• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide

    2022-12-28 09:54:30ChengXiangZhao趙承祥MiaoMiaoZheng鄭苗苗YuanQie郄媛andFangWeiHan韓方微
    Chinese Physics B 2022年12期
    關(guān)鍵詞:韓方苗苗

    Cheng-Xiang Zhao(趙承祥) Miao-Miao Zheng(鄭苗苗) Yuan Qie(郄媛) and Fang-Wei Han(韓方微)

    1College of Physics and Information Engineering,Shanxi Normal University,Taiyuan 030031,China

    2School of Medical Information Engineering,Jining Medical University,Jining 272067,China

    Keywords: acoustic-phonon emission,terahertz,monolayer molybdenum disulfdie

    1. Introduction

    High-frequency acoustic-phonons have a wide range of applications. For example,they can be used to study the optical,acoustic and topological properties of some materials[1,2]and detect the interface of different materials,[3]the thickness of layers,[4]the band gap and the sound velocity of test samples.[5,6]They can also be used for ultra-fast switching.[7]Hence, to realize these applications, it is significant to find high-frequency acoustic-phonon sources.

    Significant efforts have been made to develop highfrequency acoustic-phonon source devices. Sound amplification by stimulated emission of radiation based on the semiconductor superlattices[8–10]and thin-film material[11]has been suggested as the means to obtain high-frequency acousticphonons. It has also been proposed that the acoustic-phonons excited by electrons–phonons interaction in solids can be generated and amplified.From the standpoint of condensed matter physics,acoustic-phonon emission or absorption occurs in the process of acoustic-phonons interacting with electrons. The electrons transition from one state to another as they interact with phonons. Net acoustic-phonon emission can be obtained if the electron velocity exceeds the acoustic-phonon velocity, which is known as the Cerenkov acoustic-phonon emission. A variety of works have indicated that terahertz(THz) acoustic-phonons can be obtained via Cerenkov emission from, for example, GaAs,[12]three-dimensional Dirac system,[13]graphene,[14]quantum wire (well),[15,16]and heterojunction structure.[17]In addition to the above materials,it is still significant to find outstanding materials that can generate high-frequency acoustic-phonons.

    Monolayer molybdenum disulfide (ML-MoS2),[18]as a two-dimensional material with a direct band gap,high carrier mobility and high switching ratio,has been considered to have promising applications in field effect transistors. Note that the acoustic-phonon velocity[19]in ML-MoS2is higher than that in conventional semiconductors such as GaAs,[12]and is lower than that in graphene.[20]This suggests that the frequencies of acoustic-phonons generated by ML-MoS2are between the frequencies of those generated from GaAs and graphene because the acoustic-phonon frequencyωqis related to phonon velocityvasωq=v|q|,whereqis the wave vector of phonon in material.Moreover,the acoustic properties of ML-MoS2have not yet been explored completely for the time being. Therefore,it is necessary to study the acoustic-phonon emission from MLMoS2to check whether it can be used as a high-frequency acoustic-phonon source.

    In this work, we presented a theoretical study of the acoustic-phonon emission from drifting electrons in MLMoS2driven by a direct-current electric field by applying the Boltzmann equation (BE) method. We studied the distribution of acoustic-phonon emission intensity along with phonon frequency and phonon emission angle in different driving electric fields and electron densities. We found that the Cerenkov emission of THz acoustic-phonon can be observed when the electron velocity exceeds the phonon velocity in ML-MoS2under a very weak electric field. The acoustic-phonon emission spectrums in different electric fields and electron densities were obtained and the physical mechanisms of acousticphonon emission were analyzed from the perspective of condensed matter physics. We compared the acoustic-phonon emission from ML-MoS2with those from graphene and GaAs.The results suggested that the acoustic-phonon emission from ML-MoS2can make up for those from graphene and GaAs.Furthermore,ML-MoS2can be used in tunable hypersonic devices such as terahertz phonon sources.

