• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graph dynamical networks for forecasting collective behavior of active matter

    2022-11-21 09:29:42YanjunLiu劉彥君RuiWang王瑞CaiZhao趙偲andWenZheng鄭文
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王瑞

    Yanjun Liu(劉彥君) Rui Wang(王瑞) Cai Zhao(趙偲) and Wen Zheng(鄭文)

    1Institute of Public-Safety and Big Data,College of Data Science,Taiyuan University of Technology,Taiyuan 030060,China

    2Center of Information Management and Development,Taiyuan University of Technology,Taiyuan 030060,China

    3Center for Healthy Big Data,Changzhi Medical College,Changzhi 046000,China

    After decades of theoretical studies, the rich phase states of active matter and cluster kinetic processes are still of research interest. How to efficiently calculate the dynamical processes under their complex conditions becomes an open problem. Recently, machine learning methods have been proposed to predict the degree of coherence of active matter systems.In this way,the phase transition process of the system is quantified and studied.In this paper,we use graph network as a powerful model to determine the evolution of active matter with variable individual velocities solely based on the initial position and state of the particles. The graph network accurately predicts the order parameters of the system in different scale models with different individual velocities, noise and density to effectively evaluate the effect of diverse condition.Compared with the classical physical deduction method,we demonstrate that graph network prediction is excellent,which could save significantly computing resources and time. In addition to active matter, our method can be applied widely to other large-scale physical systems.

    Keywords: active matter,graph network,improvement of Vicsek,collective motion

    1. Introduction

    Self-driven clustering is a phenomenon in which individuals form a collective force with regular movement. Individuals cooperate and influence each other to accomplish complex, collective tasks in a self-organized manner that cannot be accomplished by individuals.Individuals will overcome extreme environments[1–5]through collective behaviors of avoiding natural predators, fighting danger, foraging for survival,and collaborating. Such clustered movements are universal in natural groups of microorganisms,insects,animals,etc. (e.g.,microbial clusters,schools of fish,flocks of birds,and so on).Each individual in such a group with the ability to drive themselves is known as“active matter”.[6,7]They generate complex non-equilibrium kinetic phenomena[8,9]that cause processes of phase transition[10]in the system. Extending to human society, the dynamical behavior of active matter in the control coordination and formation control of robot[11]populations,micro-systems, and autonomous multi-intelligent systems[12]helps to explain[13]the generation and change patterns of cluster intelligence behavior. Therefore, how to describe and explore cluster dynamics using theoretical models becomes a crucial proposition.

    Among many models for studying cluster motion, the“Vicsek model”[14]is the most classical model with a simple algorithm, which can simulate the natural cluster synchronization phenomenon[15,16]more realistically. The model quantifies[17]the phase transition phenomena in different control modes by controlling the density and noise[18]of particles in the system.[19]Since the introduction of the Vicsek model,scholars in different fields have used it as a base model for improvement and application. The model is gradually diversified and complicated by getting rid of idealization and getting closer to the actual situation of collective motions.[20,21]

    However, it is increasingly difficult to use existing dynamical simulation methods to derive the increasingly complex “Vicsek model”:[15]the derivation period is lengthy and the calculation process is complicated when calculating the quantitative criteria of the model, namely, the order parameters. It is also limited to small-scale systems and cannot be extrapolated efficiently to realistic large-scale conditional systems. Nowadays,modern machine learning methods and massive data sets have been widely used in multiple fields[22–24]with increasing capabilities[25,26]of recognition, classification, training and prediction. It can effectively improve the speed and accuracy of problem solving, and is expected to solve some problems that are difficult and impossible to solve by existing inference methods. Therefore, using machine learning techniques[27]and massive datasets to explore classical physics theory[28,29]problems has become popular research currently.

    Among many machine learning methods, this study attempts to use the graph network[30]model for learning and prediction. This model has developed from the graph neural networks, combining neural network methods with mathematical methods. It provides a more comprehensive and detailed description of graph network and their inference capabilities and extends and generalizes a multitude of neural network methods. Since the emergence of the graph neural networks in the last decade or so,they have been continuously extended and strengthened[31,32]to involve problems in different domains.[33,34]They have been extended to efficiently solve classical problems[35]using various supervised and reinforcement learning methods. In the physical field,graph neural networks are also gradually becoming involved in studying the physical systems,[36,37]cluster system dynamics,[38,39]active matter,[39–41]etc. The DeepMind team has integrated graph neural networks to propose a “graph network model” that is more efficient than other standard machine learning building blocks[42,43]and has been utilized successfully in many models of physically complex systems.[39,43]Thus,graph network can replace the existing molecular dynamics derivation process to study cluster dynamics specific processes through predictive methods.[44,45]

    This study aims to apply a novel machine learning approach to a classical physics problem.[46]We hope to obtain the final state of cluster motion at a specified time step using the predictive capability of graph network models with only the input of initial bit patterns. By this method,we can avoid the complex extrapolation process,effectively save the computational cost,and improve the computational efficiency of the traditional physics models.[47,48]In this study, we construct the graph structure of topological relationships between individuals and neighbors,and predict the sequential covariates by building a graph network model. We analyze the variation in the degree of consistency of the active matter system during the phase transition under different conditions.

