• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice

    2022-12-28 09:54:30XinKeLiu劉鑫柯XinYangLi李欣陽(yáng)MiaoJuanRen任妙娟PeiJiWang王培吉andChangWenZhang張昌文
    Chinese Physics B 2022年12期

    Xin-Ke Liu(劉鑫柯), Xin-Yang Li(李欣陽(yáng)), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: first-principles calculation,semi-metal,nodal ring,Curie temperature

    1. Introduction

    Topological semimetals[1–4]are a recent research hotspot in the condensed matter physics. Many remarkable physical properties of graphene are related to its topological semi-metallic energy band structure, i.e., the conduction and valence bands of graphene intersect linearly at two isolated Fermi points in the Brillouin zone (BZ). The special energy band structure makes low-energy electrons the same as two-dimensional (2D) massless Dirac fermions.[5]The valence and conduction bands of topological semimetals can cross as dots or lines in the Fermi plane to form Dirac/Weyl semimetals[6–10]or nodal line/ring semimetals.Nodal ring semimetals (NRSM) form closed loops in thekspace where the conduction and valence bands cross continuously in the Fermi plane. NRSM[11–21]is firstly proposed in all-carbon Mackay Terrones crystals,[22]antiperovskite Cu3PdN[23]and other three-dimensional materials.Recently, the 2D NRSMs have received increasing attention,such as Ba2CdReO6[24]and Al3FeSi2.[25]Among them, the 2D monolayer Cu2Si[12]is experimentally confirmed to be an NRSM, and its energy band structure is characterized by two parallel rings centered at theΓpoint. NRSMs have many special properties, such as nondispersive Landau energy level,[26]high-temperature surface superconductivity,[27]and long-range Coulomb interactions.[28]Symmetry breaking may lead to the transformation of NRSM into other exotic topological states such as topological insulators and Weyl semimetals.[29,30]In general, the formation of ferromagnetic(FM) sequences is accompanied by time-reversal symmetry(TRS)breaking and sometimes by symmetry reduction of the crystal symmetry. Therefore, it is challenging to find NRSM in magnetic materials.

    Studying 2D materials which have single-spin properties is notable when the TRS associated with spin is disrupted.[31]A semimetal is a state in which one electron spin channel is in a metallic state and the other electron spin channel is in an insulator or semiconductor.The speed of 100%polarized electrons or holes in a semi-metallic material is much faster than that of unpolarized electrons in a conventional 2D semiconductor,so it has a natural advantage in spin generation,injection and transport.By adjusting the gate voltage and exploiting the Hall effect,we can obtain a high-speed controlled flow of spin electrons, a property that can be used in devices such as field-effect transistors[32]and self-selecting filters.[33]Furthermore, it is possible that the spin-polarized NRSM materials are precursors of quantum anomalous Hall(QAH)phases that do not require magnetic atom doping,which can considerably expand the range of magnetic topology materials.[34–37]Investigating new materials with spin-polarized nodal rings(NR)is very intriguing,which will bring new practical applications in spintronics and condensed matter physics.

    The 2D honeycomb-kagome(HK)lattice provides a fertile ground for the study of exotic physical properties, and previous studies have found some FM Dirac semimetals in the HK lattice.[38,39]In this work,our computational analysis yields that the HK monolayer Mn2N3possesses a fully spinpolarized NR that is strongly robust to spin–orbit coupling(SOC) interactions. The calculation of magnetic anisotropy energy (MAE) indicates that the ground state of the monolayer Mn2N3is out-of-plane(OP).The Curie temperature(TC)of Mn2N3is 530 K based on the Ising model and Monte-Carlo (MC) simulations. We next explain the origin of NR using wave function symmetry analysis and an effective tight-binding (TB) model constructed by the maximally localized Wannier function(MLWF).Furthermore, Mn2N3can construct h-BN/Mn2N3/h-BN heterostructures with h-BN and maintain its NRSM state, and the above conclusions demonstrate that the monolayer Mn2N3is an ideal material for spintronics devices.

