• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large positive magnetoresistance in photocarrier-doped potassium tantalites

    2022-12-28 09:54:32RuiShuYang楊睿姝DingBangWang王定邦YangZhao趙陽ShuanHuWang王拴虎andKeXinJin金克新
    Chinese Physics B 2022年12期
    關(guān)鍵詞:趙陽

    Rui-Shu Yang(楊睿姝), Ding-Bang Wang(王定邦), Yang Zhao(趙陽), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新)

    Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions,School of Physical Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: photocarriers,large positive magnetoresistance,extreme quantum limit

    1. Introduction

    The magnetoresistance(MR)effect has been extensively studied since its discovery in 1856. This effect can be used in sensors, memory devices, and the emergent physics of complex interactions. Many different MRs, such as ordinary MR,[1,2]anisotropic MR,[3,4]tunnel MR,[5]giant MR,[6]and colossal MR[7,8]have been investigated in magnetic and multilayer materials. Generally,the positive and conventional MR has a magnitude of only a few percent. It is even negligible in some nonmagnetic materials due to the curving of the carrier trajectory by the Lorentz force. Nevertheless, a large and linear MR effect breaks this familiar rule. It has been observed in several non-magnetic semiconductors,such as Si,[9]Bi,[10,11]PtBi2,[12]and graphene,[13]raising many lively discussions in the fields of condensed physics and functional materials. Moreover, the kind of MR in nonmagnetic materials can avoid Barkhausen noise in magnetic recording and sensor devices.

    Complex oxides have extraordinary and multifunctional properties, including colossal MR in manganites, high-temperature superconductivity in cuprates, and multiferroics.[14–19]Among these materials, KTaO3(KTO)exhibits a cubic structure with a lattice constant of 0.3989 nm and a high dielectric constant(~4500). These characteristics make it a promising material for the extreme quantum limit(EQL)under a high magnetic field and at low temperatures.[20]In particular, such a material could integrate its functions in the emerging electronics for all-oxide devices.[21,22]Due to ionic liquid gating or Ar+bombardment, the surface of KTO possesses a spectrum of emergent phenomena, such as electrostatic superconductivity,the topological Hall effect(THE),and de-Haas oscillation.[23–26]Recently,KTO has been used in the engineering design of two-dimensional electronic systems.Many heterointerfaces based on KTO have been studied, involving EuO/KTO,[27,28]LaTiO3/KTO,[29]LaVO3/KTO,[30]amorphous-LaAlO3/KTO,[31]and LaAlO3/KTO.[32,33]They show intriguing properties,such as two-dimensional superconductivity,high-mobility spin-polarized electron gas,the THE,and the anomalous Hall effect. However,the MR in these systems is usually small,with a value less than 10%.[34–37]And a reliable large MR effect in complex oxides has not been found so far.

    In this work,we find,for the first time,a significant positive MR effect in KTO single crystals with photocarrier doping under high magnetic fields(about 12 T).Under 360 nm illumination with different light intensities at different temperatures,KTOs come into the EQL state, where the electrons are confined in the lowest Landau levels. In the temperature range of 2 K–50 K, KTOs exhibit metallic behavior and their Hall coefficient vanishes as the magnetic field increases.[38]