    2. Theoretical considerations and methods

    Here, we consider a gate-controlled ML-MoS2system as shown in Fig. 1(a).[21]The conducting carriers in MLMoS2are electrons in the presence of a positive gate voltage and the electron density in ML-MoS2can be tuned by the applied gated voltageVg. A driving direct-current electric fieldFx=VSD/L, whereLis the length from source to drain electrodes,is applied and taken along thex-direction of the ML-MoS2sheet by applying source to drain electric voltageVSD. According to the view of condensed matter physics,acoustic-phonon emission or absorption occurs in the process of phonon interacting with electrons, whilst the electron will transition from one state|k〉to another state|k′〉as shown in the Schematic diagram Fig. 1(b). In this work, we consider that electrons interact with acoustic-phonons via unscreened deformation potential coupling and the electrons transition within the conduction band because the valence band is completely occupied. The semi-classical BE is taken as the governing transport equation to study the acoustic-phonon emission from drifting electrons in ML-MoS2driven by the electric field. The BE in non-degenerate statistics takes the form

    whereeis the charge of an electron. ˉh=h/(2π) withhbeing the Planck constant.gs=2 andgv=2 account, respectively, for spin and valley degeneracy.F(k,k′)=f(k)[1?f(k′)]W(k,k′) withf(k)=[e(ˉh2|k|2/(2m?)?μ)/kBTe+1]?1being the momentum-distribution function of the electrons in the state|k〉with momentumk=(kx,ky). Because the electrons are accelerated or even heated when subjected to a driving electric field, so the original equilibrium distribution of electrons is not maintained. The original equilibrium momentumdistribution function for electrons can be described approximately by the following drifted energy distribution functionf(k)≈f[E(k?)],wherek?=(kx ?kv,ky)withkv=m?vx/ˉhbeing the momentum drifted by electron velocityvx, andE(k)= ˉh2|k|2/(2m?)is the energy of an electron in the conduction band, withm?=0.48mebeing the effective mass of an electron in the conduction band for ML-MoS2,[19]andmeis the mass of an electron. Considering that the electrons are heated and the temperature isTe, we takeμas the chemical potential of this electron system and determineμby the condition of electrons number conservation.[22]The intra band transition rate for electron interaction with acoustic-phonon can be obtained from the Fermi’s golden rule as

    where + and?correspond to the absorption and emission of acoustic-phonon, respectively. ˉhωq=vs|q| is the energy of the acoustic-phonon withs=l(t)representing longitudinal(transverse) acoustic-phonon andqbeing the wave vector of acoustic-phonon. The square of the matrix element for electron interaction with acoustic-phonon is[19]

    whereρ= 3.1×10?7g/cm?2is the mass density of MLMoS2,Ξt=1.6 eV andΞl=2.8 eV are the deformation potential constants for the transverse acoustic(TA)and longitudinal acoustic(LA)phonon,respectively.vt=4.2×105cm/s andvl=6.7×105cm/s are the TA and LA phonon velocity,respectively.[19]

    Fig.1. (a)Theoretical model considered in this work. ML-MoS2 covered with HfO2 is placed on SiO2/Si substrate. HfO2 is introduced between ML-MoS2 and the Au electrode to serve as the top gate dielectric layer. S and D are the source and drain electrodes. Electron(e)moves in plane of ML-MoS2 when source to drain electric voltage VSD is applied to ML-MoS2. (b) Schematic diagram of phonon emission and absorption.

    whereP(ωq,θ)=P+(ωq,θ)?P?(ωq,θ) is the distribution function of net acoustic-phonon emission intensity, which is the difference between acoustic-phonon emission and acoustic-phonon absorption, andθis the acoustic-phonon emission angle(i.e.,the angle betweenqand thex-axis). Furthermore,

    3. Results and discussion

    The drift velocityvxand temperatureTeof electrons can be obtained by solving the energy and momentum balance equation self-consistently.[22]However, it is arduous to do such work. In this work, we takevxandTeas input parameters. The two parameters are obtained from Refs.[23,24],in which the heating effect of the electrons in ML-MoS2by the driving electric field is considered. These theoretical results are in consistent with the experimental results.[21]As shown in Fig. 2, owing to the hot carrier effect when electrons respond nonlinearly to the electric field,Tevaries withvxand the electric fieldFx.[24]Their temperature will be higher than the lattice temperature under high electric fields. The electron velocityvxtends to be saturated under high electric fields due to the electron–optical phonon scattering. More importantly,we noticed that the drift velocityvxof electrons in ML-MoS2can exceed the acoustic phonon velocityvsunder very weak electric fields (0.2 kV/cm for LA phonon and 0.12 kV/cm for TA phonon) for which the electrons are even in the linear response region. This suggests that the Cerenkov acousticphonon emission from ML-MoS2can be easily observed under a low electric field.

