• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice

    2022-12-28 09:54:30XinKeLiu劉鑫柯XinYangLi李欣陽(yáng)MiaoJuanRen任妙娟PeiJiWang王培吉andChangWenZhang張昌文
    Chinese Physics B 2022年12期

    Xin-Ke Liu(劉鑫柯), Xin-Yang Li(李欣陽(yáng)), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: first-principles calculation,semi-metal,nodal ring,Curie temperature

    1. Introduction

    Topological semimetals[1–4]are a recent research hotspot in the condensed matter physics. Many remarkable physical properties of graphene are related to its topological semi-metallic energy band structure, i.e., the conduction and valence bands of graphene intersect linearly at two isolated Fermi points in the Brillouin zone (BZ). The special energy band structure makes low-energy electrons the same as two-dimensional (2D) massless Dirac fermions.[5]The valence and conduction bands of topological semimetals can cross as dots or lines in the Fermi plane to form Dirac/Weyl semimetals[6–10]or nodal line/ring semimetals.Nodal ring semimetals (NRSM) form closed loops in thekspace where the conduction and valence bands cross continuously in the Fermi plane. NRSM[11–21]is firstly proposed in all-carbon Mackay Terrones crystals,[22]antiperovskite Cu3PdN[23]and other three-dimensional materials.Recently, the 2D NRSMs have received increasing attention,such as Ba2CdReO6[24]and Al3FeSi2.[25]Among them, the 2D monolayer Cu2Si[12]is experimentally confirmed to be an NRSM, and its energy band structure is characterized by two parallel rings centered at theΓpoint. NRSMs have many special properties, such as nondispersive Landau energy level,[26]high-temperature surface superconductivity,[27]and long-range Coulomb interactions.[28]Symmetry breaking may lead to the transformation of NRSM into other exotic topological states such as topological insulators and Weyl semimetals.[29,30]In general, the formation of ferromagnetic(FM) sequences is accompanied by time-reversal symmetry(TRS)breaking and sometimes by symmetry reduction of the crystal symmetry. Therefore, it is challenging to find NRSM in magnetic materials.

    Studying 2D materials which have single-spin properties is notable when the TRS associated with spin is disrupted.[31]A semimetal is a state in which one electron spin channel is in a metallic state and the other electron spin channel is in an insulator or semiconductor.The speed of 100%polarized electrons or holes in a semi-metallic material is much faster than that of unpolarized electrons in a conventional 2D semiconductor,so it has a natural advantage in spin generation,injection and transport.By adjusting the gate voltage and exploiting the Hall effect,we can obtain a high-speed controlled flow of spin electrons, a property that can be used in devices such as field-effect transistors[32]and self-selecting filters.[33]Furthermore, it is possible that the spin-polarized NRSM materials are precursors of quantum anomalous Hall(QAH)phases that do not require magnetic atom doping,which can considerably expand the range of magnetic topology materials.[34–37]Investigating new materials with spin-polarized nodal rings(NR)is very intriguing,which will bring new practical applications in spintronics and condensed matter physics.

    The 2D honeycomb-kagome(HK)lattice provides a fertile ground for the study of exotic physical properties, and previous studies have found some FM Dirac semimetals in the HK lattice.[38,39]In this work,our computational analysis yields that the HK monolayer Mn2N3possesses a fully spinpolarized NR that is strongly robust to spin–orbit coupling(SOC) interactions. The calculation of magnetic anisotropy energy (MAE) indicates that the ground state of the monolayer Mn2N3is out-of-plane(OP).The Curie temperature(TC)of Mn2N3is 530 K based on the Ising model and Monte-Carlo (MC) simulations. We next explain the origin of NR using wave function symmetry analysis and an effective tight-binding (TB) model constructed by the maximally localized Wannier function(MLWF).Furthermore, Mn2N3can construct h-BN/Mn2N3/h-BN heterostructures with h-BN and maintain its NRSM state, and the above conclusions demonstrate that the monolayer Mn2N3is an ideal material for spintronics devices.