    2. Experiment details

    KTO(100)and(111)single crystals(3 mm×3 mm)with different thicknesses are commercially available. The electrical connections were realized at their surface using the ultrasonically wire-bonded aluminum wires. Both the resistivity and the Hall effect were measured with a van de Pauw geometry under 360 nm illumination with different light intensities.We used a physical property measurement system (CFMS-14T) that was equipped with an optical fiber. This apparatus is shown in the inset of Fig. 1(a). The bandgap (Eg) of KTO is 3.4 eV, and the wavelength of light is 360 nm (3.44 eV).Thus,the electrons can be promoted from the valence band to the conduction band under 360 nm light. Although the light illumination generates non-equilibrium carriers,a steady-state quasi-equilibrium can be achieved because the carrier lifetime is close to 0.15 ms.[39]This lifetime is much larger than thermalization. The holes are straightforward to trap, and thus the transport is dominated by electrons.[20,39,40]Furthermore,Hall measurements confirm that electrons mainly determine the conduction. More importantly, the interaction between light and matter depends on the optical properties of matter and the wavelength of light. The optical penetration depth is deduced from the absorption coefficient (α) of KTO, as shown in the supplementary material in Fig. S1(a), which is taken from Ref.[39],from which the depth profile of the electronic distribution can be estimated. From the absorption coefficient, we can obtain that the thickness of the conductive layer is larger than 1 mm atλ=360 nm. At this wavelength,the carrier density distribution, which is perpendicular to the surface of the samples, is uniform. Here, we define MR=[ρxx(H)?ρxx(H=0)]×100%/ρxx(H=0). The supplementary material in Fig.S1(b)shows the relationship between MR andHwhen the magnetic field is perpendicular and parallel to the current at 20 K, indicating that the samples exhibit isotropic properties. Considering the thickness of the conductive layer, the electric conduction of KTO under 360 nm light is quasi-three-dimensional. Additionally, LaAlO3/KTO heterointerfaces were prepared using pulsed laser deposition at 800?C and 1×10?3Pa of O2with a KrF excimer laser(λ=248 nm)that operated at 1 Hz.

    3. Results and discussion

    The temperature dependences of the electrical resistivity of KTO (100) and (111) are shown in Fig. 1(a). The inset shows a schematic diagram of the measured resistivity and Hall resistivity. We observe that the KTOs show metallic behavior at low temperatures. The temperature dependence of the electrical resistivity can typically be described by a power law,ρ=ρ0+ATn.[41]Whenn=2, the expected behavior is a Fermi liquid, while a ‘non-Fermi liquid’ is identified with 1

    To analyze the electronic transport of KTO(100)by photo doping, we measure the Hall resistivity (ρxy) under the magnetic field (H). Figure 1(b) shows this behavior at different temperatures. Strikingly, theρxy–His nonlinear below 20 K. The carrier density (n) and mobility (μ) can be obtained from the Hall coefficient at a zero magnetic field. As shown in Fig. 1(c), the carrier density slightly decreases as the temperature decreases, while the mobility increases and reaches 1200 cm2/V·s at 2 K. More importantly, the KTOs still exhibit metallic behavior, even at very low electron densityn=1.4×1012cm?3.We also measured the carrier density and mobility of KTO single crystals with various light intensities at 2 K. Figure S2 demonstrates that the carrier density increases with the light intensity,which is consistent with previous research of STO single crystals.[42]

    Fig.1. (a)The temperature dependence of the resistivity of KTO(100)and(111) under illumination at λ =360 nm and 33 mW/cm2. The inset of (a)shows a sketch for the measurements of resistivity and Hall resistivity. (b)Hall resistivity(ρxy)of KTO(100)under the illumination as a function of the magnetic field at different temperatures. (c)Carrier density(n)and mobility(μ)of KTO(100)as a function of temperature.

    The Hall resistivity of KTO (111) as a function of the magnetic field in the temperature range of 2 K–20 K is shown in Fig. 2(a). The Hall resistivity (ρxy) favors a nonlinear dependence at low temperatures. The mobilities of KTO (111)as a function of thicknesses and temperatures are shown in Figs.2(b)and 2(c),respectively. The mobility is enhanced as the temperature decreases and the thicknesses increase. Generally, the nonlinear Hall effect has two origins: one is the abnormal Hall effect caused by magnetism, and the other is caused by the coexistence of two or more types of carriers.The abnormal Hall effect can be determined by the derivative relationship betweenρxyandHif the derivation curve has a peak near 0 T.[43]We exclude the abnormal Hall effect according to the curves of dρxy/dH(Fig.S3). To further investigate the nonlinear Hall effect,the two-channel conduction from the electronic bands is taken into account. It is found that the fitting result cannot explain the nonlinear Hall effect (Fig. S4 and Table S1). Thereby, the relationship between the magnetic field and the normalized Hall coefficient is analyzed, as shown in Fig.2(d). The normalized Hall coefficient decreases with the increasing magnetic field, which is consistent with reports by Kozukaet al.[38]The decreasing Hall coefficient is probably caused by the low level of scattering under a high magnetic field in the EQL.

