• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large positive magnetoresistance in photocarrier-doped potassium tantalites

    2022-12-28 09:54:32RuiShuYang楊睿姝DingBangWang王定邦YangZhao趙陽ShuanHuWang王拴虎andKeXinJin金克新
    Chinese Physics B 2022年12期
    關(guān)鍵詞:趙陽

    Rui-Shu Yang(楊睿姝), Ding-Bang Wang(王定邦), Yang Zhao(趙陽), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新)

    Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions,School of Physical Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: photocarriers,large positive magnetoresistance,extreme quantum limit

    1. Introduction

    The magnetoresistance(MR)effect has been extensively studied since its discovery in 1856. This effect can be used in sensors, memory devices, and the emergent physics of complex interactions. Many different MRs, such as ordinary MR,[1,2]anisotropic MR,[3,4]tunnel MR,[5]giant MR,[6]and colossal MR[7,8]have been investigated in magnetic and multilayer materials. Generally,the positive and conventional MR has a magnitude of only a few percent. It is even negligible in some nonmagnetic materials due to the curving of the carrier trajectory by the Lorentz force. Nevertheless, a large and linear MR effect breaks this familiar rule. It has been observed in several non-magnetic semiconductors,such as Si,[9]Bi,[10,11]PtBi2,[12]and graphene,[13]raising many lively discussions in the fields of condensed physics and functional materials. Moreover, the kind of MR in nonmagnetic materials can avoid Barkhausen noise in magnetic recording and sensor devices.

    Complex oxides have extraordinary and multifunctional properties, including colossal MR in manganites, high-temperature superconductivity in cuprates, and multiferroics.[14–19]Among these materials, KTaO3(KTO)exhibits a cubic structure with a lattice constant of 0.3989 nm and a high dielectric constant(~4500). These characteristics make it a promising material for the extreme quantum limit(EQL)under a high magnetic field and at low temperatures.[20]In particular, such a material could integrate its functions in the emerging electronics for all-oxide devices.[21,22]Due to ionic liquid gating or Ar+bombardment, the surface of KTO possesses a spectrum of emergent phenomena, such as electrostatic superconductivity,the topological Hall effect(THE),and de-Haas oscillation.[23–26]Recently,KTO has been used in the engineering design of two-dimensional electronic systems.Many heterointerfaces based on KTO have been studied, involving EuO/KTO,[27,28]LaTiO3/KTO,[29]LaVO3/KTO,[30]amorphous-LaAlO3/KTO,[31]and LaAlO3/KTO.[32,33]They show intriguing properties,such as two-dimensional superconductivity,high-mobility spin-polarized electron gas,the THE,and the anomalous Hall effect. However,the MR in these systems is usually small,with a value less than 10%.[34–37]And a reliable large MR effect in complex oxides has not been found so far.

    In this work,we find,for the first time,a significant positive MR effect in KTO single crystals with photocarrier doping under high magnetic fields(about 12 T).Under 360 nm illumination with different light intensities at different temperatures,KTOs come into the EQL state, where the electrons are confined in the lowest Landau levels. In the temperature range of 2 K–50 K, KTOs exhibit metallic behavior and their Hall coefficient vanishes as the magnetic field increases.[38]

