• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Characterization of Dy,Tb∶LuAG Transparent Ceramics for Yellow Lasers

    2022-12-10 03:42:12LIUQiangWULongfeiLIXiaoyingLIUZiyuCHENPenghuiTIANFengXIETengfeiPIRRIAngelaTOCIGuidoLIJiang
    發(fā)光學(xué)報(bào) 2022年11期

    LIU Qiang,WU Long-fei,,LI Xiao-ying,LIU Zi-yu,CHEN Peng-hui,TIAN Feng,XIE Teng-fei,PIRRI Angela,TOCI Guido,LI Jiang*

    (1.School of Material Science and Engineering,Jiangsu University,Zhenjiang 212013,China;

    2.Transparent Ceramics Research Center,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 201899,China;3.Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;4.Istituto di Fisica Applicata“N.Carrara”,Consiglio Nazionale delle Ricerche,CNR-IFAC,Via Madonna del Piano 10C,50019 Sesto Fiorentino(Fi),Italy;5.Istituto Nazionale di Ottica,Consiglio Nazionale delle Ricerche,CNR-INO,Via Madonna del Piano 10C,50019 Sesto Fiorentino(Fi),Italy)

    Abstract:3%Dy,1%Tb∶LuAG(Dy,Tb∶LuAG)nanopowders with good dispersibility were synthesized by the coprecipitation method using NH4HCO3 as a precipitant.The thermal decomposition behavior of the precursor,and the phase and microstructure of powders were studied.Dy,Tb∶LuAG ceramics with high transparency were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment without any sintering additives for the first time.The influences of pre-sintering temperature on the microstructure and the optical quality of the ceramics were investi?gated.When the pre-sintering temperature is 1 600℃,the in-line transmittance of the annealed Dy,Tb∶LuAG ceramics(1.5 mm in thickness)reaches 83.6% at 578 nm,and the average grain size of the annealed ceramics is 0.9 μm.In addition,the absorption cross section of the 3%Dy,1%Tb∶LuAG ceramics at 447 nm is calculated to be 1.3×10-21 cm2,with a full width at half maximum(FWHM)of 3.0 nm,which matches that of commercial GaN blue laser diodes.This study shows that Dy,Tb∶LuAG transparent ceramics have potential application value in the yellow lasers.

    Key words:Dy,Tb∶LuAG;transparent ceramics;co-precipitation method;hot isostatic pressing

    1 Introduction

    A yellow laser at 578 nm plays an important role in the treatment of retinal maculopathy[1]and excitation of the Yb lattice clock[2],which can be directly obtained by pumping Dy3+doped gain media at about 450 nm with a GaN or InGaN laser diode(LD),corresponding to the4F9/2→6H13/2transition of Dy3+[3-4].

    Previous reports on Dy3+doped gain media mainly focused on single crystals such as Dy,Tb∶Li?LuF4,Dy,Tb∶YAG and Dy,Tb∶Na2Gd4(MoO4)7[5-7].Compared with single crystals,transparent ceramics can be easily fabricated with large size and high dop?ing concentration,which are beneficial to improve the absorption efficiency of Dy3+at 450 nm[8].In re?cent years,Dy∶YAG,Dy∶Y2O3and Dy∶LuAG trans?parent ceramics prepared by the solid-state reaction method have been reported one after another[9-11].However,no laser oscillation was demonstrated due to the poor optical quality of available ceramics.Currently,the preparation methods of laser ceramics mainly include the solid-state reaction method[12-15]and the non-reactive sintering method[16-17].While the latter usually uses the co-precipitation nano-pow?ders with more uniform mixing of various atoms and higher sintering activity[18],which can prepare trans?parent ceramics at lower temperatures.In addition,the residual pores inside the ceramics should be completely eliminated to improve the optical quality of the ceramics at 578 nm.The hot isostatic pressing(HIP)technology has been widely used in the prepa?ration of YAG,Y2O3and CaF2transparent ceram?ics[19-21],which is beneficial to eliminate the intergran?ular pores and obtain fully dense ceramics.