    2. GN-active model framework

    The graph network (GN) model is designed in the form of “end-to-end”,[42]the input and output are both with graph structures that have the same number of nodes and edge structures. Each time we input a set of graphs with the same condition as system parameter. The initial bit pattern is randomly generated and will be different each time. Through training, it is possible to predict the evolution of cluster motion under system conditions. Graph is represented by the tripleG=(E,V,u),Eis the set of edge(reflecting the influence of individuals),E={(ek,rk,sk)}k=1:Ne;Vis the set of nodes(individuals),V={vi}i=1:Nv;uis the global state attribute;Nvis the number of nodes; andNeis the number of edges (ekrepresents the attribute of thek-th edge,rkandskare respectively the receiving node and the sending node,which are the indexes of nodes connected by thek-th edge).

    In the Vicsek model, the graph is constructed by visualizing the individual information embedded in the triad. Individuals of active matter are the nodes,containing the speed of motion of active particles and their own positions;the distance and correlation data between particles exist on the edges,and the rate of motion and positions of individuals in the system form the global state. In this study,the number of particles is fixed. Each individual takes itself as the center of the circle,and the individual particle within the circle area of the specified radius is its neighbor node.The correlation between nodes builds edges. The order parameters can be calculated by using the velocity directions of all the particles in the output system,and the global state can be quantitatively expressed.

    The computational core architecture of the GN-active model consists of three modules: encoder(GN encoder),core computing block (GN core) and decoder (GNdecoder). The GN-active model frist uses the encoder called GNencoder to encode the input data into particle position,velocity of motion and global parameters (the order parameter that can quantify the degree of system consistency; the predicted model particle number,parameterβ,noise value,system particle density and other related parameters),and compresses the input graph into a potential spatial representation. It is then processed by a GN core block,which is the core computing part of the graph network. The GN core block is cycledNtimes and the information is propagated from a single particle in the Vicsek model to the whole graph, with each cycle achieving one update of the whole graph. The result is decoded by the third module GN decoder and reconstructs the potential spatial representation into another graph. The result still outputs a graph structure with position and velocity information. The specifci process of the GN-active model is shown in Fig.1(a).

    In the graph update process of a GN core block,the computation module is divided into three parts: edge, node, and global. Blocks are closely related, and the calculation result of the previous block will become the input of the subsequent block.

    During the graph update process, the calculation unit includes six internal functions: three update functions and three aggregate functions. These six functions would update edges firstly, then update nodes, and finally use the updated edges and nodes to update the state of the whole graph, thus completing a graph update. Update function:

    The detailed process of the whole update is shown in Fig.1(b),that is,to realize an update of the graph.

    After input the triple structure data of graphG=(E,V,u),the edge block calculates each edge through the edge update functionΦe(formula 1)and outputse′k.The set ofe′kisE′.All edges are polymerized to ˉe′by the aggregation functionρe→u(formula 5),which will work when global status updates.

    Fig. 1. (a) The core architecture of the GN-active model. The model is divided into three blocks: GN encoder, GN core, and GNdecoder.GNencoder will receive and process input, GN core module will carry out the circular calculation, and GNdecoder will reconstruct the calculation results and output. (b)The GNcore update process of the GN-active model. The update process is divided into three blocks: edge block,node block,and global block,which are node update,edge update,and global update,respectively. The update operation is carried out through the update function and aggregation function.

    In the global block, the global attribute will be evaluated by the update functionΦe(formula 3)to yieldu′,where GN outputs the updated set of all edges,nodes,and global attributesG′=(E′,V′,u′).

    GN-active model is improved according to the format of the datasets, which can process the Vicsek model data after the optimization of individual speed. Construct the input graph data based on the location direction of active matter.In the whole process of model construction, the input data is frist preprocessed into a graph structure,which is compiled by GN encoder. The working principle of the graph network is shown by Fig.1,in which the GN core cycle update is setup 7 times in order to make the information propagate to the individuals at the edge completely. Finally, the network decodes the generated embedding into the predictedva, which can quantitatively represent the degree of order of the system.After completing the model training,the sequential covariance prediction is specifeid for the test set at the time step. The output predictions are sorted and plotted to show the trend of sequential parametric changes at the specifeid time step during convergence.