    Fig. 2. (a) Hall resistivity (ρxy) of KTO (111) under the illumination as a function of the magnetic field in the temperature range of 2 K–20 K.(b)and(c)The mobility of KTO(111)as a function of temperatures and thicknesses at 0 T under the illumination with λ =360 nm and 33 mW/cm2,respectively.(d)The normalized Hall coefficient of KTO under illumination as a function of the magnetic field at 2 K.

    The requirements to realize the EQL state areωcτ>1 and ˉhωc>kBT,EF, whereωc=eH/m?is the cyclotron frequency (eis the elementary charge,His the magnetic field,andm?is the electron effective mass),τis the carrier relaxation time,kBTis the thermal energy, andEFis the Fermi energy. In this work, the dielectric constant (εr) of KTO is~4500(2 K)[20]andm?is 0.8m0.[20,40]Thus,theˉhωcof KTO is estimated about 2.78 meV,which is far larger thankBT(2 K)(0.18 meV). TheEFof KTO is about 5.4×10?4meV according to ˉh2k2F/2m?. In addition, if we apply the Mott criterion to ˉhωc>kBT,EF, the EQL state can be realized by satisfying the following conditions:εr/mr>1.3×103,whereεr=ε/ε0(ε0is the vacuum permittivity)andmr=m?/m0(m0is the bare electron mass). For the KTOs,the value ofωcτis~1.44 at a high magnetic field because of the high mobility(>103cm2/V·s). Further,theεr/mris about 5.6×103,which is larger than 1.3×103. Therefore,KTO is likely to come into an EQL state. Electronic wave functions are highly localized and the small gyration radius of electrons in the perpendicular direction reduces the probability of scattering between electrons. Hence, the Hall coefficient decreases as the magnetic field increases.

    Figure 3(a) shows the relationship between the MR of KTO(100)and the magnetic field. The results for KTO(111)are shown in Fig. S5. The MR displays giant positive linear non-saturating features. As shown in Fig. 3(b), the MR increases nonlinearly when decreasing the temperature.The MR values with a thickness of 500μm under the magnetic field of 12 T are 256%,340%,433%,367%,263%,and 119%at 2 K,5 K, 10 K, 20 K, 30 K, and 50 K, respectively. These values are far greater than that of the ordinary MR effect. The reduction of MR below 10 K might be attributed to the localization of electrons due to the ferroelectric phase of KTO.[44]This phenomenon is consistent with the drop in carrier density. Furthermore,we measured the MR of KTOs with different thicknesses and light intensities at 2 K.Figure 3(c)shows that the MR of KTO (111) reaches~200% (12 T) with different thicknesses and~20%(2 T)at various light intensities(25 mW/cm2–35 mW/cm2). These values are far greater than those of oxide interfaces.[24,29]

    Fig.3. (a)MR of KTO(100)as a function of the magnetic field at different temperatures. (b) MR of as a function of temperatures with KTO (100) at 12 T.(c)The MR of KTO(111)dependence of different thicknesses(12 T)and light intensities(2 T)at 2 K;the solid lines are linear fitting curves. (d)A schematic diagram of the energy level under H =0 T and H /=0 T. All the electrons occupy only the lowest Landau level and other levels are empty when ˉhωc ?EF.