    When Dy3+and Tb3+were co-doped,LuAG trans?parent ceramics have smaller lattice distortions than YAG transparent ceramics,because the radius of Lu3+is closer to the radius of the dopant ions than that of Y3+[22-24].Besides,gain media with high pho?non energies are prone to non-radiative transitions that reduce laser efficiency.However,the lower en?ergy level6H13/2of Dy3+has a significantly long life?time.LuAG transparent ceramics with high phonon energies are beneficial to quench the lifetime of the lower energy level6H13/2[8].Therefore,Dy,Tb∶LuAG transparent ceramics have important research value in the yellow lasers.

    In this work,3%Dy,1%Tb∶LuAG transparent ceramics with high optical quality were fabricated by vacuum pre-sintering at different temperatures and HIP post-treatment for the first time.Moreover,the influences of pre-sintering temperature on the micro?structure and optical quality of the Dy,Tb∶LuAG ce?ramics were investigated in detail.Finally,the ab?sorption coefficient of the annealed Dy,Tb∶LuAG ce?ramics was also calculated.

    2 Experiments

    Dy,Tb∶LuAG nanopowders were synthesized by the reverse-strike co-precipitation method.Dy(NO3)3,Tb(NO3)3and Lu(NO3)3solutions were obtained by dissolving the Dy2O3(99.995%,Aladdin,China),Tb4O7(99.995%,Zhongkai New Materials Co.,Ltd.,Jining,China),Lu2O3(99.995%,Jingyun Ma?terials Technology Co.,Ltd.,Shanghai,China)in the hot nitric acid,respectively.while Al(NO3)3so?lution was prepared by dissolving Al(NO3)3·9H2O(99.0%,Sinopharm Chemical Reagent Co.,Ltd.,China)in the deionized water.NH4HCO3(99.0%,Aladdin,China)solution with a concentration of 1.5 mol/L was used as a precipitant and(NH4)2SO4(99.0%,Sinopharm Chemical Reagent Co.,Ltd.,China)solution as a dispersant.In addition,extra 1.0% Lu was added to the mixed metal ion solution in order to avoid the generation of the alumina sec?ondary phase,which may be caused by the inconsis?tent dissolution of the precipitate during the washing process[25].Firstly,the metal ion solutions were mixed according to the stoichiometric ratio of 3%Dy,1%Tb∶Lu3(1+x)Al5O12(x=1.0%)and then added into the NH4HCO3solution containing(NH4)2SO4solu?tion.After aging for 1 h,the precipitates were washed three times with deionized water and twice with etha?nol.The precursor was then dried at 70℃for 36 h,sieved through a 200-mesh screen and finally cal?cined at 1 100℃for 4 h in air to obtain the Dy,Tb∶LuAG powders.Next,the obtained powders were dry pressed at 46 MPa and then cold isostatically pressed at 250 MPa.The green bodies were vacuum pre-sintered at different temperatures for 3 h and hot isostatically pressed(HIPed)at 1 600℃for 3 h under 176 MPa in Ar atmosphere.Post-annealing was carried out at 1 200℃for 10 h in air to elimi?nate oxygen vacancies.Finally,the pre-sintered ce?ramics and the annealed ceramics were mirror-pol?ished on both surfaces into 1.5 mm thickness and the polished Dy,Tb∶LuAG ceramics were then ther?mally etched at 1 200℃for 3 h in air for further tests.

    The thermogravimetry and differential thermal analysis(TG-DTA)curves of the precursor were measured by a thermal analyzer(Thermoplus EVOⅡ,Rigaku,Japan)at a heating rate of 10℃/min in the flowing air.The phase composition of the pow?ders was identified by the X-ray diffraction system(XRD,D/max 2200PC,Rigaku,Japan)with CuKα1radiation in the range of 2θ=10°-80°.The morpholo?gy of the powders and microstructures of the ceram?ics were observed by a field emission scanning elec?tron microscope(FESEM,SU8220,Hitachi,Japan).The in-line transmittance and the absorption spec?troscopy of mirror-polished Dy,Tb∶LuAG ceramics were measured by a UV-VIS-NIR spectrophotometer(Cary-5000,Varian,USA).