    3. Results

    3.1. Datasets

    In fact, in many real clustered systems the individual speed is not constant.In order to further fit the reality,the standard Vicsek model needs to be optimized for individual speed,i.e., individual speed that changes with adjustable parameter;while other conditions remain unchanged, determined the individual’s own speed by the environment around. The velocity is adjusted according to the local order parameters of the neighbor individual’s direction of motion, so that the Vicsek model is no longer the simplest and most ideal model.[42]

    To effectively measure the orderliness of the system, we still refer to the order parameter to reflect the consistency degree of the whole system.The order parameter can be obtained according to

    whereviis the individual velocity of the active matter. In this improved model, the speed and direction of each individual are variable in each time step;vais between 0 and 1, and we only consider the direction of velocity.Whenva=1,the active matters in the system are ordered. Whenva=0,the system is unordered(random direction).

    In the standard Vicsek model,the velocities of individual particles only change direction. Different from the standard Vicsek model, the speed and direction of individual particles are variable and affected by local order parameters. The updating formula to determine the speed is[12]

    whereviais the local order parameter within the circular range taken by the active particle with itself as the center and fixed radiusR, which is used to quantify the consistency of local particles. The parameterβcan adjust the variation trend of individual speed. Whenβ=0,formula(8)is consistent with the Vicsek standard model(vmax). Whenβ >0,the local consistency of the individual is higher, the particle moves faster,which promotes faster synchronization of the system.

    Thus,the individual speed can basically reflect the degree of order within the specified radius. In formula(8),when the degree of consistency is high, thevi(t+1)tends tovmax, and the individual moves at the maximum speed set. When the degree of consistency is low, thevi(t+1) tends to 0, and the individual basically lingers.

    We use python to design iterative programs to calculate the sequential covariates within a specified radius area centered on each individual. Thus, the speed at the next time step of that individual is updated. We designed simulations ofN=300 particles in anL×Lregion under two-dimensional periodic boundary conditions for active matter dynamics. The initial velocity of each individual is set as 0.03,the parameterβtakes 0, 0.1, 0.5, 1, 2, 5, 10, noiseηis 0, 1, 2, 3, 4, 5, 6,and the length of the simulated box sideLis 5, 10, 15, 25.By setting different environmental parameters,the advantages and disadvantages of the prediction results under different circumstances have been analyzed.

    We have trained the models under these environmental conditions, generating 100 independent datasets for each of these conditions as training datasets, and regenerating 100 datasets as test datasets for evaluation of the models. Under each condition,there are 100 sets of training data and 100 sets of prediction data,each group will haveTtime steps,and theXandYaxis position and direction data ofNparticles. Meanwhile,we also calculated the system order parameters of each time step.

    3.2. Optimal parameter β

    In order to observe the effect of parameterβand to analyze its influence, we observe the individual motion of specified time and step under differentβ, and look for the direct influence ofβchanges on the cluster.

    As can be seen from Fig.2,when the value ofβis larger,the order of magnitude of the difference between the velocity of individuals with high and low velocities is greater. It can be observed that individuals with high-speed show longer lengths in the configuration diagram, and individuals with low speed are closer to the“node”shape. Therefore, it can be seen that their speed is approaching 0,and the individual is in a“hesitation”state.

    At the same time,with the increase ofβvalue,there will be more clusters moving in different directions.These clusters will easily change each other’s direction when they meet in the process of moving. The time required for the consistent convergence of the whole system is longer. At the same time,the larger theβvalue is,the more difficult it is for the curvilinear motion to appear in the system. It can even be observed that the two cluster directions are opposite to each other.The direction of the cluster with a small number of individuals will be changed,and the individuals in the area where the two clusters conflict in the first place will gradually slow down to 0, and then move back into the larger cluster.

    Fig. 2. Motion configuration rendering of the Vicsek model for individual speed optimization. Set L=7,N=300,η=0.1,and R=1 as the condition is fixed when the β values are 1, 5, 10, and 20, respectively. In the period before convergence,the configuration diagram at the 10-th step has selected to observe the influence of β change on the configuration change. (a) The configuration diagram of step 10 under the condition of L=7, N =300,R=1,η =0.1,β =1. (b)The configuration diagram of step 10 under the condition of L=7,N=300,R=1,η =0.1,β =5. (c)The configuration diagram of step 10 under the condition of L=7,N=300,R=1,η =0.1,β =10. (d) The configuration diagram of step 10 under the condition of L=7,N=300,R=1,η =0.1,β =20.

    In order to control the variableβin the subsequent prediction and analyze the effects of other parameters on the system,the effects of differentβvalues on the convergence of the system need to be defined first.

    Figure 3 shows that with the increase ofβ,we calculated and recorded the time steps for completing convergence under differentβconditions and draw this graph accordingly. In this simulation process,the average value of the order parametervain the last 200 time steps is obtained from the 1000 time steps after the curve is stable.When thevaof the system reaches this mean value for the first time in the process of moving,it is the“convergence time step”. The convergence timeTdecreases first and then increases,and the bestβmakes the convergence speed fastest and the convergence time shortest. In this graph,β,which makes convergence fastest,exists at about 1.0.