    Early in 1959,Lifshits and Peschansky[45]proposed that the linear MR effect could be caused when the Larmor radius of electrons was smaller than their mean free path for a metal in a high magnetic field. Further, Abrikosov declared[46,47]that the system would reach the EQL state for a material with a smallm?if the magnetic field was very high.This conjecture assumes that all of the electrons would occupy only the lowest Landau energy level in a gapless semiconductor with a linear energy spectrum. This will produce a linear MR with a magnetic field,ρxx∝H.Following this,various theories have been proposed to explain the positive MR in nonmagnetic materials by mechanisms,including electric field inhomogeneity,[48]density inhomogeneity,[49]density fluctuations,[50]and antiferromagnetic fluctuations.[51]In our work, although the carrier density is very low, the photocarrier-doped KTO favors metallics at low temperatures because a combination of a smallm?and a large dielectric constant can push the insulator–metal transition boundary to low densities.[9]The electrons are distributed below the Fermi surface whenH=0 T, as shown in Fig. 3(d), andEFdecreases asHincreases. At such a low carrier density and high magnetic field, the Fermi energy ofEF= 5.4×10?4meV is very low. Thus, the lowest Landau energy, ˉhωc=2.78 meV, is far larger thanEF. At this time,the electrons occupy the lowest Landau level,and all the other levels are empty. As a result, KTO shows a quantum MR effect.[13,46,52]A non-saturating MR further verifies that the system of photocarrier-doped KTO comes into the EQL state. Another interpretation is the inhomogeneity in bulk or films,[48–51]which might arise from the carrier-density inhomogeneity,mainly caused by the light distribution from an uneven surface. To further analyze our experimental results,we measured the MR of STO single crystals and LaAlO3/KTO heterointerfaces under 360 nm light illumination. Figure S6 shows that single crystal STO and LAO/KTO exhibit no significant and linear MR under the same conditions. Although we cannot rule out the contribution of light inhomogeneity to the large linear MR, the experiment illustrates very interesting results for KTO under 360 nm irradiation, which further proves that KTO is a novel material with large positive MR based on complex materials.

    4. Conclusion

    In summary,KTO single crystals exposed to 360 nm light show metallic behavior at low temperatures with very low carrier density and high mobility. We conclude that these photodoping KTOs reach the EQL state, which therefore provides a new oxide material with EQL. Importantly, we discover a significant positive MR effect and the decreasing of the Hall coefficient at low temperature and a high magnetic field. In particular,the MR value of KTO(100)reaches 433%at 10 K under 12 T. This is caused by all the electrons occupying the lowest Landau level in the EQL state. At the same time, we consider the contribution of light inhomogeneity to the large linear magnetoresistance. This work paves a way to the understanding of the fundamental physics of the interaction between light and complex materials.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.51572222),Key Research Project of the Natural Science Foundation of Shaanxi Province,China(Grant Nos. 2021JZ-08 and 2020JM-088), the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No. 2021JM-041), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017OQD074 and 310201911cx044).