    2. Computational details

    The Viennaab initiosimulation package (VASP),[40]based on the spin polarization density generalized functional theory (DFT), calculates all structural and electronic properties. We use Perdew–Burke–Ernzerhof (PBE) in the form of generalized gradient approximation (GGA)[41]to process the exchange–correlation function. Projection-augmented-wave(PAW)[42]potential is used to describe the ion–electron potential. To explain the Mn-3d orbital correlation effect, the structure is optimized by using a spin-dependent GGA plus HubbardU,[43]with the HubbardUparameter set to 3.0 eV.We test someUvalues and they show the qualitatively similar results. The screened Heyd–Scuseria–Ernzerhof Hybrid functional method(HSE06)is used to confirm the precision of the PBE calculation results. An 11×11×1 Monkhorst–Packk-points grid is used to integrate the BZ.[44]All the structural parameters are completely relaxed until the total energy and the Hellmann–Feynman force on each atom are converged to 10?6eV and 0.01 eV/?A,respectively. In order to avoid interactions induced by periodic images,a vacuum region exceeding 15 ?A is executed. Phonon dispersion curves of 3×3×1 supercells are calculated by using phonopy code[45]based on density functional perturbation theory. We use MC simulations and Ising model to calculate theTC.Ab initiomolecular dynamics(MD)calculations are calculated for a 5×5×1 supercell with a time step of 1 fs at 300 K temperature for 8 ps.We use D3 Grimme dispersion in the energy minimization process for the sake of finding the most mechanically stable conformation of the van der Waals(vdW)heterostructures.[46]The effective TB Hamiltonian is obtained by using the MLWF package[47,48]for fitting the energy bands.

    3. Results and discussion

    As seen in Fig.1(a),each HK monolayer Mn2N3contains two manganese(Mn)atoms and three nitrogen(N)atoms.The Mn atoms in the Mn2N3share an N bridge with neighboring Mn atoms and three N atoms around each Mn atom, forming a HK lattice withD6hpoint group symmetry. The crystal structure is similar to that of the 2D organic Ta2S3and Nb2O3[35]lattices. The relaxation lattice constant of Mn2N3isa1=a2=6.09 ?A. The N–Mn–N bond angle is 120?, and the Mn–Mn distance isd=3.52 ?A.To describe the stability of Mn2N3bonding, we calculate the cohesion energyEc, which is calculated as follows:

    whereE(Mn2N3) is the energy of the Mn2N3andμ(Mn)andμ(N2) are the chemical potentials of Mn atoms and N2molecules, respectively. The cohesion energy of the Mn2N3isEc=?0.602 eV/atom, which is comparable to that of the monolayer CrI3(?0.903 eV/atom)[49]and Cr2Ge2Te6(?0.552 eV/atom).[50]The large cohesion energy indicates that the synthesis of the Mn2N3is an exothermic chemical reaction with stable bonding within the lattice. To illustrate the bonding properties of the Mn2N3,we calculate the electron localization function(ELF)in the(001)and(110)planes. As illustrated in Fig.1(b),the electrons are mainly localized around the N atom and almost no electrons are located around the Mn atom or in the central region between Mn and N. This indicates that the electrons are transferred from the Mn atom to the N atom, which is a typical ionic bonding property. The ionic bond between Mn and N is related to the large electronegativity difference between the bonding atoms.

    The stability of the 2D materials is decisive for their experimental fabrication and deeper applications. In the first place, to demonstrate the kinetic stability of the Mn2N3, we calculate the phonon spectrum of the Mn2N3, as Fig. 1(d)shows. We can see that there are no imaginary frequencies in the full BZ,which indicates that the monolayer Mn2N3lattice is kinetically stable. In the second place, we use MD simulations to estimate the thermodynamic stability of the Mn2N3lattice. As depicted in Fig. 1(e), the crystal structure of the Mn2N3is not significantly deformed in the MD simulations within 8 ps at 300 K temperature. Last but not least,we calculate the elastic constants of the monolayer Mn2N3. The elastic constants can reflect the mechanical stability of the material.By using Voigt notation,the elastic tensorCof a 2D material withD6hpoint group symmetry can be simplified as

    It is calculated thatC11andC12are equal to 32.47 GPa and 25.22 GPa, respectively. BothC11andC11?C12are greater than 0,which satisfy Born’s mechanical stability judgment criteria and confirm the mechanical stability of the monolayer Mn2N3. In conclusion, the above results indicate that the Mn2N3monolayers have very good structural stability and are promising to be prepared in the laboratory.

    Fig.1.(a)Top and side views of the monolayer Mn2N3 lattice,where the Mn atoms are in red and the N atoms are in blue. (b)ELF maps of the(001)and(100) facets of the Mn2N3 lattice, with the charge aggregation distribution represented by normalized color mapping,blue for no charge present and red for charge concentration.(c)2D BZ representation of the monolayer Mn2N3.(d)Phonon spectrum of the monolayer Mn2N3. (e)MD simulation at 300 K temperature.

