• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene

    2022-12-28 09:54:32YezhuLv呂葉竹PeijiWang王培吉andChangwenZhang張昌文
    Chinese Physics B 2022年12期

    Yezhu Lv(呂葉竹), Peiji Wang(王培吉), and Changwen Zhang(張昌文)

    School of Physics and Technology,Institute of Spintronics,University of Jinan,Jinan 250022,China

    Keywords: MoYN2CSCl MXene,quantum anomalous Hall effect,topological phase,first-principles calculations

    1. Introduction

    Research on two-dimensional(2D)materials arises from the exploration of graphene,[1,2]which has different properties from three-dimensional(3D)structures.Following the synthesis of Ti3C2, MXenes have aroused extensive attention in the last few years.[3–5]It represents a great family of 2D transition metal (TM) carbides that are chemically exfoliated from the layered MAX phases. The MAX phases host a generic formula of Mn+1AXn, in which M refers to an early TM, while A usually corresponds to the group IIIA or IVA element, and X represents C or/and N, withn=1–3.[6,7]MXenes which contain a single TM element, for example, Ti2C, Nb2C and Ti3C2have firstly been synthesized in experiments.[3]In these days, a new kind of MXenes containing ordered double TM elements,for example,Mo2TiC2and Cr2TiC2,have also been found.[7,8]

    MXenes have exhibited an array of physical characters,for instance,metallicity owning excellent conductivity,[5]and half-metallic ferromagnetism.[9]The tantalizing topological properties of MXenes have been demonstrated theoretically.Undoubtedly, MXenes can be one of the best classes of materials for the exploration of the QAHE,[10]and it is possible to tune their spin–orbit coupling(SOC)strength and magnetism by replacing the transition metals or by changing the surfaces,[11]which opens rich possibilities of MXenes in numerous applications.

    Different from quantum spin Hall conductivity protected from time reversal symmetry,[12,13]an intriguing quantum phenomenon with topological property, QAHE, appears with intrinsically broken time reversal symmetry, and is generically introduced by the internal magnetism.[14]The QAHE was originally predicted in theory by Haldane,[15]and described by the quantized Hall conductance without magnetic field.[16]Some 2D materials like TM doped topological insulators,[17–19]and TM decorated graphene,[20,21]are reported to harbor the QAHE in theory. Among these materials,a global band gap is generated around the Fermi level due to the adoption of SOC,giving rise to the topologically nontrivial character. In addition, the QAHE insulators are known as Chern insulators as well,[22,23]because of their nonzero topological invariant Chern number.

    Owing to its dissipationless chiral edge state,the QAHE can be adopted to engineer next-generation high efficiency electronic devices.[24,25]Until now,diverse methods have been proposed to achieve the QAHE. Two recipes are frequently applied to combine magnetism with TIs, including doping magnetic atoms into TIs[17,26]and building a TI/magnet heterostructure.[27]The former is inclined to render the doped bulk inhomogeneous, leading to the low temperature for observation,which is detrimental to the formation of the QAHE.The latter may suffer from interfacial band bending.[27,28]Therefore,the acquired systems are usually not satisfactory.

    Here, according to the first-principles calculations,we present the discovery of the intrinsic QAHE in the 2D MoYN2CSCl MXene. It is found that the monolayer MoYN2CSCl is a ferromagnetic QAHE insulator manifesting a direct band gap around 37.3 meV with topologically nontrivial property, hosting a room-temperature estimated to be 619.1 K. We will present structure and stability, electronic structure of the monolayer MoYN2CSCl. The edge states,Berry curvature and the conductivity are considered to affirm that the nontrivial topological characters of the MoYN2CSCl possessing a Chern number ofC= 1. We also discuss the band structures and topological phases of the MoYN2CSCl with respect to changing strains and controlling of magnetic axis direction,as well as different electronic correlation effect.The obtained abundant physical properties make the monolayer MoYN2CSCl an excellent candidate for prospective applications of the QAHE and spintronics devices.