    猜你喜歡
    趙陽
    怎樣計(jì)算更簡便
    趙陽美術(shù)作品
    熱門話題 一季報(bào)驚喜不多
    永修縣:“三變?nèi)蛔儭敝旗柟掏卣姑撠毠?jiān)成果同鄉(xiāng)村振興有效銜接
    找規(guī)律擺圖形
    哪種算法簡便
    圖形中的圖形
    巧算撲克牌
    遲到的生日禮物
    上海故事(2020年11期)2020-12-14 04:03:10
    標(biāo)簽人生
    男女做爰动态图高潮gif福利片| 伊人久久大香线蕉亚洲五| 欧美另类亚洲清纯唯美| 欧美日韩乱码在线| 国产一区二区三区在线臀色熟女| 亚洲专区中文字幕在线| 色老头精品视频在线观看| 一级黄色大片毛片| 99国产精品一区二区三区| 国产成人精品久久二区二区免费| 波多野结衣巨乳人妻| 波多野结衣巨乳人妻| 亚洲一区二区三区不卡视频| 成人午夜高清在线视频| av在线天堂中文字幕| 夜夜爽天天搞| 国产淫片久久久久久久久 | 欧美国产日韩亚洲一区| 国产精品国产高清国产av| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 精品99又大又爽又粗少妇毛片 | 午夜免费激情av| 精品久久久久久成人av| 麻豆成人av在线观看| 色噜噜av男人的天堂激情| 99国产综合亚洲精品| 午夜激情福利司机影院| 欧美日本视频| 国产av在哪里看| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| 久久人妻av系列| 女同久久另类99精品国产91| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 最好的美女福利视频网| 18禁美女被吸乳视频| 最新在线观看一区二区三区| 亚洲欧美日韩东京热| 久久人人精品亚洲av| 嫩草影院精品99| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 日韩三级视频一区二区三区| 成人av在线播放网站| 天堂网av新在线| 国产一级毛片七仙女欲春2| 色吧在线观看| 一本久久中文字幕| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 波多野结衣高清作品| 禁无遮挡网站| 天堂av国产一区二区熟女人妻| 亚洲成人久久性| 天堂动漫精品| 精品无人区乱码1区二区| 波多野结衣巨乳人妻| 97碰自拍视频| а√天堂www在线а√下载| 少妇的丰满在线观看| 一本综合久久免费| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美免费精品| 成在线人永久免费视频| av在线天堂中文字幕| 综合色av麻豆| 欧美性猛交╳xxx乱大交人| 俺也久久电影网| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 色综合婷婷激情| 久久精品亚洲精品国产色婷小说| 欧美精品啪啪一区二区三区| 国产乱人视频| 久久中文看片网| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩卡通动漫| 在线观看免费午夜福利视频| 亚洲人成网站在线播放欧美日韩| 少妇熟女aⅴ在线视频| 午夜福利在线观看免费完整高清在 | 亚洲电影在线观看av| 91字幕亚洲| 人妻夜夜爽99麻豆av| 亚洲电影在线观看av| 精品不卡国产一区二区三区| 人人妻人人看人人澡| www.熟女人妻精品国产| 久久久国产成人免费| 露出奶头的视频| 男女床上黄色一级片免费看| 少妇裸体淫交视频免费看高清| 久久久久国内视频| 国产精品亚洲av一区麻豆| 欧美成人一区二区免费高清观看 | 国产激情久久老熟女| 可以在线观看的亚洲视频| 最近最新中文字幕大全免费视频| 欧美黄色片欧美黄色片| 国产野战对白在线观看| 88av欧美| 91av网站免费观看| 精品国产美女av久久久久小说| 日本免费一区二区三区高清不卡| 两性午夜刺激爽爽歪歪视频在线观看| 一本精品99久久精品77| 首页视频小说图片口味搜索| 桃红色精品国产亚洲av| 99热6这里只有精品| 欧美另类亚洲清纯唯美| 非洲黑人性xxxx精品又粗又长| 老司机午夜十八禁免费视频| 午夜福利视频1000在线观看| 俺也久久电影网| 在线观看免费午夜福利视频| 精品99又大又爽又粗少妇毛片 | 国产三级中文精品| 草草在线视频免费看| 露出奶头的视频| 久久性视频一级片| 少妇的丰满在线观看| 真人做人爱边吃奶动态| 黄色成人免费大全| 五月伊人婷婷丁香| 九色成人免费人妻av| xxxwww97欧美| 国产精品99久久99久久久不卡| 国产精品一及| 亚洲欧美激情综合另类| 国语自产精品视频在线第100页| 久久天堂一区二区三区四区| 好男人在线观看高清免费视频| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 婷婷亚洲欧美| 