    Figure 3(a)shows the spectrum of acoustic-phonon emission. Two peaks of the LA and TA phonon emission can be observed. The LA and TA phonon emissions are distributed in the THz region. However, compared with the TA phonon emission,the LA phonon emission is distributed in the higherfrequency region and the LA phonon emission intensity is higher than the TA phonon emission. This is because the LA phonon velocity is higher than the TA phonon velocity. Moreover, the deformation potential constants for the LA and TA phonons in ML-MoS2areΞl=2.8 eV andΞt=1.6 eV,[19]and the square of the matrix element for electron interaction with acoustic-phonon is proportional to the square of deformation potential constant as shown by Eq. (3). This induces that the LA phonon emission intensity is quite different from the TA.We note that the peaks of the spectrums of LA phonon emission from graphene[14]and GaAS[12]are,respectively,located at~1.0 THz and~15.0 THz. The frequenciesωqof acoustic-phonons generated by ML-MoS2are between the frequencies of those generate by graphene and GaAs. Because the acoustic-phonon velocityvsin ML-MoS2is between those in graphene and GaAs,and the acoustic phonon frequencyωqis related to phonon velocityvsasωq=vs|q|. Furthermore,the acoustic-phonon emission is angle-dependent because the drift velocity of the electron along the opposite direction of the driving electric field leads to the breakdown of the system symmetry.This angle-dependent is determined by the momentum and energy conservation during the interaction between electron and phonon. Figures 3(b)–3(d)show the angular and frequency distributions of acoustic-phonon emission for different electric fields. Notice the following: (1) The strongest acoustic-phonon emission can be observed atθ=0?(i.e.,the direction in which the electrons are moving). This implies that in ML-MoS2, the generated acoustic-phonons propagate mainly in the direction in which the electrons move. (2) The intensity of acoustic-phonon emission reduces by decreasing emission angle and enhances with increasing electric field for all emission angles. These results in Fig. 3 indicate that the THz acoustic-phonon emission from ML-MoS2can be realized and tuned by applying a driving electric field.

    Fig. 2. Drift velocity vx and temperature Te of electrons for different electric fields Fx at lattice temperature T =50 K.The data are obtained from Refs.[23,24]. vl and vt are, respectively, the LA and TA phonon velocity. The drift velocity vx of electrons in ML-MoS2 can exceed the LA phonon velocity vl and TA phonon velocity vt when the applied electric fields are about 0.2 kV/cm and 0.12 kV/cm.

    Figure 4 shows the frequency distributions of the LA and TA phonon emission intensity. Note that the electron velocity can exceed the velocity of LA and TA phonon in ML-MoS2by applying a very weak electric fieldFx ~0.2 kV/cm and~0.12 kV/cm, as shown in Fig. 3. Therefore, the Cerenkov emission of acoustic-phonons can be generated from MLMoS2with a very weak electric field and the emission intensity is significantly enhanced with the increase of electric field as indicated in Fig.4. This result suggests that the interaction between electrons and acoustic-phonons enhanced with the increase of the electric field. According to the condensed matter physics, the generation of the Cerenkov acoustic-phonon emission means a net energy transfer from electron to phonon during the interaction between electron and phonon. Both the electron velocity and electron temperature increase with increasing the electric filed as shown in Fig.2. This causes the interaction between electrons and phonons and the emission intensity to increase as the electric field increases. In addition,both the LA and TA phonon emission exhibit a blue shift with the increase of the electric field,which indicates that the drifting electron tends to interact with higher-frequency acousticphonon with increasing electric field. These results in Figs.3 and 4 indicate that ML-MoS2exhibits special acoustic phonon properties compared with other materials such as graphene and GaAs. Therefore, the acoustic-phonon emission from MLMoS2can make up for those from these materials and MLMoS2can be used in tunable hypersonic devices such as THz acoustic phonon sources.