    3 Results and Discussion

    Fig.1 shows the TG-DTA curves of Dy,Tb∶LuAG precursor.The weight loss on the TG curve is a con?tinuous process,mainly divided into three stages.The first stage occurs before 300℃with the weight loss of 24.7%.An endothermic peak is located at 122℃on the DTA curve,which is mainly assigned to the removal of adsorbed water,crystallization water and residual ammonium.In addition,the hydroxycarbon?ate is also decomposed at this stage.The weight loss of 8.2% in the second stage occurred between 300℃and 900℃is mainly caused by the decompo?sition of lutetium carbonate,which corresponds to the endothermic peak located at 830℃on the DTA curve.The third stage ranges from 900℃to 1 100℃with a weight loss of 4.3%.The exothermic peak at 936℃on the DTA curve corresponds to the phase formation of garnet(Lu3Al5O12).The endothermic peak at 970℃corresponds to the decomposition of sulfates,while the exothermic peak at 1 070℃is caused by the grain growth[26].Furthermore,the weight loss of the precursor is little after 1 100℃and the total weight loss is about 37.2%.Therefore,the precursor was calcined at 1 100℃for 4 h in or?der to obtain nanopowders with pure phase and good crystallinity.

    Fig.1 TG-DTA curves of the Dy,Tb∶LuAG precursor

    Fig.2 shows the FT-IR spectra(a)and the XRD patterns(b)of the precursor and the Dy,Tb∶LuAG powders calcined at 1 100℃for 4 h.The wide ab?sorption band at 3 420 cm-1is related to the stretch?ing vibrations of O—H bond including crystal water,aluminum hydroxide and hydroxycarbonate groups.The strong peak at 1 520 cm-1can be attributed to the bond-stretching of NH4+from the precipitant and the dispersant.The absorption peaks at 1 420 cm-1and 850 cm-1correspond to C—O bond stretching and bending.In addition,the peak located at 1 090 cm-1corresponds to the vibration of SO42-.These in?dicate that the precursor contains OH-,NH4+,CO32-and SO42-groups.However,no visible absorption of NH4+,CO32-or SO42-groups is observed in the pow?ders calcined at 1 100℃.The weak absorption peaks at 3 420 cm-1and 1 630 cm-1demonstrate that the existence of residual OH-groups,which may be ascribed to the molecular water absorbed from the air.Moreover,the bands resulting from the stretching of Lu—O and Al—O bonds in the 400-800 cm-1region are characteristics of LuAG,which are similar to the garnet structure of YAG[27].These show that the pre?cursor is completely decomposed after calcination at 1 100℃.It can be seen from Fig.2(b)that the precur?sor is amorphous and the diffraction peaks of the powders calcined at 1 100℃for 4 h are identified as the LuAG phase(PDF#73-1368)without any impurity phase.This indicates that the precursor has been completely converted into the powders with the pure LuAG phase after calcination at 1 100℃for 4 h.

    Fig.2 FT-IR spectra(a)and XRD patterns(b)of the precursor and the Dy,Tb∶LuAG powders calcined at 1 100℃for 4 h

    Fig.3 shows the FESEM micrographs of the Dy,Tb∶LuAG precursor(a)and the powders calcined at 1 100℃for 4 h(b).The precursor is severely ag?glomerated,which is related to the strong force of hy?drogen bonds.However,the Dy,Tb∶LuAG powders have good dispersibility,which indicates that the hy?drogen bonds inside the precursor have been de?stroyed after calcination at 1 100℃.Moreover,it can be observed from Fig.3(b)that the primary particle size of the powders is about several tens of nanometers.