    2. Computational details

    The first-principles calculations were carried out by utilizing the projected augmented-wave method as implemented in the Viennaab initiosimulation package(VASP).[29,30]The generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof type was employed to describe the exchange–correlation interaction.[31]The vacuum buffer space larger than 15 ?A was applied to prevent the coupling between adjacent slabs. The kinetic energy cutoff of the plane wave was 500 eV.During the structural relaxation,each atom could relax until the Hellmann–Feynman force was smaller than 0.001 eV/?A.AΓ-centered 9×9×1 Monkhorst–Packk-point grid was utilized to sample the Brillouin zone. Besides, we included the van der Waals (vdW) interactions in all calculations. In consideration of the correlation effects of Y 3d electrons and Mo 3d electrons,we adopted the GGA+Uapproach withU=3 eV and 2.4 eV for Y and Mo atom, respectively.For the sake of better description on the topological characters,Berry curvature,edge states and anomalous Hall conductivity were also presented by the maximally localized Wannier functions by utilizing WANNIER90 package.[32,33]

    3. Results and discussion

    The equilibrium lattice constantsa=b=3.53 ?A of the monolayer MoYN2CSCl are obtained via energy calculation.The MoYN2CSCl constitutes by seven atomic layers that stack in the order of S–C–N–Y–N–Mo–Cl,as illustrate in Fig.1(a),

    where Y and Mo are transition metals. The local magnetic moment of the Mo atom is 2.089μB. Thus, Mo atom mainly contributes to the spin polarizations. After the structural relaxation, the atom sites and bond lengths slightly differ from those of the primitive structure.The structural stability is taken into consideration by calculating the phonon spectra, as is illustrated in Fig.1(b). No negative frequencies are found,indicating the dynamic stability of the MoYN2CSCl.

    Then we calculate the binding energies by

    whereEMoYN2CSClreprensents the total energy of the monolayer MoYN2CSCl, and other energies likeESandECrepresent the energies of atom S and C, respectively. The binding energy of the monolayer MoYN2CSCl has been determined to beEb=?30.98 eV,indicating that the monolayer can stably exist.

    Fig. 1. (a) Top and side views of the atomic structure of the MoYN2CSCl.(b)Phonon spectrum of the MoYN2CSCl.

    It is also important to examine the mechanical stability of the monolayer MoYN2CSCl by calculating elastic constants.In this 2D system, the elastic constants constitute a symmetric 6×6 tensor matrix.[34,35]The calculated results show thatC11,C12,C22,andC44are 560.3 N/m,167.8 N/m,540.7 N/m,and 194.9 N/m, respectively. The calculatedCijsatisfy with the Born criteria of mechanical stability[36]C11,C44>0 andC11C22?C212>0,which confirms the mechanical stability of the MoYN2CSCl. Due to the hexagonal symmetry,the monolayer MoYN2CSCl is mechanically isotropic. The 2D Youngs moduliC2D,shear modulusG2Dand Poisson’s ratiosv2Dcan be simply expressed as[37,38]

    The calculated Young’s moduliC2D, shear modulusG2Dand Poisson’s ratiov2Dare 510 N/m, 196.3 N/m, and 0.299, respectively. The measured MoYN2CSCl possesses an ultrahigh stiffness, which is critical to avoid the curling of the 2D material.[39,40]

    The magnetic ground state of the monolayer MoYN2CSCl is determined by comparing the energies of the ferromagnetic (FM) state and the three kinds of antiferromagnetic(AFM)configurations, as plotted in the Fig.2(a).The results determine that the FM order is the most stable magnetic state. To inspect the spin dynamical stability against temperature, Curie temperature (TC) is evaluated by utilizing Monte Carlo (MC) simulations, which is in the light of the standard 2D Heisenberg model expressed as

    whereSiandSjare spin operator at sitesiandj,respectively,andJis the exchange coupling. Here, we use the variant expression

    whereJijrefers to the exchange coupling constant fromisite tojsite,andArepresents the anisotropy energy parameter.SiandSjare the local magnetic moments atisite andjsite,whileSzimeans thezcomponent of spin vector. The summation runs over all nearest-neighbor Mo atoms. Taking into account the first nearest site pairs merely,for each magnetic atom,we can obtain

    For a 2×2×1 supercell, there are four magnetic atoms and corresponding to 32 pairs of exchange interaction. However,each magnetic atom in the supercell can be treated as the nearest neighbor twice. Considering the repeated calculation, we obtain

    Here,E′AFMandE′FMsignify the total energy of the AFM and FM configurations in the supercell, respectively. ThenJis calculated to be 14.63 meV,indicating the FM exchange coupling. At the same time, we calculate the heat capacity (CV)as follows:

    Here, ?ETrepresents that the alteration of the total energy accompanies the temperature rising fromTtoT+?T. Figure 2(b) shows thatTCis estimated to be 619.1 K, which is expected to become a feasible member for spintronic applications with the high-temperature QAHE.

