免费版| 国产成人午夜福利电影在线观看| 晚上一个人看的免费电影| 欧美成人a在线观看| 国产精品国产三级国产av玫瑰| 国产黄色免费在线视频| 国产精品1区2区在线观看.| 国产伦一二天堂av在线观看| 国产av不卡久久| 亚洲精品aⅴ在线观看| 成人高潮视频无遮挡免费网站| 97超碰精品成人国产| 久久久久久久亚洲中文字幕| 亚洲久久久久久中文字幕| 如何舔出高潮| 99热这里只有是精品在线观看| 日韩亚洲欧美综合| 国产在视频线精品| 丝袜美腿在线中文| 97在线视频观看| 一级片'在线观看视频| 在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区| 国产黄色免费在线视频| 欧美日韩一区二区视频在线观看视频在线 | 国产一区亚洲一区在线观看| 欧美日韩在线观看h| 亚洲精品亚洲一区二区| 人体艺术视频欧美日本| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线观看播放| 精品国内亚洲2022精品成人| 午夜久久久久精精品| 成人二区视频| 在线免费十八禁| 午夜老司机福利剧场| 免费观看无遮挡的男女| 亚洲精品国产成人久久av| 99热网站在线观看| 亚洲av成人精品一二三区| 国产三级在线视频| 寂寞人妻少妇视频99o| 最近中文字幕2019免费版| 99久久九九国产精品国产免费| 看黄色毛片网站| 亚洲av成人精品一区久久| 日日啪夜夜爽| 亚洲国产精品国产精品| 午夜精品国产一区二区电影 | 日日啪夜夜撸| 大话2 男鬼变身卡| .国产精品久久| 不卡视频在线观看欧美| 国产亚洲精品av在线| 国产欧美日韩精品一区二区| 天堂影院成人在线观看| 又爽又黄a免费视频| 免费看av在线观看网站| 成年免费大片在线观看| av女优亚洲男人天堂| 日日摸夜夜添夜夜爱| 偷拍熟女少妇极品色| 日本爱情动作片www.在线观看| av卡一久久| 国产高清有码在线观看视频| 六月丁香七月| 少妇猛男粗大的猛烈进出视频 | 日韩伦理黄色片| 久久精品国产自在天天线| 3wmmmm亚洲av在线观看| 亚洲伊人久久精品综合| 日本wwww免费看| 我的女老师完整版在线观看| 在线免费观看的www视频| 777米奇影视久久| 高清av免费在线| 综合色av麻豆| 欧美一区二区亚洲| 一级毛片久久久久久久久女| 一个人免费在线观看电影| 国产精品精品国产色婷婷| 一级二级三级毛片免费看| 校园人妻丝袜中文字幕| 色播亚洲综合网| 日韩欧美精品免费久久| 午夜福利在线观看吧| 老司机影院成人| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区国产| 久久久久性生活片| 青春草国产在线视频| 欧美丝袜亚洲另类| 婷婷色av中文字幕| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区| 色视频www国产| 中文字幕免费在线视频6| 午夜久久久久精精品| 日韩一区二区视频免费看| 久久久久久久久中文| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 成年女人看的毛片在线观看| 神马国产精品三级电影在线观看| 亚洲精品,欧美精品| 黄片无遮挡物在线观看| 日韩欧美精品v在线| 日韩欧美精品v在线| 99热网站在线观看| 亚洲欧洲日产国产| 激情 狠狠 欧美| 观看美女的网站| 天天躁日日操中文字幕| 午夜福利视频1000在线观看| 男人爽女人下面视频在线观看| 久久人人爽人人片av| 国产精品久久久久久久久免| 欧美成人精品欧美一级黄| 日韩欧美国产在线观看| 国产成人精品一,二区| 国产色婷婷99| 日日摸夜夜添夜夜添av毛片| 欧美最新免费一区二区三区| 永久网站在线| 亚洲真实伦在线观看| 99热网站在线观看| 97人妻精品一区二区三区麻豆| 哪个播放器可以免费观看大片| 日本黄大片高清| 国产免费一级a男人的天堂| 男人舔奶头视频| 久久久午夜欧美精品| 26uuu在线亚洲综合色| 最近最新中文字幕免费大全7| 国产一区二区亚洲精品在线观看| 久久久久久久午夜电影| 国产黄色小视频在线观看| 精品久久久久久久末码| 久久久久九九精品影院| 久久精品夜色国产| 成年av动漫网址| 国产成人a区在线观看| 美女被艹到高潮喷水动态| 亚洲无线观看免费| 国产精品一区二区在线观看99 | 亚洲精品亚洲一区二区| 国产一区二区三区av在线| 日本与韩国留学比较| 日日撸夜夜添| 久久久精品欧美日韩精品| 毛片一级片免费看久久久久| 一本久久精品| 久久久久网色| 99热6这里只有精品| 久久久久久久大尺度免费视频| 中文字幕人妻熟人妻熟丝袜美| 免费少妇av软件| 久久亚洲国产成人精品v| 国产精品99久久久久久久久| 亚洲国产高清在线一区二区三| 