    Fig.3 FESEM micrographs of the Dy,Tb∶LuAG precursor(a)and the powders calcined at 1 100℃for 4 h(b)

    Fig.4 shows the FESEM images of the thermally etched surfaces of the Dy,Tb∶LuAG ceramics vacu?um pre-sintered at different temperatures for 3 h.With the increase of the pre-sintering temperature,the submicron-scale intergranular pores gradually transform into fine intergranular pores,and the num?ber of pores is also decreasing.The relative densi?ties of the ceramics pre-sintered at 1 550,1 600,1 650,1 700℃were measured to be 88.9%,92.8%,94.2% and 95.9% by the Archimedes method,respectively.The relative density change of the pre-sintered ceramics is consistent with the mi?cromorphology of the ceramics pre-sintered at differ?ent temperatures.In addition,the average grain sizes of the ceramics pre-sintered at 1 550,1 600,1 650,1 700℃were calculated to be 0.6,0.7,0.8,1.1 μm by the intercept method,respectively.When the pre-sintering temperature increases to 1 700℃,the average grain size of the ceramics increases signifi?cantly.

    Fig.4 FESEM images of the thermally etched surfaces of the Dy,Tb∶LuAG ceramics vacuum pre-sintered at different tempera?tures for 3 h.(a)1 550℃.(b)1 600℃.(c)1 650℃.(d)1 700℃.

    Fig.5 shows the FESEM images of the thermally etched surfaces of the ceramics after the HIP posttreatment.When the pre-sintering temperature is in the range of 1 550-1 650℃,no pores and second?ary phases exist inside the ceramics.The average grain sizes of the HIPed ceramics are 0.7,0.9,1.0 μm,respectively.However,a small number of resid?ual pores marked by the red circle can be observed in the Fig.5(d).When the pre-sintering tempera?ture increases to 1 700℃,the average grain size of the pre-sintered ceramics becomes larger,which is harmful to the exclusion of pores during the HIP pro?cess.

    Fig.5 FESEM images of the thermally etched surfaces of the Dy,Tb∶LuAG ceramics vacuum pre-sintered at different tempera?tures for 3 h and HIPed at 1 600℃for 3 h under 176 MPa in Ar.(a)1 550℃.(b)1 600℃.(c)1 650℃.(d)1 700℃.

    Fig.6(a)shows the in-line transmittance of the Dy,Tb∶LuAG transparent ceramics annealed at 1 200℃for 10 h in air and the inset image shows the pho?tograph of the annealed ceramics.The in-line trans?mittance of the annealed ceramics exceeds 83.0% at 578 nm in the pre-sintering temperature ranging from 1 550℃to 1 650℃,which is attributed to the effective elimination of intergranular closed pores.As the pre-sintering temperature increases to 1 700℃,a dramatic decrease of the in-line transmittance is observed.This is due to the small number of inter?granular pores acting as optical scattering centers which are still retained inside the ceramics.In addi?tion,when the pre-sintering temperature is 1 600℃,the annealed ceramics obtain the optimum optical quality.The in-line transmittance reaches 83.6% at 578 nm(theoretical transmittance 83.9%@578 nm),which has been greatly improved than that of the Dy∶LuAG transparent ceramics(~75%@578 nm)in the previous reports[11].Fig.6(b)shows the absorption spectrum of the annealed ceramics vacuum pre-sin?tered and HIP-treated at 1 600℃.The strongest ab?sorption peak in the 420-490 nm region is located at 447 nm with the FWHM of 3.0 nm.Considering the output wavelength of the commercial GaN blue LD is 447 nm with the line width of about 2.0 nm,this in?dicates the GaN blue LD can be used as an effective pumping source for the Dy,Tb∶LuAG transparent ce?ramics.Moreover,the larger FWHM favors the de?crease of the temperature dependence of a GaN blue LD pumping source and improving the pumping effi?ciency[28].Concerning the absorption cross sectionσabs,it can be estimated by the formula:

    Fig.6 In-line transmittance of the Dy,Tb∶LuAG transparent ceramics(1.5 mm thick)vacuum pre-sintered at different tempera?tures for 3 h,HIPed at 1 600℃for 3 h under 176 MPa in Ar,and annealed at 1 200℃for 10 h in air(a)and the absorp?tion spectrum of the annealed ceramics vacuum pre-sintered and HIP-treated at 1 600℃(b).