    The comprehension of the microscopic origin of FM coupling in the MoYN2CSCl is that there exists a contest between direct exchange coupling (Mo–Mo) and the superexchange coupling (Mo–X–Mo,X= N or Cl), according to Fig. 3(a). There is a direct coupling between the nearestneighbor Mo, whose d orbitals have a direct overlap, leading to AFM coupling. It is proposed by the Goodenough–Kanamori–Anderson(GKA)rule[41,42]that the FM coupling is energy favorable with 90?bond angle. Based on the Heitler–London model,[43]the approximate form ofJ ≈2k+4βSis reported,whereJrefers to the exchange integral in a 2D material. And the first termkis known as a potential exchange that is positive according to the Hund’s first rule.[44]The second term composes of the hopping integralβand overlap integralS. On account of the bond angles of Mo–N–Mo (102.14?)and Mo–Cl–Mo (85.50?) closed to 90?, the Mo-d orbitals seem to be approximately orthogonal to the p orbitals of N and Cl, giving rise to an inappreciable overlap integral, then consequently a positiveJ ≈2k. As a result, the 2D monolayer MoYN2CSCl possesses an ordering of ferromagnetism according to the comparatively large FM superexchange interaction.

    Fig.2.(a)Four magnetic configurations(FM and AFM-I,AFM-II,AFM-III).The arrows indicate the orientations of magnetic moment. (b)The simulated magnetic moment and specific heat(CV)as functions of temperature.

    Fig. 3. (a) Schematic diagrams of direct exchange Mo–Mo (black arrows)and superexchange Mo–N(Cl)–Mo(red arrows)interactions. (b)Mechanism of superexchange interaction for the Mo–N(Cl)–Mo bond angle. (c)and(d)Variation of the MAE for the pristine MoYN2CSCl on the polar angle θ and azimuth angle ?,respectively.

    Besides,magnetic anisotropy energy(MAE)denotes the energy required to change the magnetic moment orientation from the easy axis to the hard axis. The MAE, regulated by MAE(θ,?)=E(θ,?)?E(θ=0?,?=0?)[E(θ,?)refers to the total energy when the spin magnetic momentSpoints to the polar angleθand azimuthal angle?],is computed by rotating the spin magnetic moment along thexyandxz/yzplanes,as can be seen in Figs.3(c)and 3(d).We observe that the MAE strongly depends onθ,and hardly depends on?. MAE is calculated to be 0 atθ=0?or 180?, and attains a maximum value around 169 μeV within thexyplane, manifesting that the monolayer MoYN2CSCl is along out of the plane direction. The long-range order can be damaged if the heat fluctuation exists, but the large MAE obtained here is in favor of stabilizing this ordering at a relatively high temperature.

    To get an in-depth understanding on electronic characters of the FM MoYN2CSCl MXene,we investigate the band structure in detail. Both GGA+Uand GGA+U+SOC band structures of the MoYN2CSCl are illustrated in Figs.4(a)and 4(b), as well as the corresponding partial band projections.The electronic structures of the spin-up and spin-down electronic orbits reveal distinct conducting behaviors. The monolayer MoYN2CSCl is a half-metal which offers 100% spin polarization intrinsically around the Fermi level. The spinup bands show a wide band gap, manifesting the insulating character,while the other channel possesses metallic conduction. According to theC3symmetry, the d orbitals of the Mo atom enclosed by the octahedral with distortion are divided into three parts dz2,(dxy,dx2?y2),and(dxz,dyz). Without SOC,the system is gapless with the degenerated Mo-dxz/dyzorbitals around theΓpoint between the valence and conduction bands.Additionally,we can see that the valence band at theKpoint is mainly contributed by Mo-dz2, as displayed in Fig.4(c). The degeneracy of dxzand dyzorbitals atΓpoint is protected byC3symmetry. When considering the effect of SOC,C3symmetry is broken, thus the doubly degenerate Mo-dxz/dyzorbitals split into two parts,leading to an energy gap with band inversion between them. Prominently,theEFin Fig.4(d)is within the SOC-induced band gap. The SOC induced band inversion is identified as the common mechanism of TIs. It is the heavy atom Mo in the MoYN2CSCl produces the strong SOC and results in an inverted energy gap. The energy gap of the MoYN2CSCl reaches 37.3 meV,which is crucial for the realization of the QAHE.