    2. Computational details

    The Viennaab initiosimulation package (VASP),[40]based on the spin polarization density generalized functional theory (DFT), calculates all structural and electronic properties. We use Perdew–Burke–Ernzerhof (PBE) in the form of generalized gradient approximation (GGA)[41]to process the exchange–correlation function. Projection-augmented-wave(PAW)[42]potential is used to describe the ion–electron potential. To explain the Mn-3d orbital correlation effect, the structure is optimized by using a spin-dependent GGA plus HubbardU,[43]with the HubbardUparameter set to 3.0 eV.We test someUvalues and they show the qualitatively similar results. The screened Heyd–Scuseria–Ernzerhof Hybrid functional method(HSE06)is used to confirm the precision of the PBE calculation results. An 11×11×1 Monkhorst–Packk-points grid is used to integrate the BZ.[44]All the structural parameters are completely relaxed until the total energy and the Hellmann–Feynman force on each atom are converged to 10?6eV and 0.01 eV/?A,respectively. In order to avoid interactions induced by periodic images,a vacuum region exceeding 15 ?A is executed. Phonon dispersion curves of 3×3×1 supercells are calculated by using phonopy code[45]based on density functional perturbation theory. We use MC simulations and Ising model to calculate theTC.Ab initiomolecular dynamics(MD)calculations are calculated for a 5×5×1 supercell with a time step of 1 fs at 300 K temperature for 8 ps.We use D3 Grimme dispersion in the energy minimization process for the sake of finding the most mechanically stable conformation of the van der Waals(vdW)heterostructures.[46]The effective TB Hamiltonian is obtained by using the MLWF package[47,48]for fitting the energy bands.

    3. Results and discussion

    As seen in Fig.1(a),each HK monolayer Mn2N3contains two manganese(Mn)atoms and three nitrogen(N)atoms.The Mn atoms in the Mn2N3share an N bridge with neighboring Mn atoms and three N atoms around each Mn atom, forming a HK lattice withD6hpoint group symmetry. The crystal structure is similar to that of the 2D organic Ta2S3and Nb2O3[35]lattices. The relaxation lattice constant of Mn2N3isa1=a2=6.09 ?A. The N–Mn–N bond angle is 120?, and the Mn–Mn distance isd=3.52 ?A.To describe the stability of Mn2N3bonding, we calculate the cohesion energyEc, which is calculated as follows:

    whereE(Mn2N3) is the energy of the Mn2N3andμ(Mn)andμ(N2) are the chemical potentials of Mn atoms and N2molecules, respectively. The cohesion energy of the Mn2N3isEc=?0.602 eV/atom, which is comparable to that of the monolayer CrI3(?0.903 eV/atom)[49]and Cr2Ge2Te6(?0.552 eV/atom).[50]The large cohesion energy indicates that the synthesis of the Mn2N3is an exothermic chemical reaction with stable bonding within the lattice. To illustrate the bonding properties of the Mn2N3,we calculate the electron localization function(ELF)in the(001)and(110)planes. As illustrated in Fig.1(b),the electrons are mainly localized around the N atom and almost no electrons are located around the Mn atom or in the central region between Mn and N. This indicates that the electrons are transferred from the Mn atom to the N atom, which is a typical ionic bonding property. The ionic bond between Mn and N is related to the large electronegativity difference between the bonding atoms.

    The stability of the 2D materials is decisive for their experimental fabrication and deeper applications. In the first place, to demonstrate the kinetic stability of the Mn2N3, we calculate the phonon spectrum of the Mn2N3, as Fig. 1(d)shows. We can see that there are no imaginary frequencies in the full BZ,which indicates that the monolayer Mn2N3lattice is kinetically stable. In the second place, we use MD simulations to estimate the thermodynamic stability of the Mn2N3lattice. As depicted in Fig. 1(e), the crystal structure of the Mn2N3is not significantly deformed in the MD simulations within 8 ps at 300 K temperature. Last but not least,we calculate the elastic constants of the monolayer Mn2N3. The elastic constants can reflect the mechanical stability of the material.By using Voigt notation,the elastic tensorCof a 2D material withD6hpoint group symmetry can be simplified as

    It is calculated thatC11andC12are equal to 32.47 GPa and 25.22 GPa, respectively. BothC11andC11?C12are greater than 0,which satisfy Born’s mechanical stability judgment criteria and confirm the mechanical stability of the monolayer Mn2N3. In conclusion, the above results indicate that the Mn2N3monolayers have very good structural stability and are promising to be prepared in the laboratory.

    Fig.1.(a)Top and side views of the monolayer Mn2N3 lattice,where the Mn atoms are in red and the N atoms are in blue. (b)ELF maps of the(001)and(100) facets of the Mn2N3 lattice, with the charge aggregation distribution represented by normalized color mapping,blue for no charge present and red for charge concentration.(c)2D BZ representation of the monolayer Mn2N3.(d)Phonon spectrum of the monolayer Mn2N3. (e)MD simulation at 300 K temperature.