哪里可以看免费的av片| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 亚洲专区字幕在线| 国产精品一及| 18禁黄网站禁片午夜丰满| 久久精品亚洲精品国产色婷小说| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 三级男女做爰猛烈吃奶摸视频| 天堂√8在线中文| e午夜精品久久久久久久| www日本在线高清视频| 黄片小视频在线播放| 无人区码免费观看不卡| 国产黄片美女视频| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 嫩草影视91久久| 精品免费久久久久久久清纯| 观看免费一级毛片| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 色视频www国产| 老司机在亚洲福利影院| 视频区欧美日本亚洲| 亚洲精品456在线播放app | 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| 色av中文字幕| 国产三级中文精品| 美女cb高潮喷水在线观看 | 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 热99在线观看视频| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 草草在线视频免费看| 精品熟女少妇八av免费久了| 欧美日韩综合久久久久久 | 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 亚洲黑人精品在线| 免费在线观看成人毛片| 久久久久久久久免费视频了| 少妇熟女aⅴ在线视频| 国产精华一区二区三区| 一个人看视频在线观看www免费 | 真人一进一出gif抽搐免费| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 91麻豆av在线| 久久精品人妻少妇| 精品久久久久久久末码| 99久久99久久久精品蜜桃| 国产一区二区在线观看日韩 | 夜夜夜夜夜久久久久| 国语自产精品视频在线第100页| 成年女人永久免费观看视频| 蜜桃久久精品国产亚洲av| 999久久久国产精品视频| 岛国在线免费视频观看| 丁香六月欧美| 国产91精品成人一区二区三区| 一进一出抽搐动态| 变态另类成人亚洲欧美熟女| 久久久久久国产a免费观看| 成人三级做爰电影| 欧美又色又爽又黄视频| av女优亚洲男人天堂 | 99在线视频只有这里精品首页| 特级一级黄色大片| 淫秽高清视频在线观看| 高潮久久久久久久久久久不卡| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 国产亚洲精品一区二区www| 国内精品一区二区在线观看| 很黄的视频免费| 亚洲国产精品久久男人天堂| 欧美最黄视频在线播放免费| 老司机在亚洲福利影院| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 日本 欧美在线| 91麻豆av在线| 国产免费男女视频| 12—13女人毛片做爰片一| 嫩草影视91久久| 欧美黑人巨大hd| 91久久精品国产一区二区成人 | 国产精品av久久久久免费| 在线观看日韩欧美| 高清在线国产一区| 黄色 视频免费看| 日本免费a在线| 国产精品 欧美亚洲| 成人欧美大片| 又粗又爽又猛毛片免费看| 99在线人妻在线中文字幕| av女优亚洲男人天堂 | 亚洲国产欧美人成| 午夜激情福利司机影院| h日本视频在线播放| 中文字幕人妻丝袜一区二区| 午夜免费激情av| 亚洲 欧美一区二区三区| 午夜两性在线视频| 国产精品日韩av在线免费观看| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2| 日本免费a在线| 日本一本二区三区精品| 国产av在哪里看| 国产成人精品久久二区二区91| 又爽又黄无遮挡网站| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 少妇人妻一区二区三区视频| 麻豆av在线久日| 一级毛片高清免费大全| 国产精品影院久久| 国产一区二区三区在线臀色熟女| 欧美黄色淫秽网站| 一个人看的www免费观看视频| 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 国产视频一区二区在线看| 一a级毛片在线观看| 美女cb高潮喷水在线观看 | 香蕉丝袜av| bbb黄色大片| 国产精品99久久久久久久久| 国产欧美日韩一区二区三| 18禁黄网站禁片午夜丰满| 国产成+人综合+亚洲专区| 亚洲av美国av| www.www免费av| svipshipincom国产片| 日韩免费av在线播放| 视频区欧美日本亚洲| 高清在线国产一区| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 午夜久久久久精精品| 