    To testify their topological nature,the chiral edge state of the MoYN2CSCl is exhibited in Fig.5(a). We can clearly observe one metallic edge state existing along theΓ →Mpath,corresponding to the QAHE insulators. The QAH conductanceσxycan also be obtained in the light of Chern numberCas[45]andu(k)represents the periodic part of the Bloch function.

    Within the energy gap range, the value ofσxyis exactly quantized toe2/h, and consistent withC=1, as plotted in Fig.5(b).At the same time,figure 5(c)indicates that a nonzero Berry curvature appears around theΓpoint,which agrees with the calculated chiral edge states.

    Applying diverse strain may have an impact on the electronic structures of materials. Figure 6 exhibits the energy gaps of the FM monolayer MoYN2CSCl at different strains.The isotropic strain is defined as

    whereaanda0denote the lattice constants of the strained and unstrained,respectively. Depending on Eq.(14),a negativeεrepresents the strain with compression, and a positiveεindicates the strain with tension.

    Fig. 4. Band structure of the MoYN2CSCl with U =2.40 eV (a) DFT+U and(b)DFT+U+SOC. (c)and(d)The partial band projections of(a)and(b),respectively.

    Fig. 5. (a) The chiral edge state of the MoYN2CSCl. (b) Calculated Anomalous Hall conductance of the MoYN2CSCl. (c) Berry curvature distribution within the first Brillouin zone.

    Fig. 6. Band structures of the monolayer MoYN2CSCl in the presence of SOC in ε =?5%(a),ε =?2.5%(b),ε =2.5%(c),ε =5%(d). (e)Monolayer energy gap as a function of biaxial in-plane strain.

    For a monolayer MoYN2CSCl, the threefold rotation symmetry preserves with the varying biaxial strain. In the absence of SOC,the degenerate point near theΓpoint is insensitive with strain. In the presence of SOC,the bands around the Fermi level are really sensitive to applied strains,as plotted in Fig. 6. The energy gap decreases monotonously as the strain changes fromε=?5% toε=5%. In this case, the valence band energy at theKpoint decreases significantly.

    However,the character of band inversion atΓpoint preserves. When applying the tensile strain, asεvaries from 0 to 5.0%,the monolayer structure possesses the robust QAHE.However,under small compressive strains,the nontrivial band topology vanishes atε=?5%, due to the gapless state between the bottom of conduction band and the top of valence band.

    Besides,we consider the effect of magnetic orientation on the topological property. When the magnetic axis is in thezdirection,the monolayer MoYN2CSCl shows a Chern-number(C=1)phase. By turning the magnetization tox-direction,it reveals that the nontrivial topological property disappears,and the trivial topological property of the MoYN2CSCl originates from no band inversion between the dxzand dyzbands.

    In this work, the electronic correlation[46–48]on band structures of the monolayer MoYN2CSCl are considered comprehensively by the GGA+U+SOC approach.The GGA+Ucalculation indicates their exchange energies are in connection with the effectiveUvalues. DiverseUranging from 0 eV to 3 eV are used for the Mo atom. Upon further increasingU,we find that without SOC the degenerate parts are getting close to the Fermi level,as plotted in Figs.7(a),7(c),and 7(e). When electronic structures of the MoYN2CSCl monolayer with SOC are calculated,the degenerate part atΓpoint turns to an energy gap,whose size is in direct proportion to theUvalue. As we can see in Fig.7(f),the gap reaches 43.1 meV whenU=3 eV.

    Fig.7.Band structures of the monolayer MoYN2CSCl in the absence of SOC in U=1 eV(a),U=2 eV(c),U=3 eV(e). (b),(d)and(f)Bands with SOC corresponding to(a),(c),and(e),respectively.

    Fig.8. (a)and(b)Electronic structures of the monolayer MoYN2CSCl without and with SOC in U =0 eV. Red and blue curves denote spin-up and spin-down channels, respectively. (c) The corresponding three-dimensional view of the MoYN2CSCl. (d) The chiral edge state of the MoYN2CSCl in U =0 eV.

    While there is a difference inU= 0 eV, without considering SOC, the electronic structure of the monolayer MoYN2CSCl is investigated, as illustrated in Fig. 8(a). Near the Fermi level, there are two inverted bands possessing opposite spins crossing, demonstrating the appearance of a 2D nodal-line semimetal.[49–53]While turning on SOC,figure 8(b)shows that a SOC band gap (~111 meV) is produced along the nodal line and leads to the QAHE withC=1. One can observe that an edge state with nontrivial topological property appears inside the SOC-induced gap.