    Fig.4. Frequency distribution of(a)LA and(b)TA phonon emission for different electric fields Fx under a fixed electron density ne and a fixed emission angle θ=0?.The corresponding electron velocities are 0.724×106 cm/s,2.621×106 cm/s,4.653×106 cm/s,and 5.507×106 cm/s.Temperatures are 53.22 K,65.13 K,90.39 K,and 111.95 K.[23,24]

    Figure 5 shows that both the LA and TA phonon emission intensities increase with increasing electron densityneas a result of the enhancement of the interaction between electron and phonon. However,as shown by the blue and red curves in Fig.5,the emission intensity changes little in the low electron densities. Moreover,the electron transition,from one state to another within conduction band by electron–phonon interaction,occurs mainly around the Fermi energy. The increase of electron density leads to the increase of the Fermi energy and the energy of electrons that interaction with phonons. This results in the enhancement of the electron–phonon interaction and the blue shift of both the LA and TA phonon emission intensity. The results in Fig.5 suggest that the acoustic-phonon emission from ML-MoS2can be tuned not only by the driving electric field, but also by the electron density that controlled by the applied gate voltage.

    Fig. 5. Frequency distribution of (a) LA and (b) TA phonon emission for different electron densities under a fixed electric field and a fixed emission angle θ =0?.

    It should be noted that the data in Fig.2 are obtained from Refs. [23,24] in which the electron–acoustic phonon scattering, electron–optical phonon scattering and electron-electron screening have been taken into account in calculating the relationship among electron velocity, temperature and electric field. We applied the obtained electron velocity and temperature to calculate the acoustic phonon emission during the interaction between electron and acoustic phonon. Consequently,the calculation of acoustic phonon emission in our work is carried out considering the electron–optical phonon scattering. In fact,there may be other scattering mechanisms for an electron system. For example, the electron–charged impurity scattering can effect the mobility of electron especially at low temperatures,[21,25–27]slow down the electrons and decrease the temperature of the electrons. This weakens the electron–phonon interaction and leads to the reduction of phonon emission intensity.

    4. Conclusions

    In this work,we have presented a theoretical study of the acoustic-phonon emission from ML-MoS2driven by a directcurrent electric field and applied the BE method. The major conclusions of this study are as follows: (i)The Cerenkov emission of THz acoustic-phonons can be generated from MLMoS2under the action of a relatively weak electric field. (ii)The strongest acoustic-phonon emission can be observed in the direction in which the electrons move. (iii) The intensity of the Cerenkov acoustic-phonon emission is significantly enhanced with increasing electric field for all emission angles.(iv)The spectrum of THz acoustic-phonon emission from MLMoS2can be controlled by the electric field or the electron density tuned by the applied gate voltage. (v) The frequency of generated acoustic-phonon from ML-MoS2is higher than that from GaAs and lower than that from graphene. The results suggest that in respect of acoustic-phonon emission,MLMoS2can make up for graphene and GaAs and be used in tunable hypersonic devices such as terahertz phonons sources.We hope our theoretical work can be verified by experiments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11604192), the Fundamental Research Program of Shanxi Province, China (Grant No.202103021224250),the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province of China(Grant No.2020L0242),and the Start-up funding from Shanxi Normal University(Grant No.0505/02070351).