色哟哟哟哟哟哟| 舔av片在线| 亚洲欧美精品综合久久99| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| svipshipincom国产片| 三级国产精品欧美在线观看 | 精品一区二区三区av网在线观看| 村上凉子中文字幕在线| www.999成人在线观看| 可以在线观看的亚洲视频| 国产毛片a区久久久久| 亚洲av美国av| 成人av在线播放网站| 欧美日韩精品网址| 国产精品爽爽va在线观看网站| 日本在线视频免费播放| 国产亚洲精品久久久久久毛片| 亚洲激情在线av| xxxwww97欧美| av在线蜜桃| 天天躁日日操中文字幕| 99久久精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 九色国产91popny在线| 全区人妻精品视频| 1024香蕉在线观看| 精品欧美国产一区二区三| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 精品一区二区三区四区五区乱码| 成人高潮视频无遮挡免费网站| а√天堂www在线а√下载| 日韩欧美在线二视频| 亚洲 国产 在线| 天天添夜夜摸| 熟女少妇亚洲综合色aaa.| 小说图片视频综合网站| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区mp4| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 国产亚洲精品av在线| 亚洲无线在线观看| 欧美日本视频| 日本免费a在线| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 亚洲国产日韩欧美精品在线观看 | 国产美女午夜福利| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 精品久久久久久,| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 免费在线观看成人毛片| 色在线成人网| 首页视频小说图片口味搜索| www日本黄色视频网| 久久久久国产一级毛片高清牌| 亚洲乱码一区二区免费版| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 最新在线观看一区二区三区| 五月伊人婷婷丁香| svipshipincom国产片| 99久久精品热视频| xxx96com| 99在线人妻在线中文字幕| 啦啦啦观看免费观看视频高清| 十八禁网站免费在线| 久久久精品大字幕| 床上黄色一级片| 日日摸夜夜添夜夜添小说| 国产一区二区激情短视频| 亚洲av中文字字幕乱码综合| 久久中文字幕人妻熟女| 国内精品一区二区在线观看| 国产精品久久视频播放| 亚洲精品在线美女| 麻豆成人午夜福利视频| 国产精品影院久久| 亚洲精品456在线播放app | 久久久精品大字幕| 国产亚洲欧美在线一区二区| 国产淫片久久久久久久久 | 精品久久久久久久人妻蜜臀av| 久久久国产精品麻豆| 亚洲成av人片在线播放无| 成在线人永久免费视频| www日本在线高清视频| 91久久精品国产一区二区成人 | 午夜视频精品福利| 在线看三级毛片| av中文乱码字幕在线| 首页视频小说图片口味搜索| 国内揄拍国产精品人妻在线| av黄色大香蕉| 天堂动漫精品| 亚洲国产欧美网| 噜噜噜噜噜久久久久久91| 成人永久免费在线观看视频| av视频在线观看入口| 黄色日韩在线| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 男女床上黄色一级片免费看| 精品久久久久久久人妻蜜臀av| 舔av片在线| 搞女人的毛片| 麻豆av在线久日| 亚洲精品在线美女| 无人区码免费观看不卡| 国产精品久久久av美女十八| 校园春色视频在线观看| 97超视频在线观看视频| 麻豆一二三区av精品| 国产精品精品国产色婷婷| 国产精品乱码一区二三区的特点| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 久99久视频精品免费| www.自偷自拍.com| 欧美一级毛片孕妇| 国产精品一及| 国产激情偷乱视频一区二区| 偷拍熟女少妇极品色| 免费在线观看视频国产中文字幕亚洲| 欧美xxxx黑人xx丫x性爽| 亚洲中文字幕一区二区三区有码在线看 | 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 国产真人三级小视频在线观看| 脱女人内裤的视频| 综合色av麻豆| 日韩精品中文字幕看吧| 丝袜人妻中文字幕| 999久久久国产精品视频| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| 91老司机精品| 国产一区二区三区在线臀色熟女| 色老头精品视频在线观看| 日韩高清综合在线| 一进一出抽搐gif免费好疼| av片东京热男人的天堂| 婷婷六月久久综合丁香| 啦啦啦韩国在线观看视频| 90打野战视频偷拍视频| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 757午夜福利合集在线观看| a在线观看视频网站| 两个人的视频大全免费| 久久久国产成人精品二区| 亚洲片人在线观看| 欧美一级a爱片免费观看看| 中文字幕熟女人妻在线| 国产精品国产高清国产av| 午夜福利视频1000在线观看| 人人妻,人人澡人人爽秒播| 中出人妻视频一区二区| 久久天堂一区二区三区四区| 精品久久久久久久人妻蜜臀av| 性色av乱码一区二区三区2| 国语自产精品视频在线第100页| 成年人黄色毛片网站| av中文乱码字幕在线| www.