    After demonstrating the structural stability of the Mn2N3,we next investigate the magnetic properties of the Mn2N3.The spin-polarized electronic properties can be illustrated by the differential electron density of the upper and lower spin channels. Spin polarization calculations show a net magnetic moment ofM=5μBper unit cell, indicating a large spin polarization in the Mn2N3. The local magnetic moment of the Mn atom isMMn=3.202μB,which is consistent with the high spin state of Mn3+. The nitrogen atoms have a very small opposite magnetic moment (MN=?0.47μB) due to the fact that they are antiferromagnetically coupled to the Mn atoms and are hardly magnetized. It is also evident from the spin density diagram in Fig.2(a)that the spin polarization is dominated by the Mn atom. To identify the magnetic ground state of the Mn2N3, we design some possible antiferromagnetic configurations,which include Neal antiferromagnetic(NAFM),stripe AFM (SAFM) and zigzag AFM (ZAFM), and FM, as illustrated in Fig. 2(b). The calculated energy of NAFM, SAFM,and ZAFM states is 37.33 meV,22.49 meV,and 13.47 meV,respectively, higher than that of FM state(?E=EAFM?EFM).So the Mn2N3ground state is the FM state.MAE describes the energy required to rotate the magnetization direction of the FM state from the magnetic easy axis to the magnetic hard axis,reflecting the difficulty of spin flip and the magnetic moment orientation in the ground state. We consider the SOC effect in the MAE calculations when calculating the energy for different magnetic moment orientations. MAE calculations show that the magnetic ground state of Mn2N3is in the OP [001]direction.

    Fig. 2. (a) Spin density map of the (001) plane. (b) Four possible magnetic configurations of the monolayer Mn2N3:Upper left NAFM,upper right SAFM,lower left ZAFM,and lower right FM.(c)Difference between the energy of the magnetic moment in each direction from 0?to 360?in the xz plane θ and the base state energy. (d)Difference between the energy of the magnetic moment in each direction from 0?to 360?in the xy plane ? and the base state energy.

    TheTCis another critical parameter for spintronic devices in practical applications.Before applying Mn2N3to spintronic devices, the relationship between the magnetic properties of the Mn2N3and temperature needs to be explored. By using the 2D Ising model to calculateTC, the spin Hamiltonian can be formulated as

    whereJ1andJ2are respectively the nearest and second nearest neighbor parameters of the magnetic exchange interaction.Siis the atomic spin vector.Ais the anisotropy parameter, andSzis thez-component of the spin vector. Because of the larger distance between two second nearest neighbor Mn atoms (J2term is neglected) and the smaller MAE energy (Aterm is neglected), the spin Hamiltonian only considers theJ1term.TheJ1term can be expressed asJ1= ?E/(2zS2TM), where?E=EFM?EAFM,zis the number of nearest neighbor magnetic atoms,STMis the magnitude of the magnetic moment of the magnetic atom. The final value ofJ1is 6.1 meV andTCis 530 K. The red curve in Fig. 3 shows the image of the variation of the single-cell magnetic moment with temperature. The single-cell magnetic moment decreases significantly atTC=530 K which indicates that the maximum temperature at which the FM state can be maintained is 530 K.In addition,we calculate the specific heat capacity(CV)using the following equation:

    whereEis the energy of each magnetic configuration. The calculatedCVis shown by the green curve in Fig. 3, which further confirms the ferromagnetic–paramagnetic phase transition with critical temperature of 530 K. The highTCindicates that the monolayer Mn2N3is a promising material for high-temperature spintronics.calculate the 3D energy bands and find that these crossings do not appear in isolation. On the contrary, they are part of two concentric rings centered at the pointΓas displayed in Figs.5(a)and 5(b). In Figs.5(c)and 5(d), we label the outer and inner rings asL1andL2, respectively. It is worth noting that theL1shape is a hexagon around theΓpoint. The hexagonalL1band crossings are anisotropic,which will bring many interesting phenomena.

    Fig.4. (a)Electronic energy band diagrams of the upper spin(red)and lower spin(blue)channels of the monolayer Mn2N3 without considering SOC.(b)Analytical diagram of the orbital composition of the Mn atom, with the energy bands near the Fermi plane mainly contributed by dx2?y2, dyz, dxy orbitals. (c)Analytical diagram of the orbital composition of the N atom, the energy bands near the Fermi surface are mainly contributed by px+y, pz orbitals. (d)Electron energy band diagram(yellow)of the monolayer Mn2N3 with SOC.(e)Band structure calculated by the HSE06 method.(f)TB model fitted energy bands(black lines).