    2. Experiment details

    KTO(100)and(111)single crystals(3 mm×3 mm)with different thicknesses are commercially available. The electrical connections were realized at their surface using the ultrasonically wire-bonded aluminum wires. Both the resistivity and the Hall effect were measured with a van de Pauw geometry under 360 nm illumination with different light intensities.We used a physical property measurement system (CFMS-14T) that was equipped with an optical fiber. This apparatus is shown in the inset of Fig. 1(a). The bandgap (Eg) of KTO is 3.4 eV, and the wavelength of light is 360 nm (3.44 eV).Thus,the electrons can be promoted from the valence band to the conduction band under 360 nm light. Although the light illumination generates non-equilibrium carriers,a steady-state quasi-equilibrium can be achieved because the carrier lifetime is close to 0.15 ms.[39]This lifetime is much larger than thermalization. The holes are straightforward to trap, and thus the transport is dominated by electrons.[20,39,40]Furthermore,Hall measurements confirm that electrons mainly determine the conduction. More importantly, the interaction between light and matter depends on the optical properties of matter and the wavelength of light. The optical penetration depth is deduced from the absorption coefficient (α) of KTO, as shown in the supplementary material in Fig. S1(a), which is taken from Ref.[39],from which the depth profile of the electronic distribution can be estimated. From the absorption coefficient, we can obtain that the thickness of the conductive layer is larger than 1 mm atλ=360 nm. At this wavelength,the carrier density distribution, which is perpendicular to the surface of the samples, is uniform. Here, we define MR=[ρxx(H)?ρxx(H=0)]×100%/ρxx(H=0). The supplementary material in Fig.S1(b)shows the relationship between MR andHwhen the magnetic field is perpendicular and parallel to the current at 20 K, indicating that the samples exhibit isotropic properties. Considering the thickness of the conductive layer, the electric conduction of KTO under 360 nm light is quasi-three-dimensional. Additionally, LaAlO3/KTO heterointerfaces were prepared using pulsed laser deposition at 800?C and 1×10?3Pa of O2with a KrF excimer laser(λ=248 nm)that operated at 1 Hz.

    3. Results and discussion

    The temperature dependences of the electrical resistivity of KTO (100) and (111) are shown in Fig. 1(a). The inset shows a schematic diagram of the measured resistivity and Hall resistivity. We observe that the KTOs show metallic behavior at low temperatures. The temperature dependence of the electrical resistivity can typically be described by a power law,ρ=ρ0+ATn.[41]Whenn=2, the expected behavior is a Fermi liquid, while a ‘non-Fermi liquid’ is identified with 1

    To analyze the electronic transport of KTO(100)by photo doping, we measure the Hall resistivity (ρxy) under the magnetic field (H). Figure 1(b) shows this behavior at different temperatures. Strikingly, theρxy–His nonlinear below 20 K. The carrier density (n) and mobility (μ) can be obtained from the Hall coefficient at a zero magnetic field. As shown in Fig. 1(c), the carrier density slightly decreases as the temperature decreases, while the mobility increases and reaches 1200 cm2/V·s at 2 K. More importantly, the KTOs still exhibit metallic behavior, even at very low electron densityn=1.4×1012cm?3.We also measured the carrier density and mobility of KTO single crystals with various light intensities at 2 K. Figure S2 demonstrates that the carrier density increases with the light intensity,which is consistent with previous research of STO single crystals.[42]

    Fig.1. (a)The temperature dependence of the resistivity of KTO(100)and(111) under illumination at λ =360 nm and 33 mW/cm2. The inset of (a)shows a sketch for the measurements of resistivity and Hall resistivity. (b)Hall resistivity(ρxy)of KTO(100)under the illumination as a function of the magnetic field at different temperatures. (c)Carrier density(n)and mobility(μ)of KTO(100)as a function of temperature.

    The Hall resistivity of KTO (111) as a function of the magnetic field in the temperature range of 2 K–20 K is shown in Fig. 2(a). The Hall resistivity (ρxy) favors a nonlinear dependence at low temperatures. The mobilities of KTO (111)as a function of thicknesses and temperatures are shown in Figs.2(b)and 2(c),respectively. The mobility is enhanced as the temperature decreases and the thicknesses increase. Generally, the nonlinear Hall effect has two origins: one is the abnormal Hall effect caused by magnetism, and the other is caused by the coexistence of two or more types of carriers.The abnormal Hall effect can be determined by the derivative relationship betweenρxyandHif the derivation curve has a peak near 0 T.[43]We exclude the abnormal Hall effect according to the curves of dρxy/dH(Fig.S3). To further investigate the nonlinear Hall effect,the two-channel conduction from the electronic bands is taken into account. It is found that the fitting result cannot explain the nonlinear Hall effect (Fig. S4 and Table S1). Thereby, the relationship between the magnetic field and the normalized Hall coefficient is analyzed, as shown in Fig.2(d). The normalized Hall coefficient decreases with the increasing magnetic field, which is consistent with reports by Kozukaet al.[38]The decreasing Hall coefficient is probably caused by the low level of scattering under a high magnetic field in the EQL.