    4. Conclusion and perspectives

    According to the first-principles DFT calculations, we systematically investigate a 2D MoYN2CSCl monolayer,which is an intrinsic FM QAHE insulator with Curie temperature estimated to be 619.1 K.Significantly,the SOC induces a topologically nontrivial band gap of 37.3 meV possessing a Chern numberC= 1 induced by band inversion between dxzand dyzorbitals. Additionally, we research the manipulation of nontrivial band gap by utilizing strain and regulating magnetic axis from thez-direction tox-direction, which leads to a vanishing of nontrivial topological property. Including different HubbardU,we find that whenU=0 eV the MoYN2CSCl transforms to a nodal-line semimetal with Chern numberC=1. Furthermore, providing guidelines for future discovery and design,we expect experimental verifications of the QAHE in the monolayer MoYN2CSCl.

    Acknowledgments

    Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City(Grant No. 2021GXRC043), Shandong Provincial Natural Science Foundation (Grant No. ZR2020QA052), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200).

    黄色日韩在线| 中文字幕av成人在线电影| 三级国产精品欧美在线观看| 国产精品,欧美在线| 午夜亚洲福利在线播放| 欧美成人精品欧美一级黄| 国产激情偷乱视频一区二区| 亚洲一区二区三区色噜噜| 香蕉av资源在线| 最近中文字幕高清免费大全6| 久99久视频精品免费| 久久久a久久爽久久v久久| 大香蕉久久网| 热99在线观看视频| 成人无遮挡网站| 欧美另类亚洲清纯唯美| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 深夜精品福利| 精品欧美国产一区二区三| 日韩欧美国产在线观看| 成人特级黄色片久久久久久久| 国产高清激情床上av| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 搡老岳熟女国产| 18禁在线播放成人免费| 久久精品国产99精品国产亚洲性色| 欧美高清成人免费视频www| 日韩一本色道免费dvd| 哪里可以看免费的av片| 亚洲成人久久爱视频| 人妻丰满熟妇av一区二区三区| 国产精品国产高清国产av| 国产真实伦视频高清在线观看| 亚洲最大成人av| 国产成人aa在线观看| 成人综合一区亚洲| 日韩一本色道免费dvd| 有码 亚洲区| 日本欧美国产在线视频| 午夜视频国产福利| 最好的美女福利视频网| 一区二区三区四区激情视频 | 天堂av国产一区二区熟女人妻| 日本黄大片高清| av免费在线看不卡| 国产片特级美女逼逼视频| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 天堂动漫精品| 国产黄色视频一区二区在线观看 | 国产精品日韩av在线免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲久久久久久中文字幕| 欧美不卡视频在线免费观看| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 国产精品久久久久久亚洲av鲁大| 成人漫画全彩无遮挡| 国产视频内射| 亚洲欧美日韩东京热| 一级a爱片免费观看的视频| 日韩欧美免费精品| 简卡轻食公司| 亚洲欧美日韩高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 网址你懂的国产日韩在线| 亚洲中文字幕日韩| 22中文网久久字幕| 欧美日韩精品成人综合77777| www.