• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters

    2022-11-21 09:35:46JunqinCao曹君勤ZhixinChen陳志歆YaxinWang王亞新TianfengFeng馮田峰ZhihaoLi李志浩ZeyuXing邢澤宇HuashanLi李華山andXiaoqiZhou周曉祺
    Chinese Physics B 2022年11期
    關(guān)鍵詞:華山

    Junqin Cao(曹君勤), Zhixin Chen(陳志歆), Yaxin Wang(王亞新), Tianfeng Feng(馮田峰),Zhihao Li(李志浩), Zeyu Xing(邢澤宇), Huashan Li(李華山), and Xiaoqi Zhou(周曉祺)

    School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510000,China

    With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously, which makes the calibration of the phase shifters on the chip increasingly difficult. For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters. In this work, we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically, we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.

    Keywords: cascaded phase shifters,calibration,quantum photonic chip

    1. Introduction

    By exploiting quantum mechanical effects, quantum information technologies promise significant advantages in communication,[1–5]computation,[6–11]and measurement.[12–15]Among various physical systems for quantum information processing, photons have received considerable attention because of their fast propagation speed,easy manipulation and noise immunity. Quantum information research based on optical systems have made great progress[16–31]and have achieved quantum supremacy[32–34]recently. As the complexity of optical quantum information processing tasks increases,the number of optical components required increases dramatically, which leads to a continuous increase in sizes of optical circuits,making it a natural choice to move the entire system to an integrated optical platform.So far, a variety of experiments based on integrated quantum photonic circuits have been reported, including on-chip quantum logic gates,[35]on-chip multi-photon entanglement sources,[36]and experimental demonstrations of on-chip quantum algorithms and quantum simulations.[37]The latest quantum photonic chip have integrated nearly one thousand optical components.[38]

    With the increase in the size of a quantum photonic chip,it becomes increasingly difficult to calibrate the large number of phase shifters on the chip, especially for the case of multiple cascaded phase shifters that is not easy to be decoupled. For example, for the quantum photonic chip with more than 70 phase shifters presented in Ref.[39], there are multiple cascaded structures with five phase shifters that are hard to be decoupled. To calibrate these phase shifters,the authors selected 10 voltages for each phase shifter, for a total of 105voltage combinations, and then fitted the sampling points accordingly. This calibration method, in which the number of sampling points increases exponentially with the number of cascaded phase shifters, is time consuming and not scalable.Similarly,for some special quantum information applications,such as blind quantum computing,[40]qubits encoded in two paths need to pass through multiple unitary transformations in succession to accomplish the specified function, and this requires cascading multiple phase shifters on the chip and calibrating these phase shifters. To solve this problem, Xinget al.[41]recently proposed an efficient calibration method that requires the number of sampling points to grow only linearly with the number of cascaded phase shifters.

    In this work,we report an experimental demonstration of this efficient calibration method on a photonic chip. Specifically,we experimentally prepare a nine-phase shifter cascaded silicon-based quantum photonic chip and efficiently calibrate all nine phase shifters, achieving a high-precision calibration with an average fidelity of 99.26%. Our experimental results show that the number of sampling points required by using this new method increases only linearly with the number of cascaded phase shifters,achieving an exponential resource saving compared to the conventional calibration method.[39]

    2. Methodology

    2.1. Calibration of a single phase shifter

    Here the phaseθof the phase shifter has the following relationship with the currentIapplied on the phase shifter[42,43]

    whereγandφare unknown constant parameters. The socalled calibration of the phase shifter is to confirm the specific values ofγandφ.

    To calibrate this phase shifter,we let light input from the upper rail and measure the power output from the upper rail.The output state can be written as

    whereηis a constant to be determined relating to the MMI splitting ratio.

    By changing the currentIapplied on the phase shifter,the optical path difference between the upper and lower rails can be altered, thus enabling the phase-shifting operation of the path-encoded optical qubit. The matrix form of this phaseshifting operation can be written as

    The ratio of the output power to the input power is the transmittanceT,which can be expressed as

    whereη,γandφare all constants to be determined. The currentIis varied experimentally and then multiple sets ofTandIvalues are measured. As shown in Fig.1(b),the next step is to fit the data ofTandIusing Eq. (5), and the values ofη,γandφcan be determined,thus completing the calibration of the MMI splitting ratio and the phase shifter simultaneously.