    Fig. 2. (a) Hall resistivity (ρxy) of KTO (111) under the illumination as a function of the magnetic field in the temperature range of 2 K–20 K.(b)and(c)The mobility of KTO(111)as a function of temperatures and thicknesses at 0 T under the illumination with λ =360 nm and 33 mW/cm2,respectively.(d)The normalized Hall coefficient of KTO under illumination as a function of the magnetic field at 2 K.

    The requirements to realize the EQL state areωcτ>1 and ˉhωc>kBT,EF, whereωc=eH/m?is the cyclotron frequency (eis the elementary charge,His the magnetic field,andm?is the electron effective mass),τis the carrier relaxation time,kBTis the thermal energy, andEFis the Fermi energy. In this work, the dielectric constant (εr) of KTO is~4500(2 K)[20]andm?is 0.8m0.[20,40]Thus,theˉhωcof KTO is estimated about 2.78 meV,which is far larger thankBT(2 K)(0.18 meV). TheEFof KTO is about 5.4×10?4meV according to ˉh2k2F/2m?. In addition, if we apply the Mott criterion to ˉhωc>kBT,EF, the EQL state can be realized by satisfying the following conditions:εr/mr>1.3×103,whereεr=ε/ε0(ε0is the vacuum permittivity)andmr=m?/m0(m0is the bare electron mass). For the KTOs,the value ofωcτis~1.44 at a high magnetic field because of the high mobility(>103cm2/V·s). Further,theεr/mris about 5.6×103,which is larger than 1.3×103. Therefore,KTO is likely to come into an EQL state. Electronic wave functions are highly localized and the small gyration radius of electrons in the perpendicular direction reduces the probability of scattering between electrons. Hence, the Hall coefficient decreases as the magnetic field increases.

    Figure 3(a) shows the relationship between the MR of KTO(100)and the magnetic field. The results for KTO(111)are shown in Fig. S5. The MR displays giant positive linear non-saturating features. As shown in Fig. 3(b), the MR increases nonlinearly when decreasing the temperature.The MR values with a thickness of 500μm under the magnetic field of 12 T are 256%,340%,433%,367%,263%,and 119%at 2 K,5 K, 10 K, 20 K, 30 K, and 50 K, respectively. These values are far greater than that of the ordinary MR effect. The reduction of MR below 10 K might be attributed to the localization of electrons due to the ferroelectric phase of KTO.[44]This phenomenon is consistent with the drop in carrier density. Furthermore,we measured the MR of KTOs with different thicknesses and light intensities at 2 K.Figure 3(c)shows that the MR of KTO (111) reaches~200% (12 T) with different thicknesses and~20%(2 T)at various light intensities(25 mW/cm2–35 mW/cm2). These values are far greater than those of oxide interfaces.[24,29]

    Fig.3. (a)MR of KTO(100)as a function of the magnetic field at different temperatures. (b) MR of as a function of temperatures with KTO (100) at 12 T.(c)The MR of KTO(111)dependence of different thicknesses(12 T)and light intensities(2 T)at 2 K;the solid lines are linear fitting curves. (d)A schematic diagram of the energy level under H =0 T and H /=0 T. All the electrons occupy only the lowest Landau level and other levels are empty when ˉhωc ?EF.