神马国产精品三级电影在线观看| 日韩伦理黄色片| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 最近中文字幕高清免费大全6| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 最近的中文字幕免费完整| 欧美成人精品欧美一级黄| 国产精品麻豆人妻色哟哟久久 | 免费电影在线观看免费观看| 久久久国产一区二区| 色播亚洲综合网| 狂野欧美白嫩少妇大欣赏| 别揉我奶头 嗯啊视频| 中文字幕av在线有码专区| 色综合色国产| 久久久久久九九精品二区国产| 日本午夜av视频| 2018国产大陆天天弄谢| 久久97久久精品| 水蜜桃什么品种好| 午夜福利成人在线免费观看| 99热这里只有是精品50| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲午夜精品一区二区久久 | 亚洲av成人av| 国产精品久久久久久av不卡| 亚洲国产精品成人久久小说| 欧美极品一区二区三区四区| 中文字幕av在线有码专区| 精品不卡国产一区二区三区| 中文字幕av成人在线电影| 一级毛片 在线播放| 嫩草影院精品99| or卡值多少钱| 熟妇人妻久久中文字幕3abv| 成人午夜精彩视频在线观看| av专区在线播放| 插逼视频在线观看| 亚洲四区av| 91久久精品国产一区二区三区| 久久精品久久精品一区二区三区| 国产视频内射| 欧美日本视频| 中文欧美无线码| 亚洲精品久久午夜乱码| 国产单亲对白刺激| 日韩成人伦理影院| 色网站视频免费| 日韩欧美精品v在线| 久久久国产一区二区| 两个人视频免费观看高清| 亚洲欧美一区二区三区国产| 99久国产av精品| 欧美一级a爱片免费观看看| 亚洲精品一二三| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 日韩三级伦理在线观看| 丝袜美腿在线中文| 人妻系列 视频| 日韩视频在线欧美| 女人久久www免费人成看片| 亚洲精品自拍成人| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 男人爽女人下面视频在线观看| 免费黄网站久久成人精品| 国产精品不卡视频一区二区| 我的老师免费观看完整版| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看| 国产精品美女特级片免费视频播放器| 国产乱人偷精品视频| www.av在线官网国产| 亚洲欧美精品专区久久| 亚洲av福利一区| 性插视频无遮挡在线免费观看| 五月天丁香电影| 乱码一卡2卡4卡精品| 国产黄片美女视频| 亚洲自拍偷在线| 乱人视频在线观看| 五月天丁香电影| 观看免费一级毛片| 看免费成人av毛片| 精品人妻视频免费看| 久久综合国产亚洲精品| 亚洲精品第二区| 亚洲av成人精品一区久久| 美女脱内裤让男人舔精品视频| eeuss影院久久| 99九九线精品视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 能在线免费观看的黄片| 国产大屁股一区二区在线视频| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| 精品一区在线观看国产| 99久久精品国产国产毛片| 亚洲av在线观看美女高潮| www.av在线官网国产| 午夜福利在线在线| xxx大片免费视频| 一区二区三区四区激情视频| 午夜激情欧美在线| 免费人成在线观看视频色| av天堂中文字幕网| 汤姆久久久久久久影院中文字幕 | 日韩av免费高清视频| 国产老妇伦熟女老妇高清| 老女人水多毛片| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 日本免费a在线| 国产精品一二三区在线看| 国产色婷婷99| 天堂中文最新版在线下载 | 国产精品不卡视频一区二区| 91久久精品电影网| 国产男人的电影天堂91| 国内精品宾馆在线| 国产成人精品一,二区| 国产有黄有色有爽视频| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 日本黄色片子视频| 国产在线男女| 成人毛片a级毛片在线播放| 国产男人的电影天堂91| 欧美日韩国产mv在线观看视频 | eeuss影院久久| 欧美激情在线99| 中文字幕免费在线视频6| 成年版毛片免费区| 男人舔女人下体高潮全视频| av国产久精品久网站免费入址| 日韩电影二区| 中文欧美无线码| 免费观看的影片在线观看| 久久久久久久久中文| 少妇被粗大猛烈的视频| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 亚洲精品一二三| 