    Fig. 1. Schematic diagram of the calibration method for the photonic circuit with cascaded phase shifters. (a) The photonic circuit with a single phase shifter. (b) The variation of the transmittance T with the square of the current applied on the phase shifter. (c) The photonic circuit with cascaded phase shifters. (d)The variation of the range of the transmittance ΔT with the square of the current applied on the nth phase shifter. (e)Equivalent photonic circuit for calibrating the(n-1)th phase shifter. (e)Equivalent photonic circuit for calibrating the(n-2)th phase shifter.

    2.2. Calibration of cascaded phase shifters

    Now let us analyze how to calibrate a circuit with multiple cascaded phase shifters. As shown in Fig. 1(c),nphase shifters are sandwiched betweenn+1 MMIs.We first describe how to calibrate the last phase shifter.

    whereα,η,γn, andφnare all constants to be determined.The currentInis varied experimentally, and for eachIn, traverseIn-1to measure the maximum and minimum values of the transmittance and calculate their difference ΔT.

    As shown in Fig.1(d),the data of ΔTandInare then fitted using Eq. (9), and the values ofα,η,γn, andφncan be determined, thus completing the calibration of thenth phase shifter.

    Calibration of other phase shifters—Let us proceed to calibrate the(n-1)th phase shifter.Since thenth phase shifter has been calibrated,we can setθnto an arbitrary phase. It can be found by calculation that whenθnis set toφ,in which

    This means that the last two MMIs together with thenth phase shifter equivalently implement the function of a single MMI(with a fixed additional phase shiftωintroduced before and after the MMI). As shown in Fig. 1(d), the (n-1)th phase shifter thus equivalently becomes the last phase shifter sandwiched between two MMIs and can therefore be calibrated using the method described above to identifyγn-1andφn-1.Note that the final calibratedφn-1has to be subtracted fromωsince a fixed additional phase shiftωis introduced.

    Next we calibrate the (n-2)th phase shifter. Similarly,by settingθn=π,we obtain

    which means that the last two MMIs are equivalently removed and both thenth and (n-1)th phase shifters no longer have an effect on the transmittanceT. As shown in Fig. 1(f), the(n-2)th phase shifter becomes equivalent to the last phase shifter sandwiched between two MMIs,so it can be calibrated using the method described above to identifyγn-2andφn-2.

    The remaining phase shifters can be calibrated in a similar way.For example,we setθn=πandθn-2=φto calibrate the(n-3)th phase shifter,then we setθn=πandθn-2=πto calibrate the(n-4)th phase shifter. We can thus calibrate all the phase shifters sequentially in this reverse order. Note that the first and foremost phase shifter can be calibrated in the same way that a single phase shifter is calibrated. For a photonic chip withncascaded phase shifters,if the number of sampling points per phase shifter ism, the total number of sampling points required using our method ism2×(n-1)+m, which exhibits exponential improvement over themnnumber of sampling points required by the traditional calibration method.

    Note that the calibration method described above is a modified version of the scheme in Ref. [41]. The original scheme in Ref. [41] mainly considers the scenario where the splitting ratio of the MMI is exactly 50:50,in which case the calibrated phase would have an undetermined phase difference of 0 orπ,and further operations are needed to determine this phase difference. In contrast, our modified scheme assumes that the splitting ratio of the MMI is not strictly 50:50,which is usually consistent with the practical situation.[41]In this case, our modified method can directly distinguish between the two phase differences of 0 andπ,thus further simplifying the calibration procedure.

    3. Experiment

    To experimentally validate this calibration method for cascaded phase shifters, we prepared a silicon photonic chip with nine phase shifters cascaded as shown in Fig. 2(a) (see Appendix A).