    Early in 1959,Lifshits and Peschansky[45]proposed that the linear MR effect could be caused when the Larmor radius of electrons was smaller than their mean free path for a metal in a high magnetic field. Further, Abrikosov declared[46,47]that the system would reach the EQL state for a material with a smallm?if the magnetic field was very high.This conjecture assumes that all of the electrons would occupy only the lowest Landau energy level in a gapless semiconductor with a linear energy spectrum. This will produce a linear MR with a magnetic field,ρxx∝H.Following this,various theories have been proposed to explain the positive MR in nonmagnetic materials by mechanisms,including electric field inhomogeneity,[48]density inhomogeneity,[49]density fluctuations,[50]and antiferromagnetic fluctuations.[51]In our work, although the carrier density is very low, the photocarrier-doped KTO favors metallics at low temperatures because a combination of a smallm?and a large dielectric constant can push the insulator–metal transition boundary to low densities.[9]The electrons are distributed below the Fermi surface whenH=0 T, as shown in Fig. 3(d), andEFdecreases asHincreases. At such a low carrier density and high magnetic field, the Fermi energy ofEF= 5.4×10?4meV is very low. Thus, the lowest Landau energy, ˉhωc=2.78 meV, is far larger thanEF. At this time,the electrons occupy the lowest Landau level,and all the other levels are empty. As a result, KTO shows a quantum MR effect.[13,46,52]A non-saturating MR further verifies that the system of photocarrier-doped KTO comes into the EQL state. Another interpretation is the inhomogeneity in bulk or films,[48–51]which might arise from the carrier-density inhomogeneity,mainly caused by the light distribution from an uneven surface. To further analyze our experimental results,we measured the MR of STO single crystals and LaAlO3/KTO heterointerfaces under 360 nm light illumination. Figure S6 shows that single crystal STO and LAO/KTO exhibit no significant and linear MR under the same conditions. Although we cannot rule out the contribution of light inhomogeneity to the large linear MR, the experiment illustrates very interesting results for KTO under 360 nm irradiation, which further proves that KTO is a novel material with large positive MR based on complex materials.

    4. Conclusion

    In summary,KTO single crystals exposed to 360 nm light show metallic behavior at low temperatures with very low carrier density and high mobility. We conclude that these photodoping KTOs reach the EQL state, which therefore provides a new oxide material with EQL. Importantly, we discover a significant positive MR effect and the decreasing of the Hall coefficient at low temperature and a high magnetic field. In particular,the MR value of KTO(100)reaches 433%at 10 K under 12 T. This is caused by all the electrons occupying the lowest Landau level in the EQL state. At the same time, we consider the contribution of light inhomogeneity to the large linear magnetoresistance. This work paves a way to the understanding of the fundamental physics of the interaction between light and complex materials.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.51572222),Key Research Project of the Natural Science Foundation of Shaanxi Province,China(Grant Nos. 2021JZ-08 and 2020JM-088), the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No. 2021JM-041), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017OQD074 and 310201911cx044).