    Fig. 3. Finding the optimal parameters β. Set L=7, η =0.1, R=1,change η and β,compare and observe the change of the step value when convergence.

    Therefore, we fixedβ=1, based on the fastest convergence speed, generated the initial configuration under different conditions,and transformed it into a graph network. Then we carried out theNtimes of the graph update process in the model and got the prediction results under different parameters.

    3.3. Specific applications of prediction

    3.3.1. Parameter β affecting speed

    In order to observe the prediction ability of the model,we first use the datasets with differentβvalues to conduct training prediction, compare the prediction with the true value curve,and explore the prediction effect after changing parameterβ.

    Fig.4.Parameter β simulation results.Under the condition of changing parameter β,the blue line is the actual value of the combined velocity va, and the orange line is the predicted value of the combined velocity va. (a) N =300, L=5, R=1, η =0, β =0, which is the comparison between the predicted and the true value under the standard Vicsek model. (b) The comparison of N =300, L=5, R=1, η =0, β =5.Curve is the fitting of va values obtained when the time step takes 0,5,10,15,25,30,35,40,45,50,55,60,75,90,120,and 150.

    According to the curve comparison in Fig.4,the prediction effect is still excellent even if theβvalue changes to a certain extent. The difference ofβleads to different convergence efficiency of the system.Under the same noise condition,even

    though the convergence time is obviously different, the order parametervaafter convergence tends to the same value.

    3.3.2. Analyzing the noise η

    By changing the noiseη,the influence of variation of the parameter noise on the accuracy of the prediction results of the graph network has been observed. In the datasets parameter design, the control variableβshould be discussed at 1.0 when the value ofβis no longer the variable in question.

    As can be seen from the curve comparison in Fig.5,whenηis smaller,the fitting degree of the two curves is higher. The prediction curve after increasingηvalue has obvious fluctuation,while the prediction effect is still excellent:the prediction curve is still in the fluctuation range,and the fluctuation range is much smaller than the true value curve. With the increase ofη, the order degree of the system will be greatly affected, so the accuracy of the prediction results will be greatly affected.

    Fig.5. Noise variation simulation results. Set N=300,L=5,R=1,β =1,change the predicted and true values of the noise η=1 and η=5 under the condition,and take the fitting of va values obtained at the time steps of 0,5,10,15,25,30,35,40,45,50,55,60,75,90,120,and 150.

    3.3.3. Adjusting the density ρ

    In order to further verify the predictive power of the model, the system region side lengthLhas been changed to vary the individual density in the system(Fig.6). We hope to observe the ability of prediction and other interesting phenomena in this way.

    In Fig. 6 it can be observed under the condition that the noiseηand parameter values are fixed, the prediction curve gets influenced by side lengthLchanging. WhenLgradually becomes larger,and the number of individuals existing in the system does not change,the density is reduced gradually. This may show that the neighborhood,around which each individual will reduce communication between individuals, will be greatly affected,leading to a much slower convergence speed and significantly increased convergence time. Also, the increase ofLreduces the density of the system and leads to its instability. In that case,the prediction accuracy is reduced,but the overall prediction accuracy of the graphical neural network still stays at a high level.

    Fig. 6. The simulation results in density change by modifying side length L.Under the fixed conditions N=300,η =0,β =1,the curve of va convergence between the real value and the predicted value has been observed.

    4. Conclusions

    Our simulation results show that the graph network constitutes a powerful tool to predict the long-term dynamics of active matter, leveraging some of the structure hidden in the local neighborhood of particles. The graph structure is used to describe the relationship between individuals. The graph network trains the model by learning the process of particle position and orientation changes in the system to predict the effect of different environmental settings on the global attribute order parametervaand to find the optimal influence parameters.Thus,the influence of global attribute order parametervaunder different environment settings is predicted,and the best influence parameter is found. We hope that through this method,machine learning can be used to complete the deduction and prediction of large-scale physical systems, and can even be extended to the prediction and interpretation of systems under special conditions.

    Active matter systems can generate large and high-quality datasets, which can correspond to complex but controllable physical phenomena that do not require any prior on the relevant physical quantities of the underlying system. Vicsek is an idealized model.Based on this model,this study optimizes the individual velocity close to the reality, so as to make a more realistic and reasonable explanation for the results. We hope to set up more improvements to the Vicsek model to make it more realistic.Datasets with different parameters are designed for training and prediction,and the influences of different variables on prediction results are explored. Each training starts from the input end to the specified time step as the output end,so continuity inference cannot be carried out. Therefore, it is still necessary to deepen the understanding and improvement of the GN-active model and explain the internal process of this “end-to-end” model. At the same time, it is also hoped that new quantitative parameters can be found in the research process to judge the cluster state in the system phase transformation process from different angles. In the process of studying and improving the graph network model, we will apply this model to other complex physical systems and predict more special and large-scale system inference effects.