    We send a laser beam into the chip from the upper left port and measure the optical power output from the upper right port to calculate the transmittanceT. Next, the currentI8of the 8th phase shifter and the currentI9of the 9th phase shifter are jointly traversed to investigate the variation of the transmittanceT,whereI8has been chosen with 38 different values andI9has been chosen with 50 different values. As shown in Fig.2(b), 50 sets of ΔTandI9are obtained and then fitted with Eq. (2), which results inγ9=0.2204,φ9=5.8187 andη=0.7630,completing the 9th phase shifter calibration. Theηvalue here is 0.7630,which corresponds to the splitting ratio of MMI as 52.24:47.76. After the experimental testing, it is found that the difference of the splitting ratio between different MMIs on the chip is within one percent,so theηvalue is set to 0.7630 during the whole calibration process. Based on the value ofη,we obtainφ=1.614 by using Eq.(10). As shown in Fig.2(c),we then setθ9=1.614 and jointly traverse the currentsI7andI8to deriveγ8=0.2229 andφ8=5.5536.Next, we setθ9=πand jointly traverse the currentsI6andI7to deriveγ7=0.2198 andφ7=5.3965, which is shown in Fig.2(d). In a similar way,we complete the calibration of the 6th, 5th, 4th, 3rd and 2nd phase shifters in turn as shown in Figs.2(e)–2(i),and obtain

    Finally we setθ9=π,θ7=π,θ5=πandθ3=πand then scanI1alone,whereI1has been chosen with 40 different values. As shown in Fig.2(j),by using the method of calibrating a single phase shifter, we getγ1=0.2237 andφ1=3.9150,thus completing the calibration of all phase shifters. In our experiment, only 8×38×50+40=15240 data points were collected in total to complete the calibration. If the traditional calibration method[39]is adopted,even if only 6 different values are selected for each phase shifter, 10077696 data points need to be collected to complete the calibration,which is three orders of magnitude higher than the data points needed by using our method.

    Fig.2. Schematic of the experimental setup and the measured results for the calibration of the phase shifters. (a)A silicon quantum photonic chip cascaded with nine phase shifters. (b)–(j)The calibration experimental data of the nine phase shifters in reverse order. The calibration of the second to the ninth phase shifters is carried out by fitting the range of the transmittance ΔT with the square of the current applied on the corresponding phase shifter. The calibration of the first phase shifter is conducted by fitting the transmittance T with the square of the current applied on the first phase shifter.

    After completing the calibration of the phase shifter, the following tests are performed on the chip to verify the accuracy of the calibration. We apply a random current between 2 mA and 5.5 mA to each phase shifter,and measure the experimentally observed transmittanceTexp. This is then compared with the transmittanceTprewe predict from the calibration results. The fidelity of the two transmittances is defined as[44]We repeated the above test 1000 times and calculated 1000 fidelity values. As shown in Fig.3,938 out of 1000 fidelity values are more than 98%,and the average value of all fidelities is 99.26%,which shows that our calibration results of the phase shifters are in good agreement with the experimental observations.The non-perfect calibration results are mainly caused by signal jitter of the electronic controller and thermal crosstalk on the photonic chip. The deviation of the calibration value of the previous phase shifter from the actual value will also bring some errors to the subsequent calibration.

    Fig. 3. Statistical fidelity of the transmittance of the chip. The histogram shows the distribution of statistical fidelity between the predicted and the measured transmittance,over 1000 sets of nine randomly selected currents. Here,93.8%of the measured transmittance has a fidelity higher than 98%.

    Our method can be straightforwardly extended to the case in which the splitting ratios of the MMIs are different (see Appendix B). However, since the differences in the splitting ratios of the MMIs on this chip are small,[45]fitting the data with the formula that distinguishes between the splitting ratios yields the results with a lower fidelity than the formula that does not distinguish between the splitting ratios. Therefore,in this experiment,we still use a fitting formula that ignores the difference in the splitting ratios of different MMIs.

    4. Conclusion

    In this work, we have experimentally validated an efficient method for calibrating large-scale cascaded phase shifters.

    Specifically, we experimentally calibrated an integrated quantum photonic chip with nine cascaded phase shifters and achieved a high-precision calibration with an average fidelity of 99.26%. Our experimental results show that the number of sampling points required by using this new method increases only linearly with the number of cascaded phase shifters, achieving an exponential speedup compared to the conventional calibration method. This technique has the potential to be widely used in the field of integrated photonic quantum information processing.

    Appendix A:Fabrication of the chip

    The chip was fabricated on a 220 nm silicon-on-insulator(SOI) wafer. Electron beam direct writing and inductively coupled plasma etching were used to construct grating couplers and waveguides. The fabricated chip was then insulated with a 1.2 μm layer of SiO2. Then,above the particular area,150-nm nichrome was patterned to operate as heaters. Lastly,10-nm Ti and 200-nm Au were patterned as the electrodes.