精华液| 美女高潮喷水抽搐中文字幕| 人人妻人人看人人澡| 国产成人精品无人区| 午夜两性在线视频| 在线看三级毛片| 久久精品aⅴ一区二区三区四区| 国内精品久久久久精免费| 舔av片在线| 欧美日韩精品网址| 国产真实乱freesex| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站| 变态另类丝袜制服| 国产精品乱码一区二三区的特点| 久久性视频一级片| 久久人人精品亚洲av| av黄色大香蕉| 中文字幕熟女人妻在线| 一级黄色大片毛片| 中文字幕精品亚洲无线码一区| 一a级毛片在线观看| 啦啦啦观看免费观看视频高清| 免费大片18禁| 亚洲中文字幕日韩| 亚洲成a人片在线一区二区| 午夜a级毛片| 看免费av毛片| 国产伦人伦偷精品视频| 中文亚洲av片在线观看爽| 美女 人体艺术 gogo| 亚洲国产看品久久| 99精品在免费线老司机午夜| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看 | 国产午夜福利久久久久久| 午夜激情福利司机影院| 久久久成人免费电影| 天堂av国产一区二区熟女人妻| 欧美zozozo另类| 免费在线观看影片大全网站| www国产在线视频色| 亚洲av美国av| 亚洲自偷自拍图片 自拍| 禁无遮挡网站| 国产成人系列免费观看| 午夜精品一区二区三区免费看| 国产黄色小视频在线观看| 亚洲人成网站在线播放欧美日韩| 99久久精品国产亚洲精品| 精品国产美女av久久久久小说| 中文字幕av在线有码专区| 嫩草影院入口| 国产精品久久久久久亚洲av鲁大| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 国产精品一区二区精品视频观看| 日韩有码中文字幕| 亚洲成人中文字幕在线播放| 国产高清三级在线| 叶爱在线成人免费视频播放| 亚洲电影在线观看av| 女人被狂操c到高潮| 男女床上黄色一级片免费看| 天天一区二区日本电影三级| 麻豆国产av国片精品| 99re在线观看精品视频| 国产精品野战在线观看| 亚洲欧美日韩卡通动漫| 国内少妇人妻偷人精品xxx网站 | 男女床上黄色一级片免费看| 日本熟妇午夜| 精品熟女少妇八av免费久了| 久久这里只有精品中国| 真人做人爱边吃奶动态| 中国美女看黄片| 国产男靠女视频免费网站| 最新美女视频免费是黄的| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 九色成人免费人妻av| 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 一进一出好大好爽视频| 亚洲专区字幕在线| 国产欧美日韩一区二区精品| 午夜福利欧美成人| 美女被艹到高潮喷水动态| 亚洲五月天丁香| 亚洲精品在线观看二区| 中文在线观看免费www的网站| 国内毛片毛片毛片毛片毛片| 999精品在线视频| 特大巨黑吊av在线直播| 国产黄a三级三级三级人| h日本视频在线播放| 黄片大片在线免费观看| 悠悠久久av| 99热6这里只有精品| 国产精品影院久久| 两人在一起打扑克的视频| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 少妇丰满av| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 老司机在亚洲福利影院| 俺也久久电影网| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 手机成人av网站| 亚洲人成伊人成综合网2020| 国产成年人精品一区二区| 亚洲午夜精品一区,二区,三区| 国内精品久久久久久久电影| 97超视频在线观看视频| 色老头精品视频在线观看| 亚洲人成伊人成综合网2020| 99精品欧美一区二区三区四区| 欧美日韩瑟瑟在线播放| 非洲黑人性xxxx精品又粗又长| 在线免费观看的www视频| 欧美精品啪啪一区二区三区| 国产成人一区二区三区免费视频网站| 丰满的人妻完整版| 亚洲一区二区三区不卡视频| av女优亚洲男人天堂 | 波多野结衣巨乳人妻| 国产亚洲av嫩草精品影院| 国产精品香港三级国产av潘金莲| 国产亚洲精品av在线| 国产淫片久久久久久久久 | 欧美三级亚洲精品| 特大巨黑吊av在线直播|