    Fig. 3. MC simulation plot with red indicating the magnetic moment magnitude versus temperature curve and green indicating the specific CV versus temperature curve.

    We next investigate the electronic properties of the monolayer Mn2N3. The first one,in Fig.4(a),the electronic bands with spin up and spin down are shown in blue and red, respectively. As can be seen,the electrons near the Fermi plane are completely separated from each other, and the spin-down electrons carry a wide band gap of 2.08 eV,whilst the spin-up electron band has no band gap. Consequently, in the vicinity of the Fermi energy level, the electrons are fully spinpolarized. The second one is that we observe a linear crossing of the three energy bands near the Fermi energy level. In these three energy bands,one is an electron-like band(marked asγband), the other two are hole-like bands (marked asαandβbands), and band crossover occurs betweenγband andα,βbands. In the projection of the orbitals in Figs.4(b)and 4(c),it is observed that theαandβbands are largely attributed to the Mn(dxy,dx2?y2), N(px+y) orbitals, whereas theγband is mostly contributed by the Mn(dyz),N(pz)orbitals. We further

    Then we calculate the electronic properties after considering the SOC effect. The yellow line in Fig. 4(d) shows the electronic energy band diagram along theM–Γ–K–Mpath after considering the SOC effect. It is worth noting that the energy band along theM–Γ–K–Mpath under the SOC effect is not opened with a gap. We also examine the other parts of both NR and no band gaps are found to exist. The above results indicate that the NR in the monolayer Mn2N3is stable to SOC.In addition,to verify the accuracy of the PBE calculation results, we calculate the HSE06 energy band using the accurate and reliable HSE06 hybrid function algorithm, as shown in Fig.4(e). It can be seen from the figure that onlyL1opens a tiny band gap of 10 meV in theΓ–Kpath, which has little effect on the application of the nodal ring, and the results of the HSE06 and PBE calculations are qualitatively the same.

    Fig.5. (a)The monolayer Mn2N3 3D energy band. (b)The NR formed by the intersection of α, β, and γ bands, with the outer ring defined as L1 and the inner ring defined as L2. (c)Top view of the NR L1. (d)Top view of the NR L2.

    Then,it is natural to wonder what protects the NR in the monolayer Mn2N3. Through analysis of the symmetries for the three bands, we believe that NR is protected by horizontal mirror(Mz)symmetry. The ground-state magnetization direction is perpendicular horizontal facing outward, such that the magnetization direction does not destroy theMzin the FM state. TheMzeigenvalues of the two hole-like bandsαandβare +i, while theMzeigenvalues of the electron-like bandγare?i, so theγband must cross theαandβbands without hybridization.As long asMzis present,the energy band crossing will not open the band gap even under SOC action,and NR is thus protected. Next, we construct TB model Hamiltonian by projecting the dxy,dx2?y2,and dyzorbitals of the Mn atoms and px+yand pzof the N atoms onto the Mn2N3cell using the MLWF for further analysis of the energy band structure.As indicated in the black line in Fig. 4(f), the main features of the DFT calculated energy band considering SOC and the TB model fitted energy band around theEflevel are the same,despite the subtle differences. Furthermore,because of theMzsymmetry, the eigenstates have to be spin-polarized oriented along the OP, i.e., no hybridization occurs in the spin-up and spin-down energy band,and those energy bands are fully spinpolarized. In summary,the monolayer Mn2N3is a novel material protected byMzwith fully spin-polarized NR under the action of SOC. It is not difficult to infer that when breakingMz,NRs will also be broken. To verify the above conjecture,we rotate the magnetic moments toθ=45?andθ=90?directions, respectively, and calculate their energy band diagrams.As presented in Fig. 6, since theMzsymmetry is broken, the energy band crossover is opened and the NRs is destroyed into two pairs of Weyl points.