    whereNcis the concentration of Dy3+in the ceramics which is about 4.26×1020cm-3,α(λ)is the absorption coefficient which is calculated with the equation:

    whereLexpresses the thickness of the ceramics,lg(I0/I)is the optical density obtained by the spec?trophotometer.According to it,the absorption cross section of the Dy,Tb∶LuAG ceramics at 447 nm was calculated to be 1.3×10-21cm2,which is larger than that of Dy∶Y2O3and Dy∶YAG transparent ceramics.However,it is lower than that of Dy,Tb∶LiLuF4crys?tals,as listed in Tab.1.The difference of the absorp?tion cross section is mainly caused by the difference of host materials in the Dy3+doped gain media.

    Tab.1 Absorption cross section of Dy3+-doped materials at 447 nm

    4 Conclusions

    3%Dy,1%Tb∶LuAG ceramics with high trans?parency were prepared from the nanopowders syn?thesized by the co-precipitation method without any sintering additives.After calcination at 1 100℃for 4 h,the total weight loss of the precursor was 37.2% and Dy,Tb∶LuAG nanopowders with high sintering activity were obtained.In addition,the in?fluences of pre-sintering temperature on the micro?structure and the optical transmittance of the ceram?ics were studied.When the pre-sintering tempera?ture of the ceramics is in the range of 1 550-1 650℃,the average grain size of pre-sintered ce?ramics does not exceed 1 μm,which is conducive to the exclusion of intergranular closed pores inside the ceramics during the HIP post-treatment.When the pre-sintering temperature is 1 600℃,the in-line transmittance of the annealed ceramics reaches 83.6%.Finally,the absorption spectrum of the an?nealed ceramics pre-sintered at 1 600℃was calcu?lated.The strongest absorption peak is at 447 nm with the FWHM of 3.0 nm,the absorption cross sec?tion is 1.3×10-21cm2.The results indicate that Dy,Tb∶LuAG transparent ceramics are a potential candidate for the yellow laser pumped by the GaN blue LD.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20220153.