    猜你喜歡
    趙陽
    怎樣計(jì)算更簡便
    趙陽美術(shù)作品
    熱門話題 一季報(bào)驚喜不多
    永修縣:“三變?nèi)蛔儭敝旗柟掏卣姑撠毠?jiān)成果同鄉(xiāng)村振興有效銜接
    找規(guī)律擺圖形
    哪種算法簡便
    圖形中的圖形
    巧算撲克牌
    遲到的生日禮物
    上海故事(2020年11期)2020-12-14 04:03:10
    標(biāo)簽人生
    1024视频免费在线观看| av在线老鸭窝| 久久99热这里只频精品6学生| 黄色毛片三级朝国网站| 女性被躁到高潮视频| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 亚洲欧美色中文字幕在线| 久久久欧美国产精品| 亚洲精品美女久久av网站| 99精国产麻豆久久婷婷| 精品免费久久久久久久清纯 | 亚洲自偷自拍图片 自拍| 人妻人人澡人人爽人人| 中文乱码字字幕精品一区二区三区| 又黄又粗又硬又大视频| 国产精品99久久99久久久不卡 | 美女大奶头黄色视频| 观看av在线不卡| 亚洲一级一片aⅴ在线观看| 男女高潮啪啪啪动态图| 国产精品99久久99久久久不卡 | 久久久久久久精品精品| 国产一级毛片在线| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 精品少妇一区二区三区视频日本电影 | 亚洲图色成人| 精品国产露脸久久av麻豆| 久久这里只有精品19| 免费观看性生交大片5| 久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 啦啦啦啦在线视频资源| 欧美黑人欧美精品刺激| 国产精品一国产av| 卡戴珊不雅视频在线播放| 老汉色∧v一级毛片| 亚洲精品一二三| 日韩av不卡免费在线播放| 欧美日韩亚洲国产一区二区在线观看 | 国产av国产精品国产| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 亚洲欧美精品自产自拍| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 母亲3免费完整高清在线观看| 成人三级做爰电影| 九色亚洲精品在线播放| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 国产一区二区 视频在线| 韩国av在线不卡| av视频免费观看在线观看| 交换朋友夫妻互换小说| 欧美另类一区| 蜜桃国产av成人99| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 人妻人人澡人人爽人人| 日韩一区二区视频免费看| 亚洲精品aⅴ在线观看| av网站在线播放免费| 热99国产精品久久久久久7| 美女午夜性视频免费| 最近最新中文字幕大全免费视频 | 国产老妇伦熟女老妇高清| 国产又爽黄色视频| 只有这里有精品99| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 国产福利在线免费观看视频| 中文字幕最新亚洲高清| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 一区二区av电影网| 国产精品熟女久久久久浪| 午夜影院在线不卡| 亚洲精品视频女| 欧美精品av麻豆av| 晚上一个人看的免费电影| 国产精品.久久久| 人人妻人人澡人人看| 美女福利国产在线| 男女无遮挡免费网站观看| av网站免费在线观看视频| www.精华液| 久久精品亚洲熟妇少妇任你| 亚洲精品国产av蜜桃| 国产日韩一区二区三区精品不卡| 精品福利永久在线观看| 久久鲁丝午夜福利片| 国产色婷婷99| 国产欧美日韩一区二区三区在线| 伊人久久国产一区二区| 国产精品国产av在线观看| 夫妻性生交免费视频一级片| 国产精品无大码| 欧美日韩亚洲国产一区二区在线观看 | 麻豆精品久久久久久蜜桃| 日本91视频免费播放| 深夜精品福利| 成人毛片60女人毛片免费| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 999久久久国产精品视频| 国产高清不卡午夜福利| 午夜福利乱码中文字幕| 香蕉国产在线看| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 99久久综合免费| 午夜日韩欧美国产| 亚洲综合精品二区| 秋霞在线观看毛片| 天天躁狠狠躁夜夜躁狠狠躁| 美女脱内裤让男人舔精品视频| 久久这里只有精品19| 亚洲精品av麻豆狂野| 免费黄色在线免费观看| 在线观看人妻少妇| 成人亚洲精品一区在线观看| 国产极品天堂在线| 国产97色在线日韩免费| 精品一区二区三区av网在线观看 | 美女国产高潮福利片在线看| av线在线观看网站| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 最新的欧美精品一区二区| 激情五月婷婷亚洲| 亚洲精品第二区| 亚洲专区中文字幕在线 | 中国三级夫妇交换| 欧美精品av麻豆av| 韩国av在线不卡| 蜜桃在线观看..