    猜你喜歡
    王瑞
    Effect of desorbed gas on microwave breakdown on vacuum side of dielectric window
    Magnetic properties of oxides and silicon single crystals
    肇事者是兒媳
    Analysis of secondary electron emission using the fractal method*
    探討EPC模式下工程總承包項(xiàng)目的費(fèi)用控制
    愛情替代者
    故事林(2018年3期)2018-02-11 18:14:00
    叉腰的美女
    與愛情無關(guān)
    婚育與健康(2017年7期)2017-09-11 02:07:14
    叉腰美女
    故事林(2017年9期)2017-05-20 06:48:20
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    日韩欧美在线二视频| 欧美日韩瑟瑟在线播放| 日本撒尿小便嘘嘘汇集6| 日韩亚洲欧美综合| 18禁在线播放成人免费| 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月 | 性色avwww在线观看| 俄罗斯特黄特色一大片| 97超视频在线观看视频| 国产91精品成人一区二区三区| 午夜福利欧美成人| 一卡2卡三卡四卡精品乱码亚洲| 久久九九热精品免费| 舔av片在线| 亚洲av免费在线观看| 日韩中文字幕欧美一区二区| 国语自产精品视频在线第100页| 特级一级黄色大片| 欧美乱码精品一区二区三区| 蜜桃久久精品国产亚洲av| 蜜桃久久精品国产亚洲av| 精品国内亚洲2022精品成人| 怎么达到女性高潮| 久久久久精品国产欧美久久久| 蜜桃亚洲精品一区二区三区| 亚洲av免费高清在线观看| 免费搜索国产男女视频| 最近最新中文字幕大全免费视频| a级毛片a级免费在线| 久久久久久久午夜电影| 深夜精品福利| 亚洲片人在线观看| 啦啦啦免费观看视频1| 国产三级在线视频| 国产精品久久久久久亚洲av鲁大| 日韩人妻高清精品专区| 午夜福利在线观看免费完整高清在 | 国产午夜精品论理片| 久久久精品大字幕| 国产 一区 欧美 日韩| 亚洲精品乱码久久久v下载方式 | 国产一区在线观看成人免费| 他把我摸到了高潮在线观看| 热99在线观看视频| 欧美黄色片欧美黄色片| 欧美日韩乱码在线| 一级作爱视频免费观看| 人妻久久中文字幕网| 亚洲男人的天堂狠狠| www.熟女人妻精品国产| 久久性视频一级片| 亚洲国产精品成人综合色| 91在线精品国自产拍蜜月 | 特大巨黑吊av在线直播| 成年免费大片在线观看| 成人鲁丝片一二三区免费| 色视频www国产| 蜜桃亚洲精品一区二区三区| 少妇的丰满在线观看| 又爽又黄无遮挡网站| 国产69精品久久久久777片| 首页视频小说图片口味搜索| xxxwww97欧美| 国产69精品久久久久777片| 美女高潮的动态| 国产成人啪精品午夜网站| 国产熟女xx| 精品一区二区三区人妻视频| 午夜免费成人在线视频| 亚洲激情在线av| 深夜精品福利| 国产精品一区二区三区四区久久| 亚洲18禁久久av| 黄色女人牲交| avwww免费| 国产精品久久久人人做人人爽| 搡女人真爽免费视频火全软件 | 日韩精品中文字幕看吧| 少妇高潮的动态图| 在线天堂最新版资源| 国产一级毛片七仙女欲春2| 亚洲精品在线美女| 亚洲中文字幕一区二区三区有码在线看| 亚洲 欧美 日韩 在线 免费| 精品国产亚洲在线| 老汉色∧v一级毛片| 久久欧美精品欧美久久欧美| 午夜影院日韩av| 在线视频色国产色| 欧美国产日韩亚洲一区| 亚洲天堂国产精品一区在线| 夜夜躁狠狠躁天天躁| 高潮久久久久久久久久久不卡| 欧美最黄视频在线播放免费| 国产激情欧美一区二区| 看黄色毛片网站| 亚洲国产欧美网| 欧美乱色亚洲激情| 亚洲无线观看免费| 757午夜福利合集在线观看| 内射极品少妇av片p| 国产精品1区2区在线观看.| 日本黄色视频三级网站网址| 国产高潮美女av| 国产三级中文精品| 亚洲精品在线观看二区| 亚洲自拍偷在线| 精华霜和精华液先用哪个| 婷婷六月久久综合丁香| 在线免费观看的www视频| 长腿黑丝高跟| 有码 亚洲区| 国产伦人伦偷精品视频| 亚洲国产精品成人综合色| 十八禁人妻一区二区| 亚洲国产色片| 一级黄片播放器| 国产高清三级在线| 国产欧美日韩精品一区二区| 看片在线看免费视频| 国产亚洲精品一区二区www| 亚洲av五月六月丁香网| 国产一区二区三区视频了| 欧美+亚洲+日韩+国产| 亚洲自拍偷在线| 国产精品,欧美在线| 丰满乱子伦码专区| 69人妻影院| 性色avwww在线观看| a在线观看视频网站| 成人av在线播放网站| 日本黄色片子视频| 欧美中文综合在线视频| 久久人妻av系列| 日韩欧美 国产精品| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 日本五十路高清| 