    Finally, since growing thin films on the semiconductor substrates with large band gaps is a common practice for experiments, we explore the feasibility of forming heterostructures with a single layer of the Mn2N3on semiconductor substrates. From the stress–energy band diagram in Fig.8,it can be seen that the Mn2N3lattice nodal ring property is robust to compressive stresses and maintains the nodal ring energy band characteristics even at 2% tensile stress. We place Mn2N3on the h-BN[51]substrates to form h-BN/Mn2N3/h-BN heterostructures, as showed in Fig.7(a). Structural optimization considering van der Waals corrections shows that the layer spacing between the Mn2N3and the h-BN is 3.0 ?A,which is typically of weak vdW interactions. Figure 7(b) shows the electronic energy band structure of the heterostructures. We can see that the energy band structure and FM properties of the Mn2N3can be well maintained on the h-BN/Mn2N3/h-BN heterostructures,and the NR near theEflevel is essentially the same as that of monolayer Mn2N3. This is due to the preservation of theMzmirror symmetry by placing the monolayer Mn2N3between two h-BNs.

    Fig. 6. The energy band diagrams when the direction of the magnetic moment is along θ =0?,θ =45?,and θ =90?are shown in red,green,and purple,respectively.

    Fig. 7. (a) Top and side views of the h-BN/Mn2N3/h-BN heterostructures,where the N atom is directly above the Mn atom. (b) Electron energy band diagram of the heterostructures.

    Fig.8. Band structures of the Mn2N3 under different biaxial strain.

    4. Conclusion and perspectives

    We propose that the 2D monolayer Mn2N3is a FM NRSM, which has thermodynamical and kinetical stability.Based on the Ising model and MC simulations,aTCof 530 K is obtained,higher than that of most of the found 2D NRSMs.Analysis of the electron energy band structure shows that the electron and hole bands with the same spin component are in linear contact with each other near theEfto form two NRs centered at theΓpoint. There are much faster spin-polarized carriers in the monolayer Mn2N3than that of in the non-spinpolarized materials. Because of the protection ofMzsymmetry,NR is robust to SOC.Then we elucidate the origin of NR by symmetry analysis and TB model. Finally,we demonstrate that the monolayer Mn2N3can form h-BN/Mn2N3/h-BN heterostructures with h-BN and maintain NR properties. The 2D Mn2N3is a promising candidate for the experimental observation of spin-polarized NR fermions and gives a motivating platform to design new spintronics devices.

    Acknowledgments

    Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City(Grant No. 2021GXRC043), and National Natural Science Foundation of China(Grant Nos.52173283 and 62071200).