    videosex国产| a级片在线免费高清观看视频| 尾随美女入室| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 热99国产精品久久久久久7| 久久久久久人人人人人| 免费看不卡的av| 黄频高清免费视频| 成人三级做爰电影| 一二三四在线观看免费中文在| 中文字幕亚洲精品专区| 人人妻人人爽人人添夜夜欢视频| 伊人亚洲综合成人网| 久久久久国产一级毛片高清牌| 久久人人爽av亚洲精品天堂| 久久久久精品性色| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 国产成人啪精品午夜网站| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 国产成人欧美在线观看 | 久久久久久久久免费视频了| 久久人人爽人人片av| 亚洲精品久久成人aⅴ小说| 肉色欧美久久久久久久蜜桃| 久久这里只有精品19| 久久久久久久精品精品| 日韩中文字幕欧美一区二区 | 老鸭窝网址在线观看| 亚洲精品乱久久久久久| 下体分泌物呈黄色| 国产成人系列免费观看| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 亚洲一区中文字幕在线| 美女中出高潮动态图| 成年美女黄网站色视频大全免费| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 美女午夜性视频免费| 久久精品国产亚洲av高清一级| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 9色porny在线观看| 国产成人欧美| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| netflix在线观看网站| 自线自在国产av| 岛国毛片在线播放| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 国产精品99久久99久久久不卡 | 母亲3免费完整高清在线观看| 精品福利永久在线观看| 久久久亚洲精品成人影院| 中文字幕人妻熟女乱码| 亚洲国产欧美在线一区| 国产人伦9x9x在线观看| 久久 成人 亚洲| 亚洲精品日本国产第一区| 亚洲精品国产区一区二| 秋霞在线观看毛片| 久久久久视频综合| 一级片'在线观看视频| 综合色丁香网| 国产精品久久久久成人av| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 麻豆精品久久久久久蜜桃| 999久久久国产精品视频| 国产日韩欧美在线精品| 亚洲在久久综合| 中文字幕另类日韩欧美亚洲嫩草| 最新的欧美精品一区二区| 成人国语在线视频| 9色porny在线观看| 国产精品嫩草影院av在线观看| 亚洲av综合色区一区| 日韩制服丝袜自拍偷拍| 久久狼人影院| 亚洲,欧美精品.| 男女免费视频国产| 亚洲国产av新网站| 中国国产av一级| 久久国产亚洲av麻豆专区| 亚洲自偷自拍图片 自拍| 日本欧美国产在线视频| 亚洲av在线观看美女高潮| 国产xxxxx性猛交| 精品酒店卫生间| 欧美日韩亚洲综合一区二区三区_| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| www.熟女人妻精品国产| 99久久综合免费| 国产乱来视频区| 丝袜喷水一区| 国产欧美亚洲国产| 成人毛片60女人毛片免费| 99热国产这里只有精品6| 伦理电影免费视频| 亚洲欧美清纯卡通| 纯流量卡能插随身wifi吗| 精品亚洲成国产av| 亚洲国产精品999| 国产女主播在线喷水免费视频网站| 亚洲天堂av无毛| av网站在线播放免费| 在线观看免费高清a一片| 精品少妇一区二区三区视频日本电影 | 在线观看免费午夜福利视频| 男女国产视频网站| av电影中文网址| 在线亚洲精品国产二区图片欧美| 国产一区有黄有色的免费视频| 精品国产一区二区三区久久久樱花| 在线观看三级黄色| 一区二区三区激情视频| 久久国产精品大桥未久av| av又黄又爽大尺度在线免费看| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| www.精华液| 建设人人有责人人尽责人人享有的| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 日韩av在线免费看完整版不卡| 精品第一国产精品| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av高清一级| 欧美少妇被猛烈插入视频| 啦啦啦啦在线视频资源| 亚洲成色77777| 精品午夜福利在线看| 最近的中文字幕免费完整| 亚洲,欧美精品.| bbb黄色大片| 一本大道久久a久久精品| 国产精品香港三级国产av潘金莲 | 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| videos熟女内射| 国产探花极品一区二区| 51午夜福利影视在线观看| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| 不卡视频在线观看欧美| 国产精品国产三级专区第一集| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 97人妻天天添夜夜摸| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 性高湖久久久久久久久免费观看| 看十八女毛片水多多多| 日韩,欧美,国产一区二区三区| 岛国毛片在线播放| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 国产av国产精品国产| 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 亚洲中文av在线| 国产 一区精品| 国产亚洲最大av| 97人妻天天添夜夜摸| 国产淫语在线视频| 精品国产乱码久久久久久男人| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲 | 国产精品一国产av| 99久国产av精品国产电影| 18禁国产床啪视频网站| 一本色道久久久久久精品综合| 亚洲精品第二区| www.av在线官网国产| 亚洲精品乱久久久久久| 青春草国产在线视频| 90打野战视频偷拍视频| 欧美精品av麻豆av| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 少妇的丰满在线观看| 国产精品一二三区在线看| 成人亚洲精品一区在线观看| 