    After demonstrating the structural stability of the Mn2N3,we next investigate the magnetic properties of the Mn2N3.The spin-polarized electronic properties can be illustrated by the differential electron density of the upper and lower spin channels. Spin polarization calculations show a net magnetic moment ofM=5μBper unit cell, indicating a large spin polarization in the Mn2N3. The local magnetic moment of the Mn atom isMMn=3.202μB,which is consistent with the high spin state of Mn3+. The nitrogen atoms have a very small opposite magnetic moment (MN=?0.47μB) due to the fact that they are antiferromagnetically coupled to the Mn atoms and are hardly magnetized. It is also evident from the spin density diagram in Fig.2(a)that the spin polarization is dominated by the Mn atom. To identify the magnetic ground state of the Mn2N3, we design some possible antiferromagnetic configurations,which include Neal antiferromagnetic(NAFM),stripe AFM (SAFM) and zigzag AFM (ZAFM), and FM, as illustrated in Fig. 2(b). The calculated energy of NAFM, SAFM,and ZAFM states is 37.33 meV,22.49 meV,and 13.47 meV,respectively, higher than that of FM state(?E=EAFM?EFM).So the Mn2N3ground state is the FM state.MAE describes the energy required to rotate the magnetization direction of the FM state from the magnetic easy axis to the magnetic hard axis,reflecting the difficulty of spin flip and the magnetic moment orientation in the ground state. We consider the SOC effect in the MAE calculations when calculating the energy for different magnetic moment orientations. MAE calculations show that the magnetic ground state of Mn2N3is in the OP [001]direction.

    Fig. 2. (a) Spin density map of the (001) plane. (b) Four possible magnetic configurations of the monolayer Mn2N3:Upper left NAFM,upper right SAFM,lower left ZAFM,and lower right FM.(c)Difference between the energy of the magnetic moment in each direction from 0?to 360?in the xz plane θ and the base state energy. (d)Difference between the energy of the magnetic moment in each direction from 0?to 360?in the xy plane ? and the base state energy.

    TheTCis another critical parameter for spintronic devices in practical applications.Before applying Mn2N3to spintronic devices, the relationship between the magnetic properties of the Mn2N3and temperature needs to be explored. By using the 2D Ising model to calculateTC, the spin Hamiltonian can be formulated as

    whereJ1andJ2are respectively the nearest and second nearest neighbor parameters of the magnetic exchange interaction.Siis the atomic spin vector.Ais the anisotropy parameter, andSzis thez-component of the spin vector. Because of the larger distance between two second nearest neighbor Mn atoms (J2term is neglected) and the smaller MAE energy (Aterm is neglected), the spin Hamiltonian only considers theJ1term.TheJ1term can be expressed asJ1= ?E/(2zS2TM), where?E=EFM?EAFM,zis the number of nearest neighbor magnetic atoms,STMis the magnitude of the magnetic moment of the magnetic atom. The final value ofJ1is 6.1 meV andTCis 530 K. The red curve in Fig. 3 shows the image of the variation of the single-cell magnetic moment with temperature. The single-cell magnetic moment decreases significantly atTC=530 K which indicates that the maximum temperature at which the FM state can be maintained is 530 K.In addition,we calculate the specific heat capacity(CV)using the following equation:

    whereEis the energy of each magnetic configuration. The calculatedCVis shown by the green curve in Fig. 3, which further confirms the ferromagnetic–paramagnetic phase transition with critical temperature of 530 K. The highTCindicates that the monolayer Mn2N3is a promising material for high-temperature spintronics.calculate the 3D energy bands and find that these crossings do not appear in isolation. On the contrary, they are part of two concentric rings centered at the pointΓas displayed in Figs.5(a)and 5(b). In Figs.5(c)and 5(d), we label the outer and inner rings asL1andL2, respectively. It is worth noting that theL1shape is a hexagon around theΓpoint. The hexagonalL1band crossings are anisotropic,which will bring many interesting phenomena.

    Fig.4. (a)Electronic energy band diagrams of the upper spin(red)and lower spin(blue)channels of the monolayer Mn2N3 without considering SOC.(b)Analytical diagram of the orbital composition of the Mn atom, with the energy bands near the Fermi plane mainly contributed by dx2?y2, dyz, dxy orbitals. (c)Analytical diagram of the orbital composition of the N atom, the energy bands near the Fermi surface are mainly contributed by px+y, pz orbitals. (d)Electron energy band diagram(yellow)of the monolayer Mn2N3 with SOC.(e)Band structure calculated by the HSE06 method.(f)TB model fitted energy bands(black lines).

    Fig. 3. MC simulation plot with red indicating the magnetic moment magnitude versus temperature curve and green indicating the specific CV versus temperature curve.