色视频.com| 九色成人免费人妻av| 听说在线观看完整版免费高清| 成人午夜高清在线视频| 国产成人影院久久av| 99热6这里只有精品| 亚洲精品456在线播放app| 精品99又大又爽又粗少妇毛片| 青春草视频在线免费观看| 国产伦一二天堂av在线观看| 国产极品精品免费视频能看的| 精品久久久久久久久亚洲| 校园人妻丝袜中文字幕| 国产又黄又爽又无遮挡在线| 国产精品综合久久久久久久免费| 亚洲av一区综合| 如何舔出高潮| 午夜福利在线观看免费完整高清在 | 日本欧美国产在线视频| 好男人在线观看高清免费视频| 亚洲av不卡在线观看| 午夜精品一区二区三区免费看| 小说图片视频综合网站| 国产男靠女视频免费网站| 成人三级黄色视频| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 久久久国产成人精品二区| 免费人成在线观看视频色| h日本视频在线播放| 成年女人看的毛片在线观看| avwww免费| 精品久久国产蜜桃| 岛国在线免费视频观看| 亚洲国产精品成人久久小说 | 搞女人的毛片| 久久久久久久久大av| 亚洲四区av| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 国产精品久久久久久av不卡| 免费一级毛片在线播放高清视频| 日本色播在线视频| 毛片女人毛片| 亚洲人成网站在线观看播放| 在线观看一区二区三区| 麻豆成人午夜福利视频| 伦精品一区二区三区| 久久精品国产自在天天线| 18禁在线无遮挡免费观看视频 | 中文字幕熟女人妻在线| 免费黄网站久久成人精品| 亚洲中文字幕日韩| 超碰av人人做人人爽久久| 老司机福利观看| 国产精品国产高清国产av| 免费电影在线观看免费观看| 色视频www国产| 国产毛片a区久久久久| 精品一区二区免费观看| 秋霞在线观看毛片| 日本成人三级电影网站| 91久久精品国产一区二区三区| 老司机影院成人| 久99久视频精品免费| 在线免费观看的www视频| 床上黄色一级片| 亚洲国产欧美人成| 免费搜索国产男女视频| 99热这里只有是精品在线观看| 免费人成在线观看视频色| 黄色配什么色好看| 波多野结衣高清无吗| 深夜精品福利| 亚洲精品影视一区二区三区av| 国产视频内射| 天堂网av新在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人中文字幕在线播放| 我要看日韩黄色一级片| 一本一本综合久久| 国产高清三级在线| 亚洲精品一卡2卡三卡4卡5卡| 高清午夜精品一区二区三区 | 亚洲一区二区三区色噜噜| 九九热线精品视视频播放| 91精品国产九色| 九九在线视频观看精品| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 精品一区二区三区人妻视频| 亚洲av熟女| 又黄又爽又刺激的免费视频.| 日韩一本色道免费dvd| 一区二区三区四区激情视频 | 色哟哟哟哟哟哟| 深爱激情五月婷婷| 国产乱人偷精品视频| 一区二区三区高清视频在线| 十八禁网站免费在线| 国产亚洲精品久久久com| 午夜视频国产福利| 免费av毛片视频| 久久精品夜色国产| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 欧美成人精品欧美一级黄| 免费观看在线日韩| 岛国在线免费视频观看| 国产精品电影一区二区三区| av国产免费在线观看| 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放 | 18禁黄网站禁片免费观看直播| 亚洲精品久久国产高清桃花| 伦精品一区二区三区| 免费电影在线观看免费观看| 老司机福利观看| 两个人的视频大全免费| 九九热线精品视视频播放| 别揉我奶头~嗯~啊~动态视频| 亚洲激情五月婷婷啪啪| 色在线成人网| 亚洲无线在线观看| 乱系列少妇在线播放| 搞女人的毛片| a级毛片免费高清观看在线播放| 老司机福利观看| 1000部很黄的大片| 嫩草影院新地址| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 床上黄色一级片| 亚洲久久久久久中文字幕| 久久热精品热| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 日韩三级伦理在线观看| 免费黄网站久久成人精品| 国产乱人视频| 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放 | 久久热精品热| 亚洲高清免费不卡视频| 免费看光身美女| 天堂√8在线中文| 精品日产1卡2卡| 两个人的视频大全免费| 高清毛片免费观看视频网站| 国产精品一区二区三区四区免费观看 | 极品教师在线视频| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 日韩精品有码人妻一区| 国产精品一二三区在线看| 欧美三级亚洲精品| 美女内射精品一级片tv| 亚洲最大成人中文| 国产精品女同一区二区软件| 淫妇啪啪啪对白视频| 国产一区二区在线观看日韩| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 成人漫画全彩无遮挡| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 国产日本99.