    猜你喜歡
    韓方苗苗
    《重拾》
    春暖花開
    娃娃畫報(2019年3期)2019-04-15 01:29:46
    愛幫忙的蠟燭
    年的傳說
    My Dream
    出類拔萃
    漢方、韓方、日方,自然醞釀完美養(yǎng)膚力
    都市麗人(2015年2期)2015-03-20 13:32:40
    亚洲成人av在线免费| 国产精品久久久久久精品电影小说 | 一区福利在线观看| 人妻制服诱惑在线中文字幕| 极品教师在线视频| 一本久久精品| 国产黄a三级三级三级人| 色综合亚洲欧美另类图片| 亚洲中文字幕一区二区三区有码在线看| 高清毛片免费看| 国产精品久久久久久精品电影小说 | 久久这里只有精品中国| 12—13女人毛片做爰片一| 国产精品人妻久久久久久| 一级毛片我不卡| 国模一区二区三区四区视频| 在线免费观看的www视频| 亚洲欧美精品专区久久| 成年女人看的毛片在线观看| 国产精品一区二区在线观看99 | 中文资源天堂在线| 久久精品久久久久久久性| 夜夜爽天天搞| 久久久成人免费电影| 亚洲精品乱码久久久久久按摩| 亚洲最大成人中文| 极品教师在线视频| 国产中年淑女户外野战色| 国产成人精品婷婷| 国产一区二区在线观看日韩| 国产欧美日韩精品一区二区| 麻豆精品久久久久久蜜桃| 国产亚洲精品久久久com| 九九久久精品国产亚洲av麻豆| 变态另类成人亚洲欧美熟女| 欧美+日韩+精品| 啦啦啦韩国在线观看视频| 特大巨黑吊av在线直播| 国产片特级美女逼逼视频| 欧美性猛交╳xxx乱大交人| 国产蜜桃级精品一区二区三区| 1000部很黄的大片| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄片美女视频| 变态另类成人亚洲欧美熟女| 欧美最黄视频在线播放免费| 成年av动漫网址| 国产淫片久久久久久久久| 日韩欧美精品免费久久| 亚洲精品日韩av片在线观看| 在线播放国产精品三级| 男人和女人高潮做爰伦理| 69人妻影院| 国产一区二区在线av高清观看| 亚洲一级一片aⅴ在线观看| 欧美bdsm另类| 神马国产精品三级电影在线观看| 午夜福利在线观看免费完整高清在 | 中文字幕人妻熟人妻熟丝袜美| 国产单亲对白刺激| 国产黄色视频一区二区在线观看 | 天堂√8在线中文| 久久99蜜桃精品久久| 天堂中文最新版在线下载 | 尤物成人国产欧美一区二区三区| 久久久久网色| 一区二区三区四区激情视频 | 久久久久久久亚洲中文字幕| 亚洲美女搞黄在线观看| 麻豆av噜噜一区二区三区| 99在线视频只有这里精品首页| 天天躁日日操中文字幕| 国产一区二区亚洲精品在线观看| 亚洲精品粉嫩美女一区| 26uuu在线亚洲综合色| 自拍偷自拍亚洲精品老妇| 蜜臀久久99精品久久宅男| 亚洲真实伦在线观看| 亚洲欧美精品专区久久| 黄片无遮挡物在线观看| 2022亚洲国产成人精品| 悠悠久久av| 国产午夜福利久久久久久| 99视频精品全部免费 在线| 一个人看视频在线观看www免费| 天堂av国产一区二区熟女人妻| 免费一级毛片在线播放高清视频| 大又大粗又爽又黄少妇毛片口| 别揉我奶头 嗯啊视频| 男人狂女人下面高潮的视频| 亚洲一区高清亚洲精品| 婷婷色av中文字幕| 少妇熟女欧美另类| 亚洲精品国产av成人精品| 51国产日韩欧美| 18禁在线无遮挡免费观看视频| 99久久精品国产国产毛片| 国产黄色小视频在线观看| 青青草视频在线视频观看| 99九九线精品视频在线观看视频| 亚洲最大成人av| 99在线人妻在线中文字幕| 国产精品,欧美在线| 亚洲av.av天堂| 波多野结衣高清作品| av国产免费在线观看| 中文字幕av成人在线电影| 欧美+亚洲+日韩+国产| 精品人妻偷拍中文字幕| 国产精品乱码一区二三区的特点| 日韩视频在线欧美| 国产在线男女| 亚洲成av人片在线播放无| 在线播放无遮挡| 亚洲最大成人中文| 国产日韩欧美在线精品| av在线老鸭窝| 99精品在免费线老司机午夜| 99热这里只有是精品50| 国产在线精品亚洲第一网站| 一级毛片aaaaaa免费看小| 亚洲精品乱码久久久v下载方式| 中文字幕人妻熟人妻熟丝袜美| 久久久a久久爽久久v久久| 欧美高清成人免费视频www| 天天一区二区日本电影三级| 国产精品1区2区在线观看.| 精品人妻偷拍中文字幕| 久久人人精品亚洲av| 欧美日韩精品成人综合77777| 一区福利在线观看| 色哟哟·www| 国产男人的电影天堂91| 免费观看a级毛片全部| av免费在线看不卡| 国产真实伦视频高清在线观看| 亚洲欧美日韩无卡精品| 久久99精品国语久久久| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 国产精品久久电影中文字幕| 99久国产av精品| 成人性生交大片免费视频hd| 欧美丝袜亚洲另类| 午夜激情欧美在线| 麻豆av噜噜一区二区三区| 亚洲一区高清亚洲精品| 99久久人妻综合| 国产探花在线观看一区二区| 国产精品不卡视频一区二区| 国产精品.