国产私拍福利视频在线观看| 麻豆国产97在线/欧美| 亚洲av一区综合| 91久久精品国产一区二区成人 | av女优亚洲男人天堂| 首页视频小说图片口味搜索| 国产av一区在线观看免费| 免费在线观看日本一区| 国产在线精品亚洲第一网站| 免费在线观看日本一区| 亚洲欧美日韩高清在线视频| 国产亚洲精品av在线| 网址你懂的国产日韩在线| 悠悠久久av| 日韩精品青青久久久久久| 丁香欧美五月| 男女床上黄色一级片免费看| 在线观看美女被高潮喷水网站 | 男人舔奶头视频| 成人三级黄色视频| 男人舔女人下体高潮全视频| 88av欧美| 叶爱在线成人免费视频播放| 色精品久久人妻99蜜桃| 一二三四社区在线视频社区8| 一个人免费在线观看的高清视频| 欧美成人a在线观看| 一区二区三区免费毛片| 精品一区二区三区视频在线 | 亚洲成人久久性| 久久国产乱子伦精品免费另类| 久久久成人免费电影| 久久精品影院6| 深爱激情五月婷婷| 亚洲五月天丁香| 禁无遮挡网站| 国产亚洲欧美98| 国产av在哪里看| www国产在线视频色| 村上凉子中文字幕在线| 岛国在线观看网站| 国产视频内射| 欧美日韩综合久久久久久 | 19禁男女啪啪无遮挡网站| 人人妻,人人澡人人爽秒播| 97超视频在线观看视频| 久久中文看片网| 天堂av国产一区二区熟女人妻| 国产真实乱freesex| 深夜精品福利| 精品人妻偷拍中文字幕| 中文字幕人妻熟人妻熟丝袜美 | 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品久久久久久毛片| 熟妇人妻久久中文字幕3abv| 色老头精品视频在线观看| 变态另类成人亚洲欧美熟女| 精品国产亚洲在线| 国产成+人综合+亚洲专区| 啦啦啦观看免费观看视频高清| 国产 一区 欧美 日韩| 级片在线观看| 免费一级毛片在线播放高清视频| 99精品在免费线老司机午夜| 国产精品野战在线观看| 欧美大码av| 在线播放无遮挡| 搡老熟女国产l中国老女人| 九九在线视频观看精品| av福利片在线观看| 亚洲中文字幕一区二区三区有码在线看| 此物有八面人人有两片| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久人人做人人爽| 天堂√8在线中文| 久久久久久久精品吃奶| 国产成人欧美在线观看| 人妻丰满熟妇av一区二区三区| 精品不卡国产一区二区三区| 亚洲美女黄片视频| 高清日韩中文字幕在线| 国产欧美日韩精品亚洲av| 床上黄色一级片| 最近视频中文字幕2019在线8| 午夜亚洲福利在线播放| 欧美色视频一区免费| 女警被强在线播放| 成人鲁丝片一二三区免费| 欧洲精品卡2卡3卡4卡5卡区| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 欧美黑人巨大hd| 毛片女人毛片| 三级毛片av免费| 日韩欧美在线二视频| 99热这里只有是精品50| 小蜜桃在线观看免费完整版高清| 亚洲无线观看免费| 在线观看66精品国产| 91久久精品电影网| 好男人电影高清在线观看| 久久精品夜夜夜夜夜久久蜜豆| 十八禁网站免费在线| 一个人免费在线观看的高清视频| 亚洲av第一区精品v没综合| 美女cb高潮喷水在线观看| 黄色片一级片一级黄色片| 免费在线观看成人毛片| 精品午夜福利视频在线观看一区| 精品久久久久久成人av| 免费观看精品视频网站| 在线观看免费视频日本深夜| 久久久久久九九精品二区国产| 无遮挡黄片免费观看| 婷婷六月久久综合丁香| 国产三级黄色录像| 一个人观看的视频www高清免费观看| 黄片大片在线免费观看| 99热6这里只有精品| 精品午夜福利视频在线观看一区| 观看免费一级毛片| 亚洲va日本ⅴa欧美va伊人久久| 激情在线观看视频在线高清| 国产视频一区二区在线看| 一区二区三区高清视频在线| 欧美日本亚洲视频在线播放| 午夜免费观看网址| 国产三级黄色录像| 亚洲av第一区精品v没综合| 男人的好看免费观看在线视频| 美女高潮的动态| 国产成人av激情在线播放| 少妇高潮的动态图| 日韩人妻高清精品专区| 国产一区二区在线观看日韩 | 岛国视频午夜一区免费看| 欧美性猛交黑人性爽| 亚洲最大成人手机在线| 女人被狂操c到高潮| 九色国产91popny在线| 国产伦在线观看视频一区| 国产精品久久久久久久电影 | 别揉我奶头~嗯~啊~动态视频| 夜夜夜夜夜久久久久| 老司机午夜十八禁免费视频| 女人被狂操c到高潮| 男女那种视频在线观看| 在线播放无遮挡| 在线十欧美十亚洲十日本专区| 免费av观看视频| 欧美激情久久久久久爽电影| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 高清日韩中文字幕在线| 中文字幕熟女人妻在线| 在线观看日韩欧美| 精品久久久久久久久久久久久| 亚洲无线观看免费| 1000部很黄的大片| 国产精品av视频在线免费观看| or卡值多少钱| 1024手机看黄色片| 色av中文字幕| a级一级毛片免费在线观看| 久久国产精品影院| 欧美在线黄色| 久久精品综合一区二区三区| 午夜免费激情av| 国产精品久久电影中文字幕| 