免费观看| 国产视频一区二区在线看| 偷拍熟女少妇极品色| 人妻丰满熟妇av一区二区三区| 男人舔女人下体高潮全视频| 又爽又黄无遮挡网站| 国产成人精品久久久久久| 日本a在线网址| 欧美最黄视频在线播放免费| 国产成年人精品一区二区| 人妻久久中文字幕网| 日韩一本色道免费dvd| 国产成人影院久久av| 亚洲最大成人中文| 亚洲av一区综合| 美女被艹到高潮喷水动态| 久久这里只有精品中国| 欧美极品一区二区三区四区| 午夜福利18| 最近在线观看免费完整版| 波野结衣二区三区在线| 一夜夜www| 国产精品电影一区二区三区| 我的女老师完整版在线观看| 国产精品久久久久久久久免| av在线观看视频网站免费| 最近在线观看免费完整版| 波野结衣二区三区在线| 精品免费久久久久久久清纯| 亚洲欧美成人精品一区二区| 亚洲无线在线观看| 天堂av国产一区二区熟女人妻| av免费在线看不卡| 久久久久精品国产欧美久久久| 精品人妻视频免费看| 能在线免费观看的黄片| 亚洲中文字幕一区二区三区有码在线看| 卡戴珊不雅视频在线播放| 18+在线观看网站| 国产男人的电影天堂91| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 亚洲精品久久国产高清桃花| 一级黄色大片毛片| 久久午夜福利片| 久久久久久久久久成人| 一级毛片久久久久久久久女| 国产成人一区二区在线| 欧美性感艳星| 国产精品不卡视频一区二区| 日韩强制内射视频| 国产av麻豆久久久久久久| 高清日韩中文字幕在线| 亚洲第一电影网av| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 国产三级在线视频| 在线看三级毛片| 1000部很黄的大片| 最近在线观看免费完整版| 九九在线视频观看精品| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看 | 成人美女网站在线观看视频| 久久中文看片网| 精品久久久久久成人av| 日本 av在线| 亚洲一区高清亚洲精品| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 欧美日韩一区二区视频在线观看视频在线 | 床上黄色一级片| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 久久久a久久爽久久v久久| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区 | 亚洲精品日韩av片在线观看| 国产精品久久久久久久久免| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 中文字幕av成人在线电影| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 国产片特级美女逼逼视频| 免费观看在线日韩| 老司机影院成人| 寂寞人妻少妇视频99o| 午夜老司机福利剧场| 免费无遮挡裸体视频| 欧美激情在线99| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 又黄又爽又免费观看的视频| 男女视频在线观看网站免费| 三级经典国产精品| 日韩欧美精品免费久久| 在线天堂最新版资源| 久久久久国内视频| 免费观看在线日韩| 亚洲国产精品成人久久小说 | 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 亚洲自偷自拍三级| 美女被艹到高潮喷水动态| 亚洲熟妇熟女久久| 国产伦精品一区二区三区四那| 国产成人福利小说| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 国产69精品久久久久777片| 三级男女做爰猛烈吃奶摸视频| 人人妻人人澡欧美一区二区| 精品久久久久久久末码| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区| 亚洲欧美中文字幕日韩二区| 成人永久免费在线观看视频| 亚洲精品色激情综合| 国产69精品久久久久777片| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 免费观看精品视频网站| 91av网一区二区| 熟女人妻精品中文字幕| 波野结衣二区三区在线| 亚洲最大成人av| 国产色爽女视频免费观看| 精品人妻视频免费看| 欧美色视频一区免费| 成年版毛片免费区| 成年女人永久免费观看视频| 天堂影院成人在线观看| 婷婷色综合大香蕉| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 国产午夜福利久久久久久| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 一级黄片播放器| av天堂在线播放| 久久99热6这里只有精品| 国产真实伦视频高清在线观看| 精品午夜福利视频在线观看一区| 成人国产麻豆网| 国产av一区在线观看免费| 99久久中文字幕三级久久日本| 老女人水多毛片| 亚洲18禁久久av| 黄色欧美视频在线观看| a级毛片a级免费在线| 亚洲无线观看免费| 一区二区三区四区激情视频 | 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产精品三级大全| 亚洲性久久影院| 搡老妇女老女人老熟妇| 精品福利观看| 免费观看的影片在线观看| 寂寞人妻少妇视频99o| 能在线免费观看的黄片| 国产午夜精品久久久久久一区二区三区 | 日韩成人伦理影院| 日本爱情动作片www.在线观看 | 老司机影院成人| 男女啪啪激烈高潮av片| 免费看日本二区| 日本 av在线| 老师上课跳d突然被开到最大视频| 黑人高潮一二区| 看片在线看免费视频| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 69人妻影院| 免费无遮挡裸体视频| 国产成人影院久久av| 悠悠久久av| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 欧美高清性xxxxhd video| 久久中文看片网| 成人一区二区视频在线观看| 偷拍熟女少妇极品色| 久久久久国产精品人妻aⅴ院| 亚洲高清免费不卡视频| 亚洲成人久久性| 三级毛片av免费| 日本五十路高清| 午夜福利成人在线免费观看| 美女黄网站色视频| 人人妻人人看人人澡| 日本爱情动作片www.