久久久| 日韩av不卡免费在线播放| 欧美日韩在线观看h| 又粗又爽又猛毛片免费看| 亚洲欧美日韩无卡精品| 久久精品国产自在天天线| 久久久成人免费电影| 久久久久久伊人网av| 日韩精品有码人妻一区| 国产av不卡久久| 久久久精品欧美日韩精品| 99久国产av精品国产电影| 麻豆av噜噜一区二区三区| 久久久国产成人免费| 女人被狂操c到高潮| 最后的刺客免费高清国语| 国产成人aa在线观看| 一本久久精品| 亚洲av电影不卡..在线观看| 内射极品少妇av片p| 国产三级中文精品| 97在线视频观看| 亚洲四区av| 久久久精品大字幕| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩无卡精品| 青青草视频在线视频观看| 亚洲一区高清亚洲精品| 尾随美女入室| 日本免费一区二区三区高清不卡| 精品人妻偷拍中文字幕| 在线观看av片永久免费下载| 欧美三级亚洲精品| 波多野结衣高清无吗| 亚洲欧洲国产日韩| 激情 狠狠 欧美| 在线观看美女被高潮喷水网站| а√天堂www在线а√下载| av卡一久久| 六月丁香七月| 一本久久精品| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久久免| 精品人妻一区二区三区麻豆| 在线播放无遮挡| 一个人看的www免费观看视频| 麻豆成人av视频| 国产一级毛片七仙女欲春2| ponron亚洲| 1000部很黄的大片| 国产伦理片在线播放av一区 | 中文字幕人妻熟人妻熟丝袜美| 成人综合一区亚洲| 欧美三级亚洲精品| 久久精品91蜜桃| 亚洲精品自拍成人| 免费观看在线日韩| 国产高潮美女av| 91狼人影院| 成人特级黄色片久久久久久久| 亚洲欧美精品专区久久| 在线观看一区二区三区| avwww免费| 亚洲国产欧美人成| 嫩草影院精品99| 欧美色视频一区免费| 国产单亲对白刺激| 日本在线视频免费播放| 久久精品国产鲁丝片午夜精品| 国产色婷婷99| 赤兔流量卡办理| 免费无遮挡裸体视频| 亚洲成人久久性| 国产国拍精品亚洲av在线观看| 97超视频在线观看视频| 中文字幕熟女人妻在线| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 国产精品久久久久久精品电影小说 | 少妇的逼水好多| 国产色婷婷99| 国产精品.久久久| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品专区久久| 亚洲国产欧洲综合997久久,| 国产精品精品国产色婷婷| 美女内射精品一级片tv| 美女cb高潮喷水在线观看| 国产综合懂色| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 国产私拍福利视频在线观看| 91久久精品国产一区二区三区| 99久久无色码亚洲精品果冻| 99久久精品国产国产毛片| 如何舔出高潮| 波多野结衣巨乳人妻| 欧美三级亚洲精品| 久久这里只有精品中国| 天美传媒精品一区二区| 晚上一个人看的免费电影| 99热这里只有是精品50| 国产黄片美女视频| 深夜a级毛片| 国产一区亚洲一区在线观看| 岛国在线免费视频观看| 美女高潮的动态| a级一级毛片免费在线观看| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 九九爱精品视频在线观看| 久久久久久久久中文| 久久鲁丝午夜福利片| 国产熟女欧美一区二区| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 欧美zozozo另类| 美女高潮的动态| 国产精品不卡视频一区二区| 男的添女的下面高潮视频| 久久国产乱子免费精品| 噜噜噜噜噜久久久久久91| 国产片特级美女逼逼视频| 亚洲在线自拍视频| 夫妻性生交免费视频一级片| 日韩精品有码人妻一区| 69av精品久久久久久| 精品人妻熟女av久视频| 国产色爽女视频免费观看| 欧美潮喷喷水| 你懂的网址亚洲精品在线观看 | 12—13女人毛片做爰片一| 日韩欧美三级三区| 天天躁日日操中文字幕| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 日韩精品青青久久久久久| 国产一区二区激情短视频| 精品欧美国产一区二区三| 亚洲国产精品久久男人天堂| 人人妻人人看人人澡| 亚洲激情五月婷婷啪啪| 亚洲精品国产成人久久av| 亚洲国产精品成人久久小说 | 村上凉子中文字幕在线| 国产一区亚洲一区在线观看| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 国产成人一区二区在线| 神马国产精品三级电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美性感艳星| 麻豆乱淫一区二区| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 国产精品美女特级片免费视频播放器| 中文字幕久久专区| 全区人妻精品视频| 国产精品,欧美在线| 日韩高清综合在线| 亚洲国产精品国产精品| 国产精品一区二区三区四区免费观看| 国产精品无大码| 欧美日韩乱码在线| 久久精品国产亚洲网站| 国产日韩欧美在线精品| av.