亚洲av中文av极速乱| 乱人视频在线观看| 韩国高清视频一区二区三区| 国产伦一二天堂av在线观看| 日本色播在线视频| 国产黄片视频在线免费观看| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 热99在线观看视频| videossex国产| av黄色大香蕉| 美女脱内裤让男人舔精品视频| 国产 亚洲一区二区三区 | 国精品久久久久久国模美| 欧美成人精品欧美一级黄| 日韩强制内射视频| 嫩草影院入口| 丝袜喷水一区| 国产女主播在线喷水免费视频网站 | 爱豆传媒免费全集在线观看| 99久久精品国产国产毛片| 久久久久久久亚洲中文字幕| av在线蜜桃| 国产一区二区亚洲精品在线观看| 午夜免费激情av| a级一级毛片免费在线观看| 只有这里有精品99| 国产高清有码在线观看视频| 99热这里只有精品一区| 亚洲成人av在线免费| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| 身体一侧抽搐| av一本久久久久| 啦啦啦啦在线视频资源| 黄色配什么色好看| 搡女人真爽免费视频火全软件| 国模一区二区三区四区视频| 国产免费又黄又爽又色| 国产黄色免费在线视频| 国产精品女同一区二区软件| 欧美日韩亚洲高清精品| 久久久久国产网址| 日本wwww免费看| 好男人在线观看高清免费视频| 成人美女网站在线观看视频| 纵有疾风起免费观看全集完整版 | 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 国内精品美女久久久久久| av一本久久久久| 成年免费大片在线观看| 99久久九九国产精品国产免费| 七月丁香在线播放| 国产精品美女特级片免费视频播放器| 久久久精品免费免费高清| 日本与韩国留学比较| 免费观看无遮挡的男女| 国产 一区 欧美 日韩| 纵有疾风起免费观看全集完整版 | 日韩 亚洲 欧美在线| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 成年人午夜在线观看视频 | 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 一夜夜www| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 99热6这里只有精品| 黄色配什么色好看| 五月玫瑰六月丁香| 青春草国产在线视频| 国产探花极品一区二区| www.色视频.com| 国产美女午夜福利| 国产伦在线观看视频一区| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影小说 | 亚洲精品视频女| 亚洲四区av| 国产探花极品一区二区| 亚洲精品色激情综合| 国产69精品久久久久777片| 国产精品久久久久久久电影| 精品久久久久久久久av| 天堂俺去俺来也www色官网 | 久久久午夜欧美精品| 欧美成人一区二区免费高清观看| 成年女人在线观看亚洲视频 | 国产精品福利在线免费观看| 欧美xxxx黑人xx丫x性爽| 欧美变态另类bdsm刘玥| 少妇丰满av| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 国产成人精品婷婷| 成人二区视频| 欧美xxⅹ黑人| 日韩强制内射视频| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版 | 麻豆乱淫一区二区| 精品不卡国产一区二区三区| 国产亚洲最大av| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 少妇的逼水好多| 少妇被粗大猛烈的视频| 成人av在线播放网站| 少妇高潮的动态图| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 国产精品久久视频播放| 中文字幕av在线有码专区| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 成人特级av手机在线观看| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 欧美性感艳星| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 精品久久久精品久久久| 伦精品一区二区三区| 国产成人精品婷婷| 久久精品国产亚洲av天美| 男女边摸边吃奶| 欧美成人a在线观看| 欧美高清成人免费视频www| 五月玫瑰六月丁香| 亚洲精品久久久久久婷婷小说| 日本色播在线视频| 黄色一级大片看看| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| av在线亚洲专区| 