欧美另类一区| 久久精品国产a三级三级三级| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 人妻一区二区av| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 色网站视频免费| 欧美另类一区| 国产亚洲一区二区精品| 人妻一区二区av| e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影 | 国产精品成人在线| 国产精品嫩草影院av在线观看| 91精品三级在线观看| 中文字幕色久视频| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 精品第一国产精品| 欧美黑人精品巨大| 七月丁香在线播放| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 日韩 欧美 亚洲 中文字幕| 香蕉国产在线看| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 亚洲av福利一区| 婷婷成人精品国产| 久久久亚洲精品成人影院| 热re99久久国产66热| 另类亚洲欧美激情| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| avwww免费| 精品国产乱码久久久久久小说| 97人妻天天添夜夜摸| 久久精品人人爽人人爽视色| 观看美女的网站| 搡老岳熟女国产| 波多野结衣一区麻豆| 久久久久精品性色| 亚洲av电影在线进入| 亚洲av电影在线观看一区二区三区| 亚洲av在线观看美女高潮| av在线观看视频网站免费| 无限看片的www在线观看| 不卡视频在线观看欧美| 成人影院久久| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 性色av一级| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 91精品三级在线观看| 免费久久久久久久精品成人欧美视频| tube8黄色片| 日本色播在线视频| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| 国产淫语在线视频| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| 美女脱内裤让男人舔精品视频| 我的亚洲天堂| 亚洲视频免费观看视频| 欧美国产精品一级二级三级| 美女中出高潮动态图| 亚洲伊人久久精品综合| 中文字幕亚洲精品专区| 日本色播在线视频| 妹子高潮喷水视频| 只有这里有精品99| 在线免费观看不下载黄p国产| 人体艺术视频欧美日本| 嫩草影院入口| 欧美激情极品国产一区二区三区| 丰满迷人的少妇在线观看| 久久狼人影院| 色综合欧美亚洲国产小说| 久久精品国产a三级三级三级| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 51午夜福利影视在线观看| 热re99久久国产66热| 亚洲在久久综合| 丰满乱子伦码专区| 秋霞伦理黄片| 亚洲精品国产一区二区精华液| 人人妻,人人澡人人爽秒播 | 一本色道久久久久久精品综合| 久久久久久人妻| 香蕉国产在线看| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 成人亚洲精品一区在线观看| 卡戴珊不雅视频在线播放| 午夜福利网站1000一区二区三区| 91精品伊人久久大香线蕉| 国产成人一区二区在线| av天堂久久9| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 高清在线视频一区二区三区| 亚洲av成人精品一二三区| 在线观看www视频免费| 国产精品久久久久久人妻精品电影 | 亚洲精品一二三| 免费久久久久久久精品成人欧美视频| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 日本av手机在线免费观看| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 欧美97在线视频| 中国三级夫妇交换| 国产野战对白在线观看| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 日韩制服骚丝袜av| 国产乱人偷精品视频| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 最黄视频免费看| 丝袜在线中文字幕| 美女主播在线视频| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 涩涩av久久男人的天堂| 国产成人欧美在线观看 | 亚洲七黄色美女视频| 午夜福利影视在线免费观看| 国产av码专区亚洲av| 午夜日韩欧美国产| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级| 国产成人一区二区在线| 免费观看性生交大片5| 不卡视频在线观看欧美| 久久青草综合色| 亚洲久久久国产精品| 9色porny在线观看| 欧美日本中文国产一区发布| 亚洲色图综合在线观看| 国产一区二区激情短视频 | 搡老乐熟女国产| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 考比视频在线观看| 亚洲情色 制服丝袜| 一本一本久久a久久精品综合妖精| 精品第一国产精品| 久久鲁丝午夜福利片| 久久97久久精品| 岛国毛片在线播放| 午夜91福利影院| 色网站视频免费| 欧美乱码精品一区二区三区| 成年美女黄网站色视频大全免费| 老司机在亚洲福利影院| 亚洲人成电影观看| 老司机在亚洲福利影院| 国产av精品麻豆| 少妇的丰满在线观看| 日韩av免费高清视频| 久久久久久久国产电影| 免费高清在线观看视频在线观看| 不卡av一区二区三区| 成年动漫av网址| 国产极品天堂在线| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 黑人巨大精品欧美一区二区蜜桃| 日韩av不卡免费在线播放| 一本久久精品| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 久久久亚洲精品成人影院| 一级毛片我不卡| 中文字幕人妻丝袜一区二区 | 日日爽夜夜爽网站| 男女床上黄色一级片免费看| 啦啦啦在线观看免费高清www| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 嫩草影院入口| 99re6热这里在线精品视频| 