| 亚洲第一区二区三区不卡| 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| 黄网站色视频无遮挡免费观看| 国产爽快片一区二区三区| 午夜福利,免费看| 色94色欧美一区二区| 夫妻性生交免费视频一级片| 欧美日韩成人在线一区二区| 777米奇影视久久| 精品少妇内射三级| 老汉色∧v一级毛片| 国产成人午夜福利电影在线观看| 国产福利在线免费观看视频| 国产成人免费观看mmmm| 亚洲成人手机| 中文字幕制服av| 99re6热这里在线精品视频| 老鸭窝网址在线观看| 在线观看三级黄色| 高清欧美精品videossex| 久久久久久人妻| 精品少妇黑人巨大在线播放| 久久性视频一级片| 精品一区二区三区av网在线观看 | 黄色一级大片看看| 国产亚洲欧美精品永久| 亚洲国产成人一精品久久久| 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 中文欧美无线码| 亚洲成人手机| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 欧美精品亚洲一区二区| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 亚洲免费av在线视频| 一级a爱视频在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲欧洲国产日韩| 91精品伊人久久大香线蕉| 精品久久蜜臀av无| 看十八女毛片水多多多| 纵有疾风起免费观看全集完整版| 久久精品久久久久久噜噜老黄| 黄片播放在线免费| 国产 精品1| 亚洲五月色婷婷综合| 搡老岳熟女国产| 国产伦人伦偷精品视频| 日日撸夜夜添| 91精品伊人久久大香线蕉| 999久久久国产精品视频| 亚洲精品美女久久av网站| 日本av免费视频播放| 日韩成人av中文字幕在线观看| 亚洲精品在线美女| 免费看不卡的av| 男女边摸边吃奶| 日本猛色少妇xxxxx猛交久久| 免费在线观看视频国产中文字幕亚洲 | 18禁国产床啪视频网站| 青草久久国产| 精品国产国语对白av| 久久久欧美国产精品| 少妇人妻久久综合中文| 日韩一区二区三区影片| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| xxxhd国产人妻xxx| 9191精品国产免费久久| 亚洲欧美中文字幕日韩二区| 国产日韩欧美亚洲二区| 国产有黄有色有爽视频| 桃花免费在线播放| 亚洲国产欧美网| 十八禁高潮呻吟视频| 老司机影院毛片| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 十八禁高潮呻吟视频| 精品国产乱码久久久久久男人| 国产精品亚洲av一区麻豆 | 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 国产一区亚洲一区在线观看| 2021少妇久久久久久久久久久| tube8黄色片| 超色免费av| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 成人国语在线视频| 久久人人97超碰香蕉20202| 亚洲av欧美aⅴ国产| 色播在线永久视频| 岛国毛片在线播放| 精品一区二区三区av网在线观看 | 亚洲国产av影院在线观看| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 精品一区二区三区av网在线观看 | 一级毛片 在线播放| 建设人人有责人人尽责人人享有的| 男女之事视频高清在线观看 | 99久国产av精品国产电影| 在线精品无人区一区二区三| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| www.av在线官网国产| 男女国产视频网站| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 三上悠亚av全集在线观看| 亚洲av中文av极速乱| 一区二区三区乱码不卡18| 欧美日本中文国产一区发布| 两个人看的免费小视频| 免费看不卡的av| 亚洲国产欧美在线一区| 人人妻,人人澡人人爽秒播 | 成人三级做爰电影| 亚洲欧美色中文字幕在线| 久久久久精品久久久久真实原创| 免费看av在线观看网站| 91国产中文字幕| 国产 精品1| 免费观看人在逋| 卡戴珊不雅视频在线播放| 欧美黄色片欧美黄色片| 久久ye,这里只有精品| 一个人免费看片子| 日韩大片免费观看网站| 精品亚洲成a人片在线观看| 日本色播在线视频| 久久久久久免费高清国产稀缺| 久久久久久久久久久久大奶| 亚洲一区中文字幕在线| av.