久久人人爽人人爽人人片va| 亚洲国产成人一精品久久久| ponron亚洲| 好男人视频免费观看在线| 国产伦在线观看视频一区| 国产亚洲91精品色在线| 99热这里只有精品一区| 男女啪啪激烈高潮av片| 午夜福利视频1000在线观看| 搞女人的毛片| 色综合站精品国产| 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看| 我要看日韩黄色一级片| 精品亚洲乱码少妇综合久久| 中文欧美无线码| 国产成人aa在线观看| 国产av码专区亚洲av| 免费看美女性在线毛片视频| 国产色婷婷99| 亚洲美女视频黄频| 青春草国产在线视频| ponron亚洲| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放| 欧美另类一区| 国产高清三级在线| 草草在线视频免费看| 免费看av在线观看网站| 男的添女的下面高潮视频| 国产在视频线精品| 国产精品一区二区在线观看99 | 亚洲人与动物交配视频| 永久免费av网站大全| 国产黄片视频在线免费观看| 午夜免费观看性视频| 亚洲18禁久久av| 又黄又爽又刺激的免费视频.| 九九久久精品国产亚洲av麻豆| 亚洲精品456在线播放app| 2022亚洲国产成人精品| 国产精品美女特级片免费视频播放器| 寂寞人妻少妇视频99o| 国产亚洲av嫩草精品影院| 黄色日韩在线| av在线播放精品| 尾随美女入室| 国产亚洲最大av| 美女被艹到高潮喷水动态| 亚州av有码| 中文在线观看免费www的网站| 久久久久久伊人网av| 亚洲精品国产av蜜桃| 亚洲自拍偷在线| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 汤姆久久久久久久影院中文字幕 | 亚洲三级黄色毛片| 国产成年人精品一区二区| 久久久久久久久久久丰满| 国产不卡一卡二| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| 久99久视频精品免费| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| 免费观看在线日韩| 成人无遮挡网站| 大陆偷拍与自拍| 精品久久久久久久末码| 成年版毛片免费区| 日韩av在线大香蕉| 看免费成人av毛片| 69人妻影院| 欧美不卡视频在线免费观看| 91久久精品国产一区二区成人| 国产成人freesex在线| 观看美女的网站| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 欧美变态另类bdsm刘玥| 亚洲精品国产成人久久av| 美女被艹到高潮喷水动态| 天堂√8在线中文| 免费观看精品视频网站| 精品久久国产蜜桃| 久久精品熟女亚洲av麻豆精品 | 亚洲aⅴ乱码一区二区在线播放| 精品少妇黑人巨大在线播放| 超碰av人人做人人爽久久| 久久久久久久久久成人| 午夜亚洲福利在线播放| 不卡视频在线观看欧美| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 中国国产av一级| 高清视频免费观看一区二区 | 中文字幕av在线有码专区| 淫秽高清视频在线观看| 久久久久久久久中文| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 国产伦在线观看视频一区| 青青草视频在线视频观看| 内射极品少妇av片p| 日本爱情动作片www.在线观看| www.av在线官网国产| av卡一久久| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 在线天堂最新版资源| 好男人在线观看高清免费视频| 久久久久久九九精品二区国产| 久久人人爽人人片av| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| www.色视频.com| 99热这里只有是精品50| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 乱人视频在线观看| 免费无遮挡裸体视频| 亚洲国产最新在线播放| 亚洲国产高清在线一区二区三| 在线免费十八禁| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 日韩大片免费观看网站| 亚洲人成网站高清观看| 国产成年人精品一区二区| 成年女人在线观看亚洲视频 | 综合色av麻豆| 欧美激情国产日韩精品一区| 91精品伊人久久大香线蕉| av天堂中文字幕网| 午夜精品在线福利| 3wmmmm亚洲av在线观看| av黄色大香蕉| 国国产精品蜜臀av免费| 看免费成人av毛片| 春色校园在线视频观看|