在线天堂| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 国产久久久一区二区三区| 看免费成人av毛片| av免费观看日本| 欧美一区二区亚洲| 国产精品一区www在线观看| 亚洲三级黄色毛片| 不卡一级毛片| 国产精品三级大全| 久久久久网色| 日韩一区二区视频免费看| av在线蜜桃| 亚州av有码| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 亚洲欧美精品自产自拍| 亚洲av免费在线观看| 午夜免费激情av| 十八禁国产超污无遮挡网站| 日本-黄色视频高清免费观看| 国产精品免费一区二区三区在线| 毛片女人毛片| 亚洲欧美日韩高清在线视频| av在线蜜桃| 色吧在线观看| 国产淫片久久久久久久久| 青春草视频在线免费观看| 国产女主播在线喷水免费视频网站 | 狠狠狠狠99中文字幕| 嘟嘟电影网在线观看| 久久久久国产网址| 国产成人91sexporn| 1024手机看黄色片| 青春草视频在线免费观看| 在线观看av片永久免费下载| 狂野欧美激情性xxxx在线观看| 成人二区视频| 国产黄片美女视频| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 日本一本二区三区精品| 亚洲第一电影网av| 内射极品少妇av片p| 日韩欧美一区二区三区在线观看| 亚洲国产精品成人久久小说 | 国产精品无大码| 欧美zozozo另类| 亚洲第一电影网av| 午夜福利在线观看免费完整高清在 | 色播亚洲综合网| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在 | 偷拍熟女少妇极品色| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 亚洲av第一区精品v没综合| 国产亚洲欧美98| 人人妻人人澡人人爽人人夜夜 | 欧美zozozo另类| 级片在线观看| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 国产精品久久久久久精品电影| 成人无遮挡网站| 老女人水多毛片| 边亲边吃奶的免费视频| 噜噜噜噜噜久久久久久91| 老司机福利观看| 波野结衣二区三区在线| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 成人永久免费在线观看视频| 久久精品国产自在天天线| 男插女下体视频免费在线播放| 亚洲欧美日韩高清在线视频| 国产精品综合久久久久久久免费| or卡值多少钱| 国产91av在线免费观看| 小说图片视频综合网站| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 黄色一级大片看看| 久久人人精品亚洲av| 亚洲七黄色美女视频| 国产av一区在线观看免费| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99 | 久久韩国三级中文字幕| 中文在线观看免费www的网站| 此物有八面人人有两片| 我要看日韩黄色一级片| 99久久人妻综合| 亚洲成人久久性| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 久久久久久伊人网av| 成人二区视频| 日韩欧美 国产精品| 色播亚洲综合网| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| 桃色一区二区三区在线观看| av在线蜜桃| 国产精品久久视频播放| 欧美激情国产日韩精品一区| 一边亲一边摸免费视频| 国产69精品久久久久777片| 全区人妻精品视频| 日本爱情动作片www.在线观看| 午夜视频国产福利| 美女黄网站色视频| 国产精品蜜桃在线观看 | 99热这里只有是精品50| 免费看a级黄色片| 午夜精品在线福利| 看十八女毛片水多多多| 九九热线精品视视频播放| 国产 一区 欧美 日韩| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 人人妻人人澡人人爽人人夜夜 | 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久com| 老熟妇乱子伦视频在线观看| or卡值多少钱| 国产成人精品一,二区 | 女的被弄到高潮叫床怎么办| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 