    We next investigate the electronic properties of the monolayer Mn2N3. The first one,in Fig.4(a),the electronic bands with spin up and spin down are shown in blue and red, respectively. As can be seen,the electrons near the Fermi plane are completely separated from each other, and the spin-down electrons carry a wide band gap of 2.08 eV,whilst the spin-up electron band has no band gap. Consequently, in the vicinity of the Fermi energy level, the electrons are fully spinpolarized. The second one is that we observe a linear crossing of the three energy bands near the Fermi energy level. In these three energy bands,one is an electron-like band(marked asγband), the other two are hole-like bands (marked asαandβbands), and band crossover occurs betweenγband andα,βbands. In the projection of the orbitals in Figs.4(b)and 4(c),it is observed that theαandβbands are largely attributed to the Mn(dxy,dx2?y2), N(px+y) orbitals, whereas theγband is mostly contributed by the Mn(dyz),N(pz)orbitals. We further

    Then we calculate the electronic properties after considering the SOC effect. The yellow line in Fig. 4(d) shows the electronic energy band diagram along theM–Γ–K–Mpath after considering the SOC effect. It is worth noting that the energy band along theM–Γ–K–Mpath under the SOC effect is not opened with a gap. We also examine the other parts of both NR and no band gaps are found to exist. The above results indicate that the NR in the monolayer Mn2N3is stable to SOC.In addition,to verify the accuracy of the PBE calculation results, we calculate the HSE06 energy band using the accurate and reliable HSE06 hybrid function algorithm, as shown in Fig.4(e). It can be seen from the figure that onlyL1opens a tiny band gap of 10 meV in theΓ–Kpath, which has little effect on the application of the nodal ring, and the results of the HSE06 and PBE calculations are qualitatively the same.

    Fig.5. (a)The monolayer Mn2N3 3D energy band. (b)The NR formed by the intersection of α, β, and γ bands, with the outer ring defined as L1 and the inner ring defined as L2. (c)Top view of the NR L1. (d)Top view of the NR L2.

    Then,it is natural to wonder what protects the NR in the monolayer Mn2N3. Through analysis of the symmetries for the three bands, we believe that NR is protected by horizontal mirror(Mz)symmetry. The ground-state magnetization direction is perpendicular horizontal facing outward, such that the magnetization direction does not destroy theMzin the FM state. TheMzeigenvalues of the two hole-like bandsαandβare +i, while theMzeigenvalues of the electron-like bandγare?i, so theγband must cross theαandβbands without hybridization.As long asMzis present,the energy band crossing will not open the band gap even under SOC action,and NR is thus protected. Next, we construct TB model Hamiltonian by projecting the dxy,dx2?y2,and dyzorbitals of the Mn atoms and px+yand pzof the N atoms onto the Mn2N3cell using the MLWF for further analysis of the energy band structure.As indicated in the black line in Fig. 4(f), the main features of the DFT calculated energy band considering SOC and the TB model fitted energy band around theEflevel are the same,despite the subtle differences. Furthermore,because of theMzsymmetry, the eigenstates have to be spin-polarized oriented along the OP, i.e., no hybridization occurs in the spin-up and spin-down energy band,and those energy bands are fully spinpolarized. In summary,the monolayer Mn2N3is a novel material protected byMzwith fully spin-polarized NR under the action of SOC. It is not difficult to infer that when breakingMz,NRs will also be broken. To verify the above conjecture,we rotate the magnetic moments toθ=45?andθ=90?directions, respectively, and calculate their energy band diagrams.As presented in Fig. 6, since theMzsymmetry is broken, the energy band crossover is opened and the NRs is destroyed into two pairs of Weyl points.

    Finally, since growing thin films on the semiconductor substrates with large band gaps is a common practice for experiments, we explore the feasibility of forming heterostructures with a single layer of the Mn2N3on semiconductor substrates. From the stress–energy band diagram in Fig.8,it can be seen that the Mn2N3lattice nodal ring property is robust to compressive stresses and maintains the nodal ring energy band characteristics even at 2% tensile stress. We place Mn2N3on the h-BN[51]substrates to form h-BN/Mn2N3/h-BN heterostructures, as showed in Fig.7(a). Structural optimization considering van der Waals corrections shows that the layer spacing between the Mn2N3and the h-BN is 3.0 ?A,which is typically of weak vdW interactions. Figure 7(b) shows the electronic energy band structure of the heterostructures. We can see that the energy band structure and FM properties of the Mn2N3can be well maintained on the h-BN/Mn2N3/h-BN heterostructures,and the NR near theEflevel is essentially the same as that of monolayer Mn2N3. This is due to the preservation of theMzmirror symmetry by placing the monolayer Mn2N3between two h-BNs.

    Fig. 6. The energy band diagrams when the direction of the magnetic moment is along θ =0?,θ =45?,and θ =90?are shown in red,green,and purple,respectively.

    Fig. 7. (a) Top and side views of the h-BN/Mn2N3/h-BN heterostructures,where the N atom is directly above the Mn atom. (b) Electron energy band diagram of the heterostructures.

    Fig.8. Band structures of the Mn2N3 under different biaxial strain.