在线天堂| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 伦理电影免费视频| 国产精品国产av在线观看| xxx大片免费视频| 日韩制服丝袜自拍偷拍| 在线观看免费午夜福利视频| 女的被弄到高潮叫床怎么办| 国产精品国产三级专区第一集| 老司机影院成人| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 亚洲国产欧美网| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 亚洲在久久综合| 欧美另类一区| 国产精品国产av在线观看| 久久久国产一区二区| 亚洲成人免费av在线播放| 最黄视频免费看| 热re99久久精品国产66热6| 亚洲精品视频女| 9热在线视频观看99| 欧美xxⅹ黑人| 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 热re99久久国产66热| 成年人免费黄色播放视频| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 亚洲色图综合在线观看| 男女午夜视频在线观看| 国产精品av久久久久免费| 99久久精品国产亚洲精品| 亚洲欧美清纯卡通| 黄片小视频在线播放| 日韩不卡一区二区三区视频在线| 亚洲精品日本国产第一区| 亚洲第一青青草原| 操美女的视频在线观看| 亚洲精品成人av观看孕妇| 在线天堂中文资源库| 国产成人欧美在线观看 | 免费观看性生交大片5| 一级爰片在线观看| 只有这里有精品99| www日本在线高清视频| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 国产成人精品久久久久久| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 久久97久久精品| 国产又色又爽无遮挡免| 搡老乐熟女国产| 人妻 亚洲 视频| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看| 欧美另类一区| 亚洲,欧美精品.| 中国国产av一级| 宅男免费午夜| 久久久久久久久免费视频了| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 19禁男女啪啪无遮挡网站| 亚洲色图综合在线观看| 波野结衣二区三区在线| 无限看片的www在线观看| 精品国产乱码久久久久久男人| 亚洲综合精品二区| 在线看a的网站| 国产片特级美女逼逼视频| 51午夜福利影视在线观看| 亚洲四区av| 大话2 男鬼变身卡| 狂野欧美激情性bbbbbb| 丝袜人妻中文字幕| 超碰97精品在线观看| 成人黄色视频免费在线看| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 看非洲黑人一级黄片| 纯流量卡能插随身wifi吗| 久久久久精品久久久久真实原创| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| kizo精华| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 夫妻性生交免费视频一级片| www.精华液| 男人添女人高潮全过程视频| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 岛国毛片在线播放| 在线观看国产h片| 极品人妻少妇av视频| 一级黄片播放器| 伊人亚洲综合成人网| 亚洲综合精品二区| kizo精华| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 国产精品无大码| 亚洲五月色婷婷综合| 国产成人精品无人区| 久久青草综合色| 国产伦理片在线播放av一区| 国产成人免费观看mmmm| 亚洲专区中文字幕在线 | 观看美女的网站| 男人添女人高潮全过程视频| 一区二区av电影网| 纯流量卡能插随身wifi吗| 亚洲精品,欧美精品| 欧美日韩精品网址| 男女免费视频国产| 国产精品久久久久成人av| videosex国产| 久久久国产一区二区| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费看片子| 午夜老司机福利片| www.