在线国产一区二区在线| 亚洲无线观看免费| 九九在线视频观看精品| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 偷拍熟女少妇极品色| 午夜精品久久久久久毛片777| 99久久成人亚洲精品观看| 老司机深夜福利视频在线观看| 99久久九九国产精品国产免费| 9191精品国产免费久久| 一个人观看的视频www高清免费观看| 一夜夜www| 美女免费视频网站| 五月伊人婷婷丁香| 性色av乱码一区二区三区2| 桃色一区二区三区在线观看| 美女 人体艺术 gogo| 国产精品久久电影中文字幕| 国产精品99久久久久久久久| 动漫黄色视频在线观看| 五月伊人婷婷丁香| 亚洲黑人精品在线| 美女 人体艺术 gogo| 亚洲在线自拍视频| 在线观看舔阴道视频| 免费看a级黄色片| 90打野战视频偷拍视频| 午夜影院日韩av| 长腿黑丝高跟| 热99re8久久精品国产| 午夜精品一区二区三区免费看| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av涩爱 | 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频| 夜夜躁狠狠躁天天躁| 变态另类成人亚洲欧美熟女| 亚洲精品色激情综合| 久9热在线精品视频| 免费av观看视频| 亚洲18禁久久av| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 可以在线观看毛片的网站| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 特大巨黑吊av在线直播| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av免费在线观看| 十八禁人妻一区二区| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 天天添夜夜摸| 亚洲男人的天堂狠狠| 日本黄色视频三级网站网址| 黄色女人牲交| 亚洲av免费高清在线观看| www.熟女人妻精品国产| 一级黄色大片毛片| 色吧在线观看| 真人一进一出gif抽搐免费| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 久久久久久大精品| 老司机福利观看| 亚洲中文字幕日韩| 免费电影在线观看免费观看| 久久亚洲精品不卡| 免费观看人在逋| 久久伊人香网站| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区 | 免费在线观看成人毛片| 免费在线观看日本一区| 1000部很黄的大片| 久久久久久国产a免费观看| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 亚洲精品日韩av片在线观看 | 欧美色欧美亚洲另类二区| 亚洲欧美日韩东京热| 午夜a级毛片| 午夜福利视频1000在线观看| 看免费av毛片| 日韩欧美 国产精品| 国产欧美日韩精品亚洲av| bbb黄色大片| 色精品久久人妻99蜜桃| tocl精华| 黑人欧美特级aaaaaa片| 欧美又色又爽又黄视频| 久久精品91无色码中文字幕| 国产欧美日韩精品一区二区| 啦啦啦免费观看视频1| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 国产又黄又爽又无遮挡在线| 免费看光身美女| 国产一区二区在线观看日韩 | 青草久久国产| av专区在线播放| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 色综合婷婷激情| 精品国产三级普通话版| 麻豆国产av国片精品| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 看片在线看免费视频| 精品国产超薄肉色丝袜足j| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 国产午夜精品论理片| 村上凉子中文字幕在线| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 欧美绝顶高潮抽搐喷水| 丰满人妻一区二区三区视频av | 在线播放无遮挡| 在线免费观看的www视频| 欧美极品一区二区三区四区| 好男人电影高清在线观看| 日韩高清综合在线| 国产成+人综合+亚洲专区| 长腿黑丝高跟| 观看免费一级毛片| 成人三级黄色视频| 在线观看免费午夜福利视频| 99久久九九国产精品国产免费| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 亚洲五月天丁香| 岛国在线观看网站| 在线观看午夜福利视频| 免费在线观看影片大全网站| aaaaa片日本免费| 亚洲国产精品999在线| 99热这里只有精品一区| 99精品欧美一区二区三区四区| 国产激情欧美一区二区| 叶爱在线成人免费视频播放| 天天一区二区日本电影三级| 免费看十八禁软件| 