    好看av亚洲va欧美ⅴa在| 亚洲午夜理论影院| 桃色一区二区三区在线观看| 久久久久九九精品影院| 国产精品自产拍在线观看55亚洲| 国产精品,欧美在线| 99国产极品粉嫩在线观看| 我的老师免费观看完整版| 岛国在线观看网站| 一区二区三区国产精品乱码| 色尼玛亚洲综合影院| xxxwww97欧美| 精品久久蜜臀av无| 精品日产1卡2卡| av片东京热男人的天堂| 亚洲五月婷婷丁香| 日本a在线网址| 偷拍熟女少妇极品色| 天堂动漫精品| 久久婷婷人人爽人人干人人爱| 男人舔女人下体高潮全视频| 亚洲欧美日韩无卡精品| 国产成人系列免费观看| 亚洲美女黄片视频| a级毛片在线看网站| 长腿黑丝高跟| 久久精品aⅴ一区二区三区四区| 全区人妻精品视频| 小蜜桃在线观看免费完整版高清| 九色国产91popny在线| 国产精品久久电影中文字幕| 女人被狂操c到高潮| 老司机午夜十八禁免费视频| 欧美成人一区二区免费高清观看 | 精品99又大又爽又粗少妇毛片 | 一级毛片高清免费大全| 免费在线观看视频国产中文字幕亚洲| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 欧美在线一区亚洲| www.精华液| 搞女人的毛片| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 色av中文字幕| 国产视频一区二区在线看| 一区福利在线观看| 中国美女看黄片| 精品日产1卡2卡| 免费看光身美女| 精品久久久久久,| 听说在线观看完整版免费高清| 在线观看免费午夜福利视频| 国内精品久久久久精免费| 久久香蕉精品热| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽| 欧美午夜高清在线| 国产淫片久久久久久久久 | a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 欧美激情久久久久久爽电影| 国内揄拍国产精品人妻在线| 一本久久中文字幕| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 岛国视频午夜一区免费看| 男人的好看免费观看在线视频| 久久伊人香网站| 曰老女人黄片| 亚洲激情在线av| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 精品国产亚洲在线| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 国产探花在线观看一区二区| 嫩草影视91久久| 亚洲国产欧美人成| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 一个人免费在线观看电影 | 宅男免费午夜| 久久久国产成人免费| 精品国内亚洲2022精品成人| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 欧美中文综合在线视频| 精品国产亚洲在线| 噜噜噜噜噜久久久久久91| 国内精品久久久久久久电影| 特级一级黄色大片| 国产蜜桃级精品一区二区三区| 久久精品91无色码中文字幕| 欧美最黄视频在线播放免费| 精品久久久久久,| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 九九在线视频观看精品| 国产私拍福利视频在线观看| 精品一区二区三区视频在线 | 91字幕亚洲| 视频区欧美日本亚洲| 热99re8久久精品国产| 国产成人精品久久二区二区免费| 国产一区二区在线观看日韩 | 两性夫妻黄色片| 亚洲在线观看片| 999久久久国产精品视频| 成年女人永久免费观看视频| 国产亚洲欧美98| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 美女午夜性视频免费| а√天堂www在线а√下载| 日韩高清综合在线| xxx96com| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 色尼玛亚洲综合影院| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 国产麻豆成人av免费视频| 国产精品野战在线观看| 91av网一区二区| 91久久精品国产一区二区成人 | 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区| 亚洲精品中文字幕一二三四区| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 久久精品综合一区二区三区| 欧美一级毛片孕妇| 久久精品91蜜桃| 国产高清视频在线观看网站| 国产精品亚洲av一区麻豆| 搞女人的毛片| 一二三四社区在线视频社区8| 亚洲人与动物交配视频| 亚洲最大成人中文| 深夜精品福利| 国产精品一区二区精品视频观看| 村上凉子中文字幕在线| 精品久久久久久久末码| 亚洲成av人片在线播放无| 成人三级黄色视频| 精品欧美国产一区二区三| 可以在线观看毛片的网站| 亚洲真实伦在线观看| 日本a在线网址| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 手机成人av网站| 国产精品免费一区二区三区在线| 国产真实乱freesex| 色综合婷婷激情| 搡老岳熟女国产| 国产成人精品无人区| 精品久久久久久久久久久久久| 老汉色∧v一级毛片| 亚洲国产欧美人成| 国产久久久一区二区三区| 全区人妻精品视频| 国产一区二区激情短视频| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 男女做爰动态图高潮gif福利片| 桃红色精品国产亚洲av| 欧美日本视频| 亚洲,欧美精品.| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 18禁黄网站禁片免费观看直播| 国产精品 国内视频| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 97人妻精品一区二区三区麻豆| cao死你这个sao货| 一级毛片精品| 亚洲美女视频黄频| 精品欧美国产一区二区三| 国产亚洲精品一区二区www| 九九久久精品国产亚洲av麻豆 | 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 在线观看66精品国产| 久久久水蜜桃国产精品网| 首页视频小说图片口味搜索| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 天堂影院成人在线观看| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 国产精品久久视频播放| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 首页视频小说图片口味搜索| 国产精品综合久久久久久久免费| 99riav亚洲国产免费| 午夜日韩欧美国产| 在线永久观看黄色视频| 夜夜夜夜夜久久久久| 在线观看66精品国产| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 国产高清激情床上av| 国产精品美女特级片免费视频播放器 | 国产乱人视频| 久久久国产精品麻豆| 亚洲黑人精品在线| 亚洲片人在线观看| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 中文字幕久久专区| 嫩草影视91久久| 日本a在线网址| 一卡2卡三卡四卡精品乱码亚洲| 国产熟女xx| 午夜福利欧美成人| 俺也久久电影网| 国产 一区 欧美 日韩| 一级毛片精品| 全区人妻精品视频| 久久99热这里只有精品18| 亚洲九九香蕉| 国产成人aa在线观看| 啦啦啦韩国在线观看视频| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 久久精品91无色码中文字幕| 91麻豆av在线| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 九九热线精品视视频播放| 无人区码免费观看不卡| 国产精品野战在线观看| 色哟哟哟哟哟哟| 一二三四社区在线视频社区8| 18美女黄网站色大片免费观看| 一级毛片精品| 美女午夜性视频免费| 日本a在线网址| 国产高清videossex| 日本五十路高清| 亚洲精华国产精华精| 亚洲av成人一区二区三| av欧美777| 偷拍熟女少妇极品色| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 免费在线观看成人毛片| 不卡一级毛片| 久久久久国内视频| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 美女cb高潮喷水在线观看 | 中文字幕熟女人妻在线| 精品国产乱子伦一区二区三区| 国内揄拍国产精品人妻在线| 亚洲欧美激情综合另类| 两个人的视频大全免费| 免费看十八禁软件| 脱女人内裤的视频| 国产精品av视频在线免费观看| 国产成人aa在线观看| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 国产又黄又爽又无遮挡在线| 少妇丰满av| 国产成人av教育| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 脱女人内裤的视频| 国产91精品成人一区二区三区| 一a级毛片在线观看| 一个人免费在线观看电影 | 久久久久久久午夜电影| 99久久成人亚洲精品观看| 日韩成人在线观看一区二区三区| 国内精品久久久久久久电影| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 久久久久久久久免费视频了| 久久精品国产清高在天天线| 高清在线国产一区| 国产高清激情床上av| 女人被狂操c到高潮| 日本免费一区二区三区高清不卡| 毛片女人毛片| 99视频精品全部免费 在线 | 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 精品福利观看| 精品免费久久久久久久清纯| 免费在线观看视频国产中文字幕亚洲| 国产精品女同一区二区软件 | 国产黄色小视频在线观看| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 精品乱码久久久久久99久播| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看| 亚洲精品乱码久久久v下载方式 | 老鸭窝网址在线观看| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 窝窝影院91人妻| 97超视频在线观看视频| 国产高清videossex| 男女下面进入的视频免费午夜| 欧美黄色淫秽网站| 99国产极品粉嫩在线观看| 操出白浆在线播放| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片| 国内精品一区二区在线观看| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 亚洲无线在线观看| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 91老司机精品| 在线免费观看的www视频| 日本在线视频免费播放| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| 色噜噜av男人的天堂激情| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 国产成人av教育| 欧美一区二区精品小视频在线| 久久性视频一级片| 亚洲 欧美 日韩 在线 免费| 亚洲五月婷婷丁香| 亚洲电影在线观看av| 99久久无色码亚洲精品果冻| 亚洲专区国产一区二区| 日本 欧美在线| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 色综合婷婷激情| 成年女人永久免费观看视频| 中文字幕高清在线视频| 精品久久久久久久毛片微露脸| 天堂av国产一区二区熟女人妻| 日韩三级视频一区二区三区| 美女被艹到高潮喷水动态| 亚洲熟妇熟女久久| 一级毛片女人18水好多| 亚洲熟妇中文字幕五十中出| 怎么达到女性高潮| 亚洲av成人av| 精品国产乱子伦一区二区三区| 天堂动漫精品| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 一级毛片精品| 90打野战视频偷拍视频| 91九色精品人成在线观看| 国产精品自产拍在线观看55亚洲| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 免费看光身美女| 男女之事视频高清在线观看| 免费看光身美女| 亚洲av第一区精品v没综合| 久久久久免费精品人妻一区二区| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦人伦偷精品视频| 国产精品国产高清国产av| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 欧美激情在线99| 国产精品一区二区三区四区免费观看 | 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| 亚洲性夜色夜夜综合| 亚洲国产欧美网| 