自偷自拍.com| 亚洲美女视频黄频| 久久人人97超碰香蕉20202| 国产极品粉嫩免费观看在线| 国产成人欧美| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 免费看av在线观看网站| 超色免费av| 性色av一级| 日本av免费视频播放| 婷婷色av中文字幕| 又大又爽又粗| 青春草国产在线视频| 这个男人来自地球电影免费观看 | 国产精品 国内视频| 欧美精品亚洲一区二区| 久久久亚洲精品成人影院| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 精品福利永久在线观看| 在线 av 中文字幕| 久久久欧美国产精品| 欧美中文综合在线视频| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆 | 成人国产av品久久久| 精品视频人人做人人爽| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 少妇人妻久久综合中文| 亚洲伊人色综图| 少妇人妻 视频| 丝瓜视频免费看黄片| bbb黄色大片| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 制服诱惑二区| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 老司机靠b影院| 99精品久久久久人妻精品| 国产亚洲一区二区精品| 在线天堂最新版资源| 国产av国产精品国产| 国产成人午夜福利电影在线观看| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 精品一区二区免费观看| www.自偷自拍.com| 日本一区二区免费在线视频| 欧美日韩亚洲高清精品| 91国产中文字幕| 日韩中文字幕欧美一区二区 | 制服诱惑二区| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区大全| 一边摸一边抽搐一进一出视频| 精品免费久久久久久久清纯 | 国产高清国产精品国产三级| 另类亚洲欧美激情| av一本久久久久| 免费看不卡的av| 男女国产视频网站| 91精品三级在线观看| 女人爽到高潮嗷嗷叫在线视频| 天天躁夜夜躁狠狠久久av| 婷婷成人精品国产| av又黄又爽大尺度在线免费看| 久久av网站| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 亚洲少妇的诱惑av| 制服人妻中文乱码| 欧美日韩综合久久久久久| 久久久久网色| 99香蕉大伊视频| 少妇精品久久久久久久| 国产精品女同一区二区软件| 中文字幕另类日韩欧美亚洲嫩草| 韩国高清视频一区二区三区| 中国三级夫妇交换| 一本一本久久a久久精品综合妖精| 丝袜美足系列| 日韩人妻精品一区2区三区| 欧美成人精品欧美一级黄| 日韩中文字幕视频在线看片| a级片在线免费高清观看视频| 91老司机精品| 国产在线视频一区二区| 中文字幕高清在线视频| 一级片免费观看大全| 黄色 视频免费看| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 亚洲欧美清纯卡通| 如日韩欧美国产精品一区二区三区| 午夜福利视频在线观看免费| 人人澡人人妻人| 叶爱在线成人免费视频播放| 在线观看www视频免费| e午夜精品久久久久久久| 久久毛片免费看一区二区三区| 亚洲国产欧美网| 日韩大码丰满熟妇| 在线观看人妻少妇| 黄片播放在线免费| 国产伦人伦偷精品视频| 老司机靠b影院| 国产亚洲欧美精品永久| 国产精品.久久久| 最近2019中文字幕mv第一页| 日本vs欧美在线观看视频| 1024香蕉在线观看| 婷婷色综合www| 在线观看免费日韩欧美大片| 国产日韩欧美在线精品| 国精品久久久久久国模美| 亚洲av欧美aⅴ国产| www.自偷自拍.com| 久久久久人妻精品一区果冻| 狠狠婷婷综合久久久久久88av| 激情视频va一区二区三区| 最近最新中文字幕免费大全7| 黄片小视频在线播放| 欧美 亚洲 国产 日韩一| 69精品国产乱码久久久| 久热这里只有精品99| 精品国产国语对白av| 国产精品偷伦视频观看了| 天天影视国产精品| 久久国产亚洲av麻豆专区| 1024视频免费在线观看| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 亚洲一码二码三码区别大吗| 纯流量卡能插随身wifi吗| 男女国产视频网站| 欧美激情高清一区二区三区 | 日韩中文字幕视频在线看片| 国产精品国产三级专区第一集| 国产在线一区二区三区精| 久久热在线av| 最近最新中文字幕大全免费视频 | 黑丝袜美女国产一区| 啦啦啦啦在线视频资源| 欧美日韩亚洲国产一区二区在线观看 | 美女午夜性视频免费| 少妇猛男粗大的猛烈进出视频| 丝袜人妻中文字幕| 搡老岳熟女国产| 久久 成人 亚洲| 麻豆av在线久日| av在线app专区| 国产精品女同一区二区软件| 国产成人精品无人区| 亚洲图色成人| 丰满迷人的少妇在线观看| 国产伦人伦偷精品视频| 18禁观看日本| 成人18禁高潮啪啪吃奶动态图| 51午夜福利影视在线观看| 成年av动漫网址| 久久热在线av| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 免费观看性生交大片5| 午夜日本视频在线| 一个人免费看片子| 国产成人免费无遮挡视频| 一区二区三区精品91| 亚洲欧美色中文字幕在线| 午夜福利视频精品| 最新的欧美精品一区二区| 国产xxxxx性猛交| 精品卡一卡二卡四卡免费| 男人操女人黄网站| 一区二区日韩欧美中文字幕|