国产成人精品无人区| 精品国产国语对白av| 深夜精品福利| 久久久国产一区二区| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 99久久人妻综合| 日本av免费视频播放| 国语对白做爰xxxⅹ性视频网站| a级片在线免费高清观看视频| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 日韩av不卡免费在线播放| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 中国国产av一级| 亚洲视频免费观看视频| 久久久国产一区二区| 国产野战对白在线观看| 国产精品无大码| 欧美精品亚洲一区二区| 天天添夜夜摸| 久久热在线av| 午夜免费观看性视频| 中文字幕色久视频| 久久精品国产a三级三级三级| 亚洲美女黄色视频免费看| 免费黄色在线免费观看| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲色图综合在线观看| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 欧美黑人欧美精品刺激| 欧美另类一区| 少妇被粗大的猛进出69影院| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 国产高清不卡午夜福利| 国产99久久九九免费精品| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 青草久久国产| 久久久久久久精品精品| 国产毛片在线视频| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| 97人妻天天添夜夜摸| 伊人亚洲综合成人网| 在现免费观看毛片| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 国产xxxxx性猛交| 亚洲av男天堂| 国产深夜福利视频在线观看| bbb黄色大片| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久小说| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 老司机影院成人| 亚洲av日韩在线播放| 欧美国产精品va在线观看不卡| 男女之事视频高清在线观看 | 久久久欧美国产精品| 久久影院123| 熟女av电影| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 成人手机av| 婷婷色av中文字幕| 青草久久国产| 婷婷色av中文字幕| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 美女主播在线视频| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| 晚上一个人看的免费电影| 观看av在线不卡| 亚洲av综合色区一区| 色精品久久人妻99蜜桃| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 国产 精品1| 亚洲精品自拍成人| 97精品久久久久久久久久精品| 国产成人精品无人区| 少妇 在线观看| 90打野战视频偷拍视频| 99久久综合免费| 90打野战视频偷拍视频| 咕卡用的链子| 九草在线视频观看| 国产成人啪精品午夜网站| 免费黄网站久久成人精品| 欧美日韩一级在线毛片| 久久久久久人妻| 观看av在线不卡| 妹子高潮喷水视频| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 欧美精品人与动牲交sv欧美| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 国产成人a∨麻豆精品| 黄色视频不卡| 日本爱情动作片www.在线观看| 看十八女毛片水多多多| 中文字幕精品免费在线观看视频| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 18在线观看网站| 一区二区三区激情视频| 国产极品天堂在线| 热re99久久精品国产66热6| 成人黄色视频免费在线看| 老司机靠b影院| 色精品久久人妻99蜜桃| 国产97色在线日韩免费| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 免费黄网站久久成人精品| bbb黄色大片| 亚洲精品一区蜜桃| 18禁裸乳无遮挡动漫免费视频| 91成人精品电影| 精品午夜福利在线看| 一区福利在线观看| 夫妻午夜视频| 久久亚洲国产成人精品v| 欧美久久黑人一区二区| 久久国产精品男人的天堂亚洲| 精品酒店卫生间| 丰满乱子伦码专区| 久久婷婷青草| √禁漫天堂资源中文www| 国产av一区二区精品久久| 男女边吃奶边做爰视频| 久久天堂一区二区三区四区| 亚洲av电影在线观看一区二区三区| 亚洲国产精品999| 看免费av毛片| 亚洲中文av在线| 一本大道久久a久久精品| 一级片免费观看大全| 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久小说| 97在线人人人人妻| 亚洲综合色网址| 午夜福利,免费看| 精品卡一卡二卡四卡免费| 制服丝袜香蕉在线| 亚洲三区欧美一区| 超色免费av| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx| 日韩一区二区视频免费看| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 一本大道久久a久久精品| 最新的欧美精品一区二区| www.自偷自拍.com| 久久久国产一区二区| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 亚洲精品日韩在线中文字幕| 飞空精品影院首页| 日韩大片免费观看网站| 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 国产在线视频一区二区| 欧美乱码精品一区二区三区| 日韩人妻精品一区2区三区| 国产乱来视频区| 国产国语露脸激情在线看| 少妇精品久久久久久久| 精品一区在线观看国产| 黄色一级大片看看| 亚洲自偷自拍图片 自拍| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆 | 国产男人的电影天堂91| 亚洲精品国产av蜜桃| e午夜精品久久久久久久| 少妇被粗大的猛进出69影院| 观看美女的网站| 国产伦人伦偷精品视频| 亚洲精品在线美女|