在线观看 | av女优亚洲男人天堂| 亚洲精品在线观看二区| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 麻豆av噜噜一区二区三区| 搡老岳熟女国产| 国产乱人偷精品视频| 国产av不卡久久| 亚洲欧美成人精品一区二区| 男女视频在线观看网站免费| 国产精品一区二区性色av| 免费在线观看成人毛片| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆 | 99久久成人亚洲精品观看| 亚洲18禁久久av| 国产精品人妻久久久久久| 日日干狠狠操夜夜爽| 欧美区成人在线视频| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 成年av动漫网址| 五月玫瑰六月丁香| 亚洲无线观看免费| 成人无遮挡网站| 国产爱豆传媒在线观看| 成年女人毛片免费观看观看9| 久久这里只有精品中国| 可以在线观看毛片的网站| 日本免费a在线| 婷婷精品国产亚洲av| 99在线视频只有这里精品首页| 午夜福利在线在线| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 天天一区二区日本电影三级| 一本久久中文字幕| 国产av在哪里看| 成年av动漫网址| 亚洲av成人av| 波多野结衣巨乳人妻| 综合色丁香网| 亚洲国产精品合色在线| 免费观看的影片在线观看| 久久久午夜欧美精品| 亚洲美女搞黄在线观看 | 精品少妇黑人巨大在线播放 | 欧美在线一区亚洲| 色哟哟哟哟哟哟| 干丝袜人妻中文字幕| 日日撸夜夜添| 在线播放无遮挡| 美女内射精品一级片tv| 又粗又爽又猛毛片免费看| 欧美另类亚洲清纯唯美| 床上黄色一级片| 日本熟妇午夜| 亚洲av免费高清在线观看| 午夜影院日韩av| 中文字幕人妻熟人妻熟丝袜美| 国产精品三级大全| 免费无遮挡裸体视频| 别揉我奶头~嗯~啊~动态视频| 国产 一区精品| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 变态另类成人亚洲欧美熟女| 午夜激情福利司机影院| 一区福利在线观看| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩在线中文字幕 | 黄色日韩在线| 三级毛片av免费| 国产精品av视频在线免费观看| 日韩一区二区视频免费看| а√天堂www在线а√下载| 成人特级黄色片久久久久久久| 亚洲国产精品成人久久小说 | 亚洲乱码一区二区免费版| 国产精品永久免费网站| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 乱系列少妇在线播放| 少妇丰满av| 日韩一区二区视频免费看| 色播亚洲综合网| 亚洲中文字幕日韩| 韩国av在线不卡| 久久久久久久久大av| 国产亚洲精品av在线| 性色avwww在线观看| 日本五十路高清| 老女人水多毛片| 亚洲av一区综合| 午夜福利在线观看免费完整高清在 | 午夜精品国产一区二区电影 | 日韩欧美免费精品| 日本黄大片高清| 成人二区视频| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 毛片女人毛片| av国产免费在线观看| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 嫩草影视91久久| 精品人妻一区二区三区麻豆 | 国产单亲对白刺激| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 成年av动漫网址| 国产精品av视频在线免费观看| 精品人妻一区二区三区麻豆 | 毛片女人毛片| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 蜜臀久久99精品久久宅男| 久久久久性生活片| 欧美日韩精品成人综合77777| 日本在线视频免费播放| 亚洲av.av天堂| 国产在线精品亚洲第一网站| 色哟哟·www| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 精品久久久久久久人妻蜜臀av| 成人漫画全彩无遮挡| 伊人久久精品亚洲午夜| 亚洲精品国产成人久久av| 久久久久久久亚洲中文字幕| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 久久6这里有精品| 网址你懂的国产日韩在线| 久久午夜亚洲精品久久| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 丰满的人妻完整版| 黄色欧美视频在线观看| 日本免费a在线| 成年女人看的毛片在线观看| 久久99热6这里只有精品| 香蕉av资源在线| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看吧| 22中文网久久字幕| 亚洲精品456在线播放app| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| 熟女电影av网| 国产精品久久视频播放| 亚洲av不卡在线观看| 免费av毛片视频| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 不卡视频在线观看欧美| 我要搜黄色片| 搞女人的毛片| 插阴视频在线观看视频| 日韩人妻高清精品专区| 一级av片app|