    Appendix B:The case of different splitting ratios of MMIs

    where

    Fig.B1. The photonic circuit with cascaded phase shifters. Different MMIs have different splitting ratio parameters η0,η1,...,ηn-1 and ηn.

    whereα,ηn,ηn-1,γn, andφnare all constants to be determined. The currentInis varied experimentally, and for eachIn, traverseIn-1to measure the maximum and minimum values of the transmittance and calculate their difference ΔT.The data of ΔTandInare then fitted using Eq.(B4),and the values ofα,ηn,ηn-1,γnandφncan be determined,thus completing the calibration of thenth phase shifter. The remaining phase shifters can be calibrated sequentially in the reverse order in a similar way.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0305200),the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2018B030329001 and 2018B030325001),and the National Natural Science Foundation of China(Grant No.61974168).

    猜你喜歡
    華山
    Structural origin for composition-dependent nearest atomic distance in Cu–Zr metallic glass
    Adaptive Neural Network Control for Euler-Lagrangian Systems with Uncertainties
    Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
    詠華山
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    隨王履登華山
    崢嶸歲月:毛澤東在東華山
    文史春秋(2020年1期)2020-03-16 13:13:32
    華山論“劍”
    金秋(2019年2期)2019-04-16 09:14:42
    華山旅店盜竊案
    華山歷“險(xiǎn)”記
    免费久久久久久久精品成人欧美视频 | 99久久综合免费| 99视频精品全部免费 在线| 日本欧美视频一区| 久久久a久久爽久久v久久| 国产片特级美女逼逼视频| 国产老妇伦熟女老妇高清| 亚洲av免费高清在线观看| av不卡在线播放| 国产亚洲精品久久久com| 日韩亚洲欧美综合| 插阴视频在线观看视频| 丰满迷人的少妇在线观看| 9色porny在线观看| 男女国产视频网站| 国产一区二区在线观看av| 一本—道久久a久久精品蜜桃钙片| 九九久久精品国产亚洲av麻豆| 中国三级夫妇交换| 国产黄频视频在线观看| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 一级毛片黄色毛片免费观看视频| 免费高清在线观看日韩| 赤兔流量卡办理| 国产精品久久久久久久电影| 欧美激情极品国产一区二区三区 | 天堂8中文在线网| 国产亚洲最大av| 免费久久久久久久精品成人欧美视频 | 国产高清三级在线| av在线老鸭窝| 国产一区有黄有色的免费视频| 亚洲少妇的诱惑av| 亚洲精品一区蜜桃| 纯流量卡能插随身wifi吗| 亚洲国产欧美日韩在线播放| 日本黄色片子视频| 在线 av 中文字幕| 狂野欧美激情性bbbbbb| 国产在视频线精品| 丰满少妇做爰视频| 久久 成人 亚洲| 午夜91福利影院| 久久ye,这里只有精品| 国产成人免费观看mmmm| av有码第一页| 国产成人精品在线电影| 伦理电影大哥的女人| 国产精品一区二区三区四区免费观看| 熟女av电影| 久久久欧美国产精品| 国产成人午夜福利电影在线观看| 国产深夜福利视频在线观看| 内地一区二区视频在线| 蜜桃久久精品国产亚洲av| 国产深夜福利视频在线观看| 新久久久久国产一级毛片| av在线app专区| 丝瓜视频免费看黄片| 婷婷成人精品国产| 亚洲av综合色区一区| 水蜜桃什么品种好| 嘟嘟电影网在线观看| 91精品国产九色| 晚上一个人看的免费电影| 国产精品蜜桃在线观看| 欧美成人精品欧美一级黄| 飞空精品影院首页| 国产一级毛片在线| 久久久久久久久久久丰满| 中文字幕人妻熟人妻熟丝袜美| 99久久人妻综合| 成年av动漫网址| 亚洲不卡免费看| 国产色爽女视频免费观看| 精品亚洲成a人片在线观看| 免费少妇av软件| tube8黄色片| 国产精品国产av在线观看| 国产成人精品在线电影| 我的老师免费观看完整版| 你懂的网址亚洲精品在线观看| 亚洲精品亚洲一区二区| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 国产综合精华液| 精品久久久精品久久久| 九色亚洲精品在线播放| 蜜桃国产av成人99| 国产亚洲av片在线观看秒播厂| 欧美变态另类bdsm刘玥| 看免费成人av毛片| av.