    4. Conclusion and perspectives

    We propose that the 2D monolayer Mn2N3is a FM NRSM, which has thermodynamical and kinetical stability.Based on the Ising model and MC simulations,aTCof 530 K is obtained,higher than that of most of the found 2D NRSMs.Analysis of the electron energy band structure shows that the electron and hole bands with the same spin component are in linear contact with each other near theEfto form two NRs centered at theΓpoint. There are much faster spin-polarized carriers in the monolayer Mn2N3than that of in the non-spinpolarized materials. Because of the protection ofMzsymmetry,NR is robust to SOC.Then we elucidate the origin of NR by symmetry analysis and TB model. Finally,we demonstrate that the monolayer Mn2N3can form h-BN/Mn2N3/h-BN heterostructures with h-BN and maintain NR properties. The 2D Mn2N3is a promising candidate for the experimental observation of spin-polarized NR fermions and gives a motivating platform to design new spintronics devices.

    Acknowledgments

    Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City(Grant No. 2021GXRC043), and National Natural Science Foundation of China(Grant Nos.52173283 and 62071200).

    熟女电影av网| 有码 亚洲区| 久久婷婷青草| 啦啦啦中文免费视频观看日本| av网站免费在线观看视频| 又爽又黄a免费视频| 国产国拍精品亚洲av在线观看| www.色视频.com| 男的添女的下面高潮视频| 少妇的逼水好多| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 成年美女黄网站色视频大全免费 | 美女视频免费永久观看网站| 水蜜桃什么品种好| 国内精品宾馆在线| 久久精品国产亚洲网站| 99九九线精品视频在线观看视频| 在线观看三级黄色| 成人综合一区亚洲| 亚洲精品成人av观看孕妇| 一级二级三级毛片免费看| 99久久中文字幕三级久久日本| 3wmmmm亚洲av在线观看| 日本与韩国留学比较| 肉色欧美久久久久久久蜜桃| 纯流量卡能插随身wifi吗| 妹子高潮喷水视频| 亚洲成人手机| 中国国产av一级| 成人毛片60女人毛片免费| 国产有黄有色有爽视频| 国产深夜福利视频在线观看| 99久国产av精品国产电影| 日日摸夜夜添夜夜爱| 亚洲精品乱久久久久久| 精品国产露脸久久av麻豆| 国产成人freesex在线| 联通29元200g的流量卡| 欧美成人午夜免费资源| 国产亚洲一区二区精品| 亚洲综合精品二区| 在线观看免费高清a一片| 亚洲国产精品一区三区| 中文字幕av成人在线电影| 欧美xxⅹ黑人| 伦理电影大哥的女人| 国产精品国产三级国产专区5o| 黑人高潮一二区| 免费av不卡在线播放| 高清视频免费观看一区二区| 久久久欧美国产精品| 老师上课跳d突然被开到最大视频| 亚洲人与动物交配视频| 18禁在线无遮挡免费观看视频| 日韩成人av中文字幕在线观看| 一边亲一边摸免费视频| 日本vs欧美在线观看视频 | 直男gayav资源| 最近手机中文字幕大全| 国产一区二区在线观看日韩| 国内少妇人妻偷人精品xxx网站| 日韩在线高清观看一区二区三区| 狠狠精品人妻久久久久久综合| 啦啦啦啦在线视频资源| 99热这里只有是精品在线观看| 亚洲婷婷狠狠爱综合网| 日本av手机在线免费观看| 国产精品人妻久久久影院| 午夜福利网站1000一区二区三区| .