视频区欧美日本亚洲| 看免费av毛片| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 叶爱在线成人免费视频播放| 国产亚洲精品综合一区在线观看| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 亚洲中文字幕日韩| 1024手机看黄色片| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 又爽又黄无遮挡网站| 五月伊人婷婷丁香| 日本三级黄在线观看| 亚洲美女视频黄频| 久久人妻av系列| 99热只有精品国产| 美女被艹到高潮喷水动态| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 91av网站免费观看| 成年版毛片免费区| 午夜福利视频1000在线观看| 老熟妇仑乱视频hdxx| 欧美日韩福利视频一区二区| 国产综合懂色| 日本 av在线| 精品久久蜜臀av无| 久久这里只有精品中国| 黑人欧美特级aaaaaa片| 天堂√8在线中文| 99久久精品一区二区三区| or卡值多少钱| 国产精品乱码一区二三区的特点| 亚洲精品久久国产高清桃花| 午夜福利在线观看免费完整高清在 | 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 老汉色av国产亚洲站长工具| 99久久99久久久精品蜜桃| 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品久久国产高清桃花| 黄色 视频免费看| 熟女人妻精品中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 在线永久观看黄色视频| 久久久久久久久免费视频了| 亚洲国产欧美人成| 老司机深夜福利视频在线观看| 老鸭窝网址在线观看| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| 欧美又色又爽又黄视频| 精品日产1卡2卡| 一进一出好大好爽视频| 成人欧美大片| 99国产综合亚洲精品| 亚洲av成人一区二区三| 69av精品久久久久久| 九九在线视频观看精品| 成人av在线播放网站| 国产精品久久久久久亚洲av鲁大| 婷婷丁香在线五月| 美女黄网站色视频| 色综合婷婷激情| 男女之事视频高清在线观看| 99视频精品全部免费 在线 | 亚洲成人中文字幕在线播放| 日韩欧美国产在线观看| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 久久久久久久精品吃奶| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| 日本与韩国留学比较| 亚洲国产中文字幕在线视频| 免费高清视频大片| 一级毛片女人18水好多| 少妇裸体淫交视频免费看高清| 欧美乱色亚洲激情| 性色avwww在线观看| 两个人的视频大全免费| 国产97色在线日韩免费| 久久久成人免费电影| 久久国产精品人妻蜜桃| 欧美一区二区国产精品久久精品| 亚洲国产精品合色在线| 免费观看的影片在线观看| 日韩欧美 国产精品| 国产精品亚洲av一区麻豆| 一区福利在线观看| 国产精品电影一区二区三区| 一个人免费在线观看电影 | 一进一出抽搐动态| 91av网一区二区| 中文字幕最新亚洲高清| 麻豆国产97在线/欧美| 欧美乱码精品一区二区三区| 夜夜爽天天搞| 日本黄大片高清| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 极品教师在线免费播放| 麻豆成人av在线观看| 操出白浆在线播放| 中文字幕人成人乱码亚洲影| 级片在线观看| 视频区欧美日本亚洲| 久久久久国产精品人妻aⅴ院| 午夜福利视频1000在线观看| 欧美又色又爽又黄视频| 美女扒开内裤让男人捅视频| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 99riav亚洲国产免费| 神马国产精品三级电影在线观看| 精品久久久久久成人av| 亚洲精品国产精品久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看| 男插女下体视频免费在线播放| av中文乱码字幕在线| 国产精品永久免费网站| 国产亚洲欧美在线一区二区| 曰老女人黄片| 国产淫片久久久久久久久 | 在线十欧美十亚洲十日本专区| 国产精华一区二区三区| 无遮挡黄片免费观看| 国产 一区 欧美 日韩| 国产精品爽爽va在线观看网站| 亚洲欧美精品综合一区二区三区| 女警被强在线播放| 久久这里只有精品中国| 99国产精品99久久久久| 日韩av在线大香蕉| 国产爱豆传媒在线观看| 精品99又大又爽又粗少妇毛片 | 欧美绝顶高潮抽搐喷水| 国产精华一区二区三区| 久久久国产欧美日韩av| 日韩欧美国产在线观看| 天天添夜夜摸| 国产精品久久久久久久电影 | 亚洲国产日韩欧美精品在线观看 | 国产又黄又爽又无遮挡在线| av在线天堂中文字幕| 日韩中文字幕欧美一区二区| 最新在线观看一区二区三区| 亚洲精品色激情综合| 亚洲自偷自拍图片 自拍| 午夜精品在线福利| 一级a爱片免费观看的视频| 久久热在线av| 男女之事视频高清在线观看| 999精品在线视频| 91麻豆av在线| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av嫩草精品影院| 亚洲成人精品中文字幕电影| 天堂网av新在线| 少妇裸体淫交视频免费看高清| 成年女人看的毛片在线观看| 首页视频小说图片口味搜索| 中文字幕人妻丝袜一区二区| 又黄又爽又免费观看的视频| 日韩有码中文字幕| avwww免费| 亚洲国产欧美网| 久久久久国内视频| 亚洲成人精品中文字幕电影| 午夜精品一区二区三区免费看| 亚洲av熟女| 18禁观看日本| 国产成人啪精品午夜网站| 久久久久久久午夜电影| 一级黄色大片毛片| 成人鲁丝片一二三区免费| 中文字幕人妻丝袜一区二区| 国产毛片a区久久久久| 午夜精品久久久久久毛片777| 午夜a级毛片| 国产亚洲精品综合一区在线观看| a在线观看视频网站| 成人三级黄色视频| 精品国内亚洲2022精品成人| 嫩草影院入口| 亚洲精品一区av在线观看| 亚洲天堂国产精品一区在线| 18禁美女被吸乳视频| 午夜视频精品福利| 国产高清videossex| 偷拍熟女少妇极品色| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 99热精品在线国产| 黄色视频,在线免费观看| www.精华液| 精品久久蜜臀av无| 美女高潮喷水抽搐中文字幕| 色综合婷婷激情| 免费搜索国产男女视频| 国产精品久久久久久久电影 | 亚洲av第一区精品v没综合| 小说图片视频综合网站|