在线天堂| 男女边摸边吃奶| av免费观看日本| 国产男人的电影天堂91| 欧美性感艳星| 国产成人免费无遮挡视频| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 日韩一区二区视频免费看| 久久av网站| 欧美三级亚洲精品| 欧美人与性动交α欧美精品济南到 | 欧美三级亚洲精品| 一级毛片黄色毛片免费观看视频| 国产精品国产三级专区第一集| 亚州av有码| 久久午夜福利片| 欧美3d第一页| 男女边吃奶边做爰视频| 天天躁夜夜躁狠狠久久av| 亚洲精品,欧美精品| 久久久久视频综合| 久久国产亚洲av麻豆专区| 久久精品夜色国产| 亚洲av综合色区一区| 一级爰片在线观看| 免费看光身美女| 国产免费一级a男人的天堂| 精品国产乱码久久久久久小说| 一本色道久久久久久精品综合| 在线观看国产h片| 精品少妇黑人巨大在线播放| 尾随美女入室| 三级国产精品欧美在线观看| 一区在线观看完整版| 亚洲内射少妇av| 午夜老司机福利剧场| a级毛色黄片| 国产亚洲av片在线观看秒播厂| 久久久久国产网址| 亚洲精品日韩在线中文字幕| 亚洲国产av影院在线观看| 又粗又硬又长又爽又黄的视频| 亚洲成人手机| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 免费看光身美女| 国产高清不卡午夜福利| av福利片在线| 亚洲av电影在线观看一区二区三区| 国产精品一区www在线观看| 91成人精品电影| 成年人免费黄色播放视频| 久久免费观看电影| 国产一区二区在线观看av| 亚洲,一卡二卡三卡| 国产精品一区www在线观看| videos熟女内射| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 色哟哟·www| 中文乱码字字幕精品一区二区三区| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 国产又色又爽无遮挡免| 国产日韩欧美视频二区| 国产成人aa在线观看| 久久久精品区二区三区| h视频一区二区三区| 亚洲av二区三区四区| 日产精品乱码卡一卡2卡三| 久久久国产一区二区| 性色avwww在线观看| 亚洲美女搞黄在线观看| 国产伦理片在线播放av一区| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 亚洲成人手机| 蜜桃久久精品国产亚洲av| 亚洲中文av在线| 最新的欧美精品一区二区| 国产精品三级大全| 亚洲四区av| 精品亚洲成国产av| 欧美激情极品国产一区二区三区 | 日本午夜av视频| 亚洲欧洲精品一区二区精品久久久 | 国产欧美日韩综合在线一区二区| 夫妻午夜视频| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 亚洲中文av在线| 精品久久久久久久久亚洲| 在线观看国产h片| 狂野欧美白嫩少妇大欣赏| 久久av网站| 欧美日韩成人在线一区二区| 国产亚洲最大av| 一本久久精品| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 只有这里有精品99| 中文字幕最新亚洲高清| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 午夜91福利影院| 午夜福利视频在线观看免费| 日本黄大片高清| 五月玫瑰六月丁香| 亚洲精品日本国产第一区| 国产亚洲精品第一综合不卡 | 国产免费现黄频在线看| 2022亚洲国产成人精品| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 国产黄色视频一区二区在线观看| 国产日韩欧美视频二区| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 免费不卡的大黄色大毛片视频在线观看| 精品少妇内射三级| 九九爱精品视频在线观看| 久久鲁丝午夜福利片| 欧美日韩精品成人综合77777| 黑人欧美特级aaaaaa片| 国产亚洲一区二区精品| 91精品一卡2卡3卡4卡| 精品人妻偷拍中文字幕| 国产精品欧美亚洲77777| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 在线看a的网站| 少妇的逼好多水| 简卡轻食公司| 亚洲av成人精品一区久久| 狠狠婷婷综合久久久久久88av| 亚洲欧洲国产日韩| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线观看99| 伦精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 999精品在线视频| 欧美人与善性xxx| 中文欧美无线码| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 亚洲精品久久成人aⅴ小说 | 国产亚洲午夜精品一区二区久久| 女性被躁到高潮视频| 99久久精品一区二区三区| 一级,二级,三级黄色视频| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 天美传媒精品一区二区| 香蕉精品网在线| 久久鲁丝午夜福利片| 看非洲黑人一级黄片| 高清不卡的av网站| 免费黄网站久久成人精品| 老司机影院毛片| 在线观看三级黄色| 