国产精品久久| 亚洲成人av在线免费| 亚洲经典国产精华液单| 亚洲av在线观看美女高潮| 干丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 亚洲激情五月婷婷啪啪| 国产伦精品一区二区三区四那| 日韩 亚洲 欧美在线| 成年人午夜在线观看视频| 能在线免费看毛片的网站| 天天躁日日操中文字幕| 91久久精品国产一区二区成人| 精品一区在线观看国产| 亚洲av福利一区| 国产亚洲欧美精品永久| 国产精品免费大片| 免费久久久久久久精品成人欧美视频 | 中文天堂在线官网| 久久久精品免费免费高清| 免费黄色在线免费观看| 下体分泌物呈黄色| 色婷婷久久久亚洲欧美| 好男人视频免费观看在线| 春色校园在线视频观看| 老司机影院成人| 国产精品嫩草影院av在线观看| 大香蕉97超碰在线| 日韩亚洲欧美综合| 毛片女人毛片| 女性被躁到高潮视频| 亚洲欧洲国产日韩| 欧美日韩一区二区视频在线观看视频在线| 亚洲成色77777| 亚洲色图av天堂| 伊人久久精品亚洲午夜| h视频一区二区三区| 国产淫语在线视频| 国产在线男女| 成人综合一区亚洲| 精品一品国产午夜福利视频| 成人一区二区视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区四那| 日韩一区二区视频免费看| 成人美女网站在线观看视频| 特大巨黑吊av在线直播| 午夜精品国产一区二区电影| 国产黄色视频一区二区在线观看| 最近中文字幕高清免费大全6| 久久ye,这里只有精品| 国产黄频视频在线观看| 国产精品福利在线免费观看| 最黄视频免费看| 99热网站在线观看| 丰满人妻一区二区三区视频av| 免费人妻精品一区二区三区视频| 久久国产乱子免费精品| 久久99精品国语久久久| 亚洲精品日韩在线中文字幕| 男女啪啪激烈高潮av片| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 中文天堂在线官网| 99精国产麻豆久久婷婷| 精品国产一区二区三区久久久樱花 | 91精品国产九色| 国产69精品久久久久777片| 最近2019中文字幕mv第一页| 亚洲av综合色区一区| 丝瓜视频免费看黄片| 建设人人有责人人尽责人人享有的 | 亚洲欧洲日产国产| 亚洲精品视频女| 国产女主播在线喷水免费视频网站| 99re6热这里在线精品视频| 亚洲久久久国产精品| 欧美日韩综合久久久久久| 亚洲精品亚洲一区二区| 亚洲一区二区三区欧美精品| 亚洲精品乱码久久久久久按摩| 欧美亚洲 丝袜 人妻 在线| 欧美精品一区二区大全| 亚洲一区二区三区欧美精品| 少妇被粗大猛烈的视频| 精品国产乱码久久久久久小说| 亚洲天堂av无毛| 国产一区二区三区av在线| 婷婷色综合大香蕉| 亚洲欧美成人综合另类久久久| 99热网站在线观看| 色婷婷av一区二区三区视频| 汤姆久久久久久久影院中文字幕| 哪个播放器可以免费观看大片| 这个男人来自地球电影免费观看 | 晚上一个人看的免费电影| 日韩三级伦理在线观看| 国产欧美另类精品又又久久亚洲欧美| 日韩伦理黄色片| 亚洲怡红院男人天堂| 又粗又硬又长又爽又黄的视频| 丰满乱子伦码专区| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 如何舔出高潮| 精品视频人人做人人爽| 精品久久久噜噜| 国产乱人偷精品视频| 国产欧美日韩精品一区二区| 国产淫语在线视频| 精品久久久噜噜| 国产乱人偷精品视频| 丝袜喷水一区| 内地一区二区视频在线| 亚洲国产精品国产精品| 中文在线观看免费www的网站| 丝袜喷水一区| 又黄又爽又刺激的免费视频.| 精品久久久噜噜| 青春草视频在线免费观看| 成年女人在线观看亚洲视频| 日韩视频在线欧美| 赤兔流量卡办理| 秋霞伦理黄片| 99国产精品免费福利视频| 国产毛片在线视频| 亚洲成人av在线免费| 男女免费视频国产| 国产精品无大码| 婷婷色综合大香蕉| 汤姆久久久久久久影院中文字幕| av播播在线观看一区| 视频区图区小说| 国产人伦9x9x在线观看| 咕卡用的链子| 欧美成人午夜精品| 国产无遮挡羞羞视频在线观看| 久久久久久久国产电影| 天天影视国产精品| 19禁男女啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 亚洲人成电影免费在线| 黄色片一级片一级黄色片| 国产成人91sexporn| 午夜激情久久久久久久| 亚洲av成人精品一二三区| 成人手机av| 国产黄色免费在线视频| 国产成人一区二区三区免费视频网站 | 午夜免费男女啪啪视频观看| 一区福利在线观看| 亚洲av美国av| 人人妻人人澡人人爽人人夜夜| 亚洲成色77777| 永久免费av网站大全| 大型av网站在线播放| 中文字幕人妻丝袜制服| 两个人看的免费小视频| 各种免费的搞黄视频| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 男男h啪啪无遮挡| 啦啦啦在线免费观看视频4| 国产精品一区二区在线不卡| 精品少妇内射三级| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 日韩中文字幕欧美一区二区 | 国产精品久久久久久人妻精品电影 | 视频在线观看一区二区三区| 免费人妻精品一区二区三区视频| 国产片内射在线| 久久人人爽av亚洲精品天堂| 啦啦啦中文免费视频观看日本| 9191精品国产免费久久| 一边摸一边抽搐一进一出视频| 亚洲中文字幕日韩| 亚洲精品国产区一区二| 亚洲 国产 在线| 欧美在线黄色| 午夜福利,免费看| 99精国产麻豆久久婷婷| 亚洲一区二区三区欧美精品| 十八禁人妻一区二区| 一区二区av电影网| 日本猛色少妇xxxxx猛交久久| 国产av国产精品国产| 老司机影院成人| 老司机靠b影院| 搡老岳熟女国产| 亚洲,欧美,日韩| 成年美女黄网站色视频大全免费| 欧美成狂野欧美在线观看| 亚洲欧美成人综合另类久久久| √禁漫天堂资源中文www| 久久青草综合色| 婷婷色av中文字幕| 久久av网站| 日韩av不卡免费在线播放| 亚洲av欧美aⅴ国产| 汤姆久久久久久久影院中文字幕| 99香蕉大伊视频| 亚洲精品国产色婷婷电影| 女性被躁到高潮视频| 天天影视国产精品| 