悠悠久久av| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 国产精品久久视频播放| 亚洲 欧美 日韩 在线 免费| 51国产日韩欧美| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 国产精品久久久久久精品电影| 国产高清三级在线| 中文字幕熟女人妻在线| 国产毛片a区久久久久| 久久久久国内视频| 一进一出抽搐gif免费好疼| 国产97色在线日韩免费| 草草在线视频免费看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品色激情综合| 午夜日韩欧美国产| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 午夜影院日韩av| 亚洲第一电影网av| АⅤ资源中文在线天堂| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成人一区二区免费高清观看| 一区二区三区高清视频在线| 欧美3d第一页| 久久婷婷人人爽人人干人人爱| 免费在线观看日本一区| 精品免费久久久久久久清纯| 亚洲电影在线观看av| 18禁黄网站禁片午夜丰满| 在线视频色国产色| 国产在线精品亚洲第一网站| 一个人免费在线观看的高清视频| 国产毛片a区久久久久| 成年人黄色毛片网站| 日本五十路高清| 国产精品永久免费网站| 亚洲内射少妇av| 国产成+人综合+亚洲专区| 日韩高清综合在线| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲av免费在线观看| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| aaaaa片日本免费| 久久久成人免费电影| 成人一区二区视频在线观看| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在 | x7x7x7水蜜桃| 午夜a级毛片| 国产激情欧美一区二区| 欧美在线一区亚洲| 我的老师免费观看完整版| 最新在线观看一区二区三区| 免费av毛片视频| 午夜免费男女啪啪视频观看 | 亚洲精品在线美女| 99久久精品国产亚洲精品| 国产高清激情床上av| 免费在线观看日本一区| 欧美zozozo另类| 亚洲中文字幕一区二区三区有码在线看| 欧美丝袜亚洲另类 | 久久久久久九九精品二区国产| 女人被狂操c到高潮| 午夜免费观看网址| 99久久精品一区二区三区| 国产高清有码在线观看视频| 不卡一级毛片| 久久久国产成人精品二区| 久久精品国产清高在天天线| 韩国av一区二区三区四区| 久久精品91无色码中文字幕| 人人妻,人人澡人人爽秒播| 亚洲国产精品久久男人天堂| 老汉色av国产亚洲站长工具| 色老头精品视频在线观看| 真人一进一出gif抽搐免费| 18禁黄网站禁片免费观看直播| 国内精品久久久久精免费| 制服丝袜大香蕉在线| 国产亚洲精品久久久久久毛片| 色视频www国产| 亚洲激情在线av| 色综合婷婷激情| 最后的刺客免费高清国语| 久久欧美精品欧美久久欧美| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 欧美最新免费一区二区三区 | 精品99又大又爽又粗少妇毛片 | 免费电影在线观看免费观看| 国产伦一二天堂av在线观看| 日本一二三区视频观看| 日本与韩国留学比较| 国产aⅴ精品一区二区三区波| 亚洲精品色激情综合| 成人高潮视频无遮挡免费网站| 男人和女人高潮做爰伦理| 成人三级黄色视频| 成人一区二区视频在线观看| 嫩草影院入口| 欧美日本亚洲视频在线播放| 久久国产精品人妻蜜桃| 亚洲av一区综合| av在线蜜桃| 精品日产1卡2卡| 亚洲内射少妇av| 黄色日韩在线| x7x7x7水蜜桃| 亚洲精品色激情综合| 岛国在线观看网站| 国产成人av教育| 99久久精品热视频| 国产亚洲精品一区二区www| 一本一本综合久久| 午夜a级毛片| 久久精品国产综合久久久| 久久亚洲真实| 国产精品久久久久久亚洲av鲁大| 久久国产精品人妻蜜桃| 两个人视频免费观看高清| 伊人久久大香线蕉亚洲五| 制服人妻中文乱码| 在线观看美女被高潮喷水网站 | 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 亚洲黑人精品在线| 男女午夜视频在线观看| 免费在线观看日本一区| 中亚洲国语对白在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲久久久久久中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 婷婷精品国产亚洲av| x7x7x7水蜜桃| 亚洲国产欧洲综合997久久,| 日本熟妇午夜| 熟女人妻精品中文字幕| 色综合亚洲欧美另类图片| 老司机深夜福利视频在线观看| 亚洲人成电影免费在线| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 夜夜爽天天搞| 亚洲精品在线观看二区| 亚洲人成网站高清观看|