熟女人妻精品中文字幕| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 观看美女的网站| 亚洲美女搞黄在线观看| 最近中文字幕2019免费版| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 少妇被粗大的猛进出69影院 | www.av在线官网国产| 国产国语露脸激情在线看| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 天天操日日干夜夜撸| 欧美另类一区| 日韩一区二区三区影片| 在线精品无人区一区二区三| 观看av在线不卡| av天堂久久9| 一本一本综合久久| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 久久97久久精品| 丝袜喷水一区| 91精品三级在线观看| 69精品国产乱码久久久| 国模一区二区三区四区视频| 夜夜爽夜夜爽视频| 我的老师免费观看完整版| 青青草视频在线视频观看| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| 久久人人爽人人爽人人片va| 韩国高清视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲怡红院男人天堂| 在现免费观看毛片| 国产成人一区二区在线| 亚洲综合色惰| 熟女人妻精品中文字幕| 午夜福利,免费看| 日韩伦理黄色片| 亚洲成人手机| 成人综合一区亚洲| 亚洲精品亚洲一区二区| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 男女免费视频国产| 成人影院久久| 欧美日韩亚洲高清精品| 日本免费在线观看一区| 有码 亚洲区| 91精品国产九色| 国产精品久久久久久久电影| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 精品熟女少妇av免费看| 免费av中文字幕在线| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 欧美成人午夜免费资源| 高清黄色对白视频在线免费看| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 久久毛片免费看一区二区三区| 26uuu在线亚洲综合色| av电影中文网址| 久久久欧美国产精品| 国产一区二区在线观看日韩| 国产在视频线精品| 91精品一卡2卡3卡4卡| 成人国产麻豆网| 久久精品夜色国产| 伦理电影大哥的女人| 国产精品三级大全| 中文字幕制服av| 国产免费福利视频在线观看| 免费大片18禁| 国产亚洲av片在线观看秒播厂| 大香蕉久久成人网| 综合色丁香网| 日本91视频免费播放| 全区人妻精品视频| 搡老乐熟女国产| 免费黄频网站在线观看国产| 亚洲精品视频女| 成人无遮挡网站| 赤兔流量卡办理| 亚洲美女视频黄频| 国产成人aa在线观看| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 午夜视频国产福利| 成人国产麻豆网| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 日韩三级伦理在线观看| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 亚洲国产精品一区三区| 少妇精品久久久久久久| 69精品国产乱码久久久| 五月天丁香电影| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 日日爽夜夜爽网站| 欧美亚洲 丝袜 人妻 在线| 亚洲成人手机| 免费看不卡的av| 亚洲国产av新网站| 亚洲精品第二区| 成人亚洲欧美一区二区av| 有码 亚洲区| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 高清不卡的av网站| 另类亚洲欧美激情| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 国产成人精品在线电影| av一本久久久久| 久久精品国产鲁丝片午夜精品| freevideosex欧美| 婷婷色综合www| 极品少妇高潮喷水抽搐| 九草在线视频观看| 亚洲综合色网址| 丰满饥渴人妻一区二区三| 精品熟女少妇av免费看| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| av免费在线看不卡| 韩国高清视频一区二区三区| 国产成人精品无人区| 热re99久久国产66热| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 18禁观看日本| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 岛国毛片在线播放| 免费av中文字幕在线| 国产在线一区二区三区精| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 成人国语在线视频| 久久久精品区二区三区| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看| 青春草视频在线免费观看| 日韩伦理黄色片| 天堂俺去俺来也www色官网| 寂寞人妻少妇视频99o| 一区二区三区乱码不卡18| 免费大片黄手机在线观看| 男女国产视频网站| 国产日韩欧美在线精品| 如日韩欧美国产精品一区二区三区 | 高清av免费在线| 亚洲少妇的诱惑av| av福利片在线| 另类精品久久| 亚洲精品视频女| av女优亚洲男人天堂| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 