欧美激情极品国产一区二区三区| a级毛片在线看网站| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 999精品在线视频| 国产欧美亚洲国产| 男女下面插进去视频免费观看| 国产精品久久久久久人妻精品电影 | 成年人黄色毛片网站| 激情五月婷婷亚洲| 亚洲欧美一区二区三区国产| 日韩 欧美 亚洲 中文字幕| 天堂中文最新版在线下载| 久久精品亚洲av国产电影网| 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 99久久99久久久精品蜜桃| 亚洲欧美激情在线| 国产欧美日韩一区二区三区在线| 欧美变态另类bdsm刘玥| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情 高清一区二区三区| 岛国毛片在线播放| 最黄视频免费看| 国产免费视频播放在线视频| 97在线人人人人妻| 色网站视频免费| 免费在线观看黄色视频的| 桃花免费在线播放| 亚洲av片天天在线观看| 亚洲熟女毛片儿| 高清视频免费观看一区二区| 制服诱惑二区| 国产高清videossex| 亚洲成人手机| 亚洲欧美日韩另类电影网站| 一区福利在线观看| 51午夜福利影视在线观看| av片东京热男人的天堂| 热re99久久国产66热| 国产欧美日韩一区二区三区在线| 91精品三级在线观看| 日韩一本色道免费dvd| www.精华液| 美国免费a级毛片| 久久人人97超碰香蕉20202| a级片在线免费高清观看视频| 宅男免费午夜| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 啦啦啦中文免费视频观看日本| 亚洲熟女毛片儿| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| 国产成人免费无遮挡视频| 黄色 视频免费看| 99国产精品免费福利视频| 电影成人av| 亚洲精品国产一区二区精华液| 少妇 在线观看| av网站在线播放免费| 久久人人爽av亚洲精品天堂| 九色亚洲精品在线播放| 午夜免费观看性视频| 男女之事视频高清在线观看 | 国产亚洲午夜精品一区二区久久| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 黑人欧美特级aaaaaa片| 自线自在国产av| 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 人妻人人澡人人爽人人| 亚洲伊人色综图| 女人久久www免费人成看片| 成年人黄色毛片网站| av一本久久久久| 国产日韩欧美视频二区| 久久鲁丝午夜福利片| 亚洲伊人久久精品综合| 国产99久久九九免费精品| 亚洲精品在线美女| 欧美人与善性xxx| 国产麻豆69| 久久精品国产综合久久久| 建设人人有责人人尽责人人享有的| 国产91精品成人一区二区三区 | 国精品久久久久久国模美| 亚洲自偷自拍图片 自拍| 日韩电影二区| 国产黄频视频在线观看| 热re99久久国产66热| 免费黄频网站在线观看国产| 男女免费视频国产| 成人三级做爰电影| 欧美国产精品va在线观看不卡| av在线老鸭窝| 久久精品亚洲av国产电影网| 丁香六月欧美| 国产免费又黄又爽又色| 美女脱内裤让男人舔精品视频| 欧美黄色淫秽网站| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 一级毛片我不卡| 国产精品久久久av美女十八| 国产成人精品久久二区二区91| 丰满人妻熟妇乱又伦精品不卡| 中文乱码字字幕精品一区二区三区| 赤兔流量卡办理| 欧美亚洲 丝袜 人妻 在线| 黑人欧美特级aaaaaa片| 99热全是精品| 亚洲久久久国产精品| 日本午夜av视频| 丁香六月欧美| 亚洲国产精品国产精品| 国产熟女欧美一区二区| 婷婷丁香在线五月| 黄色视频在线播放观看不卡| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| 久久热在线av| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 一级毛片 在线播放| 欧美日韩精品网址| 久久亚洲国产成人精品v| 99香蕉大伊视频| 啦啦啦在线免费观看视频4| 国产一区有黄有色的免费视频| 日本av免费视频播放| 久久精品国产综合久久久| 国产又色又爽无遮挡免| 天天躁夜夜躁狠狠久久av| 国产极品粉嫩免费观看在线| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 美女高潮到喷水免费观看| 国产色视频综合| 我的亚洲天堂| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩精品久久久久久密 | 国产男女内射视频| 日韩一区二区三区影片| 亚洲九九香蕉| 青春草亚洲视频在线观看| 欧美+亚洲+日韩+国产| 黑丝袜美女国产一区| 国产97色在线日韩免费| 在现免费观看毛片| a级片在线免费高清观看视频| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲 | 一本久久精品| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 成人黄色视频免费在线看| 高清欧美精品videossex| 亚洲国产精品999| 亚洲国产av影院在线观看| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 