尾随美女入室| 国产高清视频在线观看网站| 国产久久久一区二区三区| av天堂在线播放| 老司机影院成人| 日本成人三级电影网站| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 少妇人妻一区二区三区视频| 精品一区二区三区视频在线| 三级经典国产精品| 成人漫画全彩无遮挡| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| 国产成人一区二区在线| 色吧在线观看| 欧美另类亚洲清纯唯美| 人人妻人人澡欧美一区二区| 熟女人妻精品中文字幕| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 99久国产av精品| 国产精品福利在线免费观看| 日韩 亚洲 欧美在线| 免费观看在线日韩| 丝袜美腿在线中文| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 亚洲国产精品合色在线| 五月玫瑰六月丁香| 国产精品永久免费网站| 婷婷色综合大香蕉| 欧美3d第一页| 日韩av不卡免费在线播放| 给我免费播放毛片高清在线观看| 免费av不卡在线播放| av在线播放精品| 亚洲性久久影院| 中文字幕熟女人妻在线| 日韩一区二区视频免费看| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 22中文网久久字幕| 最后的刺客免费高清国语| 久久久久久久久久久免费av| 成人午夜高清在线视频| 国产探花极品一区二区| 国产一区二区三区在线臀色熟女| 成人综合一区亚洲| 色吧在线观看| 久久精品国产鲁丝片午夜精品| 婷婷六月久久综合丁香| 九九爱精品视频在线观看| 精华霜和精华液先用哪个| 91精品国产九色| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 神马国产精品三级电影在线观看| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 国产高潮美女av| 国产精品久久视频播放| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 嫩草影院精品99| 色5月婷婷丁香| 青青草视频在线视频观看| 久久久久久久久久成人| 欧美日韩乱码在线| 国产探花极品一区二区| 亚洲七黄色美女视频| 国内精品一区二区在线观看| 嫩草影院新地址| 伊人久久精品亚洲午夜| 成人午夜高清在线视频| 国产精品国产高清国产av| 少妇猛男粗大的猛烈进出视频 | 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 悠悠久久av| 国产美女午夜福利| 日韩一本色道免费dvd| 国产黄色视频一区二区在线观看 | 精品人妻偷拍中文字幕| 亚洲国产精品成人久久小说 | 欧美色视频一区免费| 悠悠久久av| 亚洲成人久久爱视频| av在线观看视频网站免费| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲| 欧美另类亚洲清纯唯美| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 国产成人精品婷婷| 中文字幕久久专区| 国产一区二区在线av高清观看| 久久这里有精品视频免费| 久久久精品94久久精品| 人人妻人人看人人澡| 乱人视频在线观看| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 99久久九九国产精品国产免费| av卡一久久| 美女脱内裤让男人舔精品视频 | 欧美另类亚洲清纯唯美| 亚洲美女视频黄频| 国产91av在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 99久久无色码亚洲精品果冻| 人人妻人人澡人人爽人人夜夜 | 午夜免费男女啪啪视频观看| or卡值多少钱| 日韩国内少妇激情av| 亚洲国产精品成人综合色| 九九在线视频观看精品| 1024手机看黄色片| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 五月伊人婷婷丁香| 日本三级黄在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成人久久性| 少妇人妻精品综合一区二区 | 亚洲最大成人av| 国产成人freesex在线| 免费人成视频x8x8入口观看| 欧美区成人在线视频| 在线观看午夜福利视频| 人体艺术视频欧美日本| 1024手机看黄色片| 国产亚洲5aaaaa淫片| 国产精品蜜桃在线观看 | 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在 | 精品久久久噜噜| or卡值多少钱| 人妻制服诱惑在线中文字幕| 日韩高清综合在线|