少妇精品久久久久久久| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| a级毛片在线看网站| 99九九在线精品视频| 免费大片黄手机在线观看| 国产欧美另类精品又又久久亚洲欧美| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区 | 22中文网久久字幕| 一本久久精品| 亚洲av二区三区四区| 中国国产av一级| 成年女人在线观看亚洲视频| 极品人妻少妇av视频| 在线亚洲精品国产二区图片欧美 | a 毛片基地| 欧美日韩一区二区视频在线观看视频在线| 视频中文字幕在线观看| 国产精品国产av在线观看| 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 国产一区二区在线观看日韩| 人妻系列 视频| 天天操日日干夜夜撸| 一级毛片我不卡| 久久精品人人爽人人爽视色| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 国产精品免费大片| 一级毛片aaaaaa免费看小| 黑人欧美特级aaaaaa片| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 老司机影院毛片| 日日爽夜夜爽网站| 国产毛片在线视频| 国国产精品蜜臀av免费| 中文字幕久久专区| 亚洲精品色激情综合| av在线app专区| 亚洲欧洲国产日韩| 婷婷成人精品国产| 婷婷色麻豆天堂久久| 少妇 在线观看| 欧美三级亚洲精品| 插阴视频在线观看视频| 国产精品一区二区三区四区免费观看| 日本av手机在线免费观看| 丝袜在线中文字幕| 久久99蜜桃精品久久| 51国产日韩欧美| 满18在线观看网站| 在现免费观看毛片| 午夜福利网站1000一区二区三区| 婷婷色综合www| 国产av精品麻豆| 婷婷色综合www| 中文字幕人妻丝袜制服| 最后的刺客免费高清国语| 看免费成人av毛片| 欧美日韩视频高清一区二区三区二| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| 大又大粗又爽又黄少妇毛片口| 极品人妻少妇av视频| 欧美3d第一页| 成人手机av| 天堂俺去俺来也www色官网| 欧美日韩在线观看h| 在线观看www视频免费| 街头女战士在线观看网站| 欧美丝袜亚洲另类| 亚洲精品日韩av片在线观看| a级毛色黄片| 久久99精品国语久久久| a级毛色黄片| 国产熟女午夜一区二区三区 | 久久久午夜欧美精品| 亚洲人与动物交配视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 精品人妻熟女av久视频| 伊人亚洲综合成人网| 亚洲欧美一区二区三区国产| 在线看a的网站| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 秋霞在线观看毛片| 国产精品成人在线| 亚洲精品中文字幕在线视频| 哪个播放器可以免费观看大片| 91精品国产九色| 最新中文字幕久久久久| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 精品人妻一区二区三区麻豆| 女人精品久久久久毛片| av在线app专区| 亚洲精品色激情综合| 亚洲精品久久成人aⅴ小说 | 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 18禁观看日本| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 一本色道久久久久久精品综合| 老女人水多毛片| 亚洲av福利一区| 亚洲丝袜综合中文字幕| 男女国产视频网站| 久久久久久久久久成人| 国产成人免费无遮挡视频| 国产av精品麻豆| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费 | 欧美最新免费一区二区三区| 一级毛片我不卡| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 性色av一级| 亚洲天堂av无毛| 黑人巨大精品欧美一区二区蜜桃 | 欧美另类一区| 亚洲性久久影院| 久久97久久精品| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 最黄视频免费看| 精品亚洲成a人片在线观看| 777米奇影视久久| 免费看不卡的av| 国产黄片视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 一本久久精品| 天天躁夜夜躁狠狠久久av| 韩国高清视频一区二区三区| 69精品国产乱码久久久| 亚洲国产精品国产精品| 国产男人的电影天堂91| 日韩欧美一区视频在线观看| 欧美性感艳星| 亚洲成色77777| 五月天丁香电影| 超色免费av| 久久久久久人妻| xxx大片免费视频| 国产精品国产av在线观看| 9色porny在线观看| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 内地一区二区视频在线| 成人国语在线视频| 人妻 亚洲 视频| 久久精品久久精品一区二区三区| 国产av精品麻豆| 国产精品一区www在线观看| 制服诱惑二区| 精品亚洲成国产av| 色哟哟·www| 一个人看视频在线观看www免费| 男男h啪啪无遮挡| 天天操日日干夜夜撸| 嘟嘟电影网在线观看| 日韩不卡一区二区三区视频在线| 国产一区有黄有色的免费视频| 免费久久久久久久精品成人欧美视频 | 午夜免费鲁丝|