两人在一起打扑克的视频| 欧美 日韩 精品 国产| 日本欧美国产在线视频| 亚洲av日韩精品久久久久久密 | 老司机亚洲免费影院| 免费高清在线观看日韩| 日日夜夜操网爽| www.999成人在线观看| 国产人伦9x9x在线观看| 精品一区二区三区四区五区乱码 | 亚洲成av片中文字幕在线观看| 美女扒开内裤让男人捅视频| 丝袜喷水一区| 日本vs欧美在线观看视频| 在线观看www视频免费| 天天躁夜夜躁狠狠久久av| 国产精品熟女久久久久浪| 老司机影院毛片| xxxhd国产人妻xxx| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 午夜两性在线视频| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 91麻豆av在线| 男人舔女人的私密视频| 久久九九热精品免费| 国产精品国产三级国产专区5o| 久久久亚洲精品成人影院| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| av一本久久久久| 国产精品麻豆人妻色哟哟久久| 别揉我奶头~嗯~啊~动态视频 | 女性被躁到高潮视频| 国产欧美亚洲国产| 久久久国产一区二区| 成年av动漫网址| 最新的欧美精品一区二区| 一本久久精品| 老汉色av国产亚洲站长工具| 日韩av免费高清视频| 十八禁高潮呻吟视频| 18禁黄网站禁片午夜丰满| 免费看av在线观看网站| 51午夜福利影视在线观看| 午夜福利影视在线免费观看| 亚洲九九香蕉| 最近手机中文字幕大全| 女性生殖器流出的白浆| 亚洲国产精品一区三区| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索 | 在线观看免费日韩欧美大片| 不卡av一区二区三区| 夫妻性生交免费视频一级片| av一本久久久久| 国产亚洲av片在线观看秒播厂| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡| 99精国产麻豆久久婷婷| 黄片播放在线免费| 精品一区二区三卡| av福利片在线| 一边摸一边做爽爽视频免费| 免费观看av网站的网址| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 狂野欧美激情性xxxx| 三上悠亚av全集在线观看| 麻豆av在线久日| 在线 av 中文字幕| 亚洲av日韩精品久久久久久密 | 一级黄色大片毛片| 欧美激情高清一区二区三区| 久久99热这里只频精品6学生| 精品一品国产午夜福利视频| av福利片在线| 亚洲中文字幕日韩| 天天操日日干夜夜撸| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀 | av在线老鸭窝| 18禁黄网站禁片午夜丰满| 亚洲中文字幕日韩| 18在线观看网站| 亚洲一区中文字幕在线| 色网站视频免费| 久久国产亚洲av麻豆专区| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 免费少妇av软件| 久久精品久久久久久噜噜老黄| 久久久久久免费高清国产稀缺| 国产色视频综合| 999久久久国产精品视频| 国产成人av教育| 新久久久久国产一级毛片| 成人国产av品久久久| 欧美日韩成人在线一区二区| 久久精品久久久久久久性| 嫁个100分男人电影在线观看 | 男女下面插进去视频免费观看| 在现免费观看毛片| 国产精品av久久久久免费| 99国产精品99久久久久| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 亚洲国产av影院在线观看| av在线app专区| 最新在线观看一区二区三区 | 国产精品av久久久久免费| 咕卡用的链子| 亚洲九九香蕉| 老司机亚洲免费影院| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看 | 亚洲一码二码三码区别大吗| 国产老妇伦熟女老妇高清| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 大型av网站在线播放| a级毛片黄视频| 欧美精品一区二区大全| 五月天丁香电影| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 中文字幕精品免费在线观看视频| 在线看a的网站| 97人妻天天添夜夜摸| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的| 欧美成狂野欧美在线观看| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 乱人伦中国视频| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网 | 美女主播在线视频| 久久精品国产a三级三级三级| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 久久影院123| 亚洲视频免费观看视频| 精品少妇久久久久久888优播| 性高湖久久久久久久久免费观看| 又黄又粗又硬又大视频| 永久免费av网站大全| 国产精品免费视频内射| 丝袜人妻中文字幕| 蜜桃国产av成人99| 又大又黄又爽视频免费| av在线app专区| 久久久久国产一级毛片高清牌| 天天影视国产精品| 国产精品三级大全| 18禁国产床啪视频网站| 看免费av毛片| 女性生殖器流出的白浆| 一区二区三区乱码不卡18|