• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    国产精品人妻久久久久久| 国产精品一区二区在线观看99 | 免费av毛片视频| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 又黄又爽又刺激的免费视频.| 免费av观看视频| 久久久a久久爽久久v久久| 国产视频内射| 久久午夜福利片| 久久久色成人| 欧美高清性xxxxhd video| 老女人水多毛片| 波多野结衣巨乳人妻| 久久久久国产网址| 久久热精品热| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美bdsm另类| 久久久久久久午夜电影| 91在线精品国自产拍蜜月| 18禁裸乳无遮挡免费网站照片| 可以在线观看的亚洲视频| 免费看日本二区| 国产色爽女视频免费观看| 青春草视频在线免费观看| 日本熟妇午夜| 久久精品人妻少妇| 97超视频在线观看视频| 校园人妻丝袜中文字幕| 99在线视频只有这里精品首页| 午夜激情欧美在线| 精品久久久久久成人av| 亚洲无线观看免费| 一区二区三区高清视频在线| 丰满人妻一区二区三区视频av| 一级二级三级毛片免费看| 久久午夜福利片| 夜夜夜夜夜久久久久| 乱码一卡2卡4卡精品| 久久亚洲国产成人精品v| av天堂中文字幕网| 美女大奶头视频| 又粗又硬又长又爽又黄的视频 | 亚洲国产色片| 日本撒尿小便嘘嘘汇集6| 久久久a久久爽久久v久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久欧美精品欧美久久欧美| 国产一区二区在线av高清观看| 淫秽高清视频在线观看| 在线免费观看的www视频| 18禁黄网站禁片免费观看直播| 亚洲精品色激情综合| 69人妻影院| 国产精品一区www在线观看| 欧美另类亚洲清纯唯美| 午夜免费男女啪啪视频观看| 边亲边吃奶的免费视频| 91麻豆精品激情在线观看国产| 五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 青春草视频在线免费观看| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 69人妻影院| 国产成人aa在线观看| 别揉我奶头 嗯啊视频| 亚洲成av人片在线播放无| 国产午夜福利久久久久久| 国产极品天堂在线| 久久精品影院6| 日日干狠狠操夜夜爽| 国产精品嫩草影院av在线观看| 国产精品伦人一区二区| 色5月婷婷丁香| 色哟哟哟哟哟哟| 亚洲精品日韩av片在线观看| 听说在线观看完整版免费高清| 欧美成人a在线观看| 国产老妇伦熟女老妇高清| 别揉我奶头 嗯啊视频| 在线国产一区二区在线| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 69人妻影院| 麻豆乱淫一区二区| 国产在线男女| 亚洲精品亚洲一区二区| 成人特级av手机在线观看| 99riav亚洲国产免费| 亚洲精品456在线播放app| 精品国内亚洲2022精品成人| 国产午夜福利久久久久久| 久久亚洲精品不卡| 精品久久久久久久久av| 国产淫片久久久久久久久| 久久草成人影院| 亚洲人成网站在线观看播放| 国产免费一级a男人的天堂| 午夜a级毛片| 听说在线观看完整版免费高清| 国产淫片久久久久久久久| 中文字幕精品亚洲无线码一区| 99久国产av精品| 极品教师在线视频| 久久久精品大字幕| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 美女cb高潮喷水在线观看| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 国内少妇人妻偷人精品xxx网站| 亚洲av男天堂| 久久午夜福利片| 精品日产1卡2卡| 中文资源天堂在线| 日韩av不卡免费在线播放| 日韩精品有码人妻一区| 国内揄拍国产精品人妻在线| 我的老师免费观看完整版| 成人毛片60女人毛片免费| 一区福利在线观看| 嫩草影院入口| 午夜精品国产一区二区电影 | 国产伦理片在线播放av一区 | 久久综合国产亚洲精品| 人妻系列 视频| 成人综合一区亚洲| 91久久精品电影网| 亚洲自偷自拍三级| 午夜视频国产福利| 91久久精品电影网| a级毛片免费高清观看在线播放| 午夜福利视频1000在线观看| 亚洲第一电影网av| 美女被艹到高潮喷水动态| 亚洲国产精品国产精品| 久久久精品欧美日韩精品| 成人午夜高清在线视频| 亚洲国产精品成人久久小说 | 亚洲人成网站高清观看| 亚洲在线观看片| 小说图片视频综合网站| 久久中文看片网| 成人无遮挡网站| av在线天堂中文字幕| 久久久久久国产a免费观看| 国产视频首页在线观看| 亚洲av第一区精品v没综合| 亚洲va在线va天堂va国产| 亚洲四区av| av女优亚洲男人天堂| 亚洲av不卡在线观看| 久久人妻av系列| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 欧美日韩在线观看h| 欧美精品国产亚洲| 欧美成人a在线观看| 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 身体一侧抽搐| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 老司机影院成人| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av涩爱 | 黑人高潮一二区| 精品久久久久久久末码| 免费看av在线观看网站| 乱系列少妇在线播放| 欧美色欧美亚洲另类二区| 99热这里只有精品一区| 日韩欧美国产在线观看| 国产在线男女| 国产高清不卡午夜福利| 一区二区三区高清视频在线| eeuss影院久久| 日韩欧美一区二区三区在线观看| 亚洲精品国产成人久久av| 免费观看人在逋| 亚洲av熟女| 亚洲欧美中文字幕日韩二区| 91精品国产九色| 尾随美女入室| 国产精品久久久久久亚洲av鲁大| 亚洲精品粉嫩美女一区| 久久人人爽人人片av| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 欧美一区二区国产精品久久精品| 日韩一区二区三区影片| www.av在线官网国产| 五月伊人婷婷丁香| 国模一区二区三区四区视频| av在线老鸭窝| 国产女主播在线喷水免费视频网站 | 精品国产三级普通话版| 天天躁日日操中文字幕| 直男gayav资源| 人人妻人人澡人人爽人人夜夜 | 美女xxoo啪啪120秒动态图| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 日韩人妻高清精品专区| 九色成人免费人妻av| 国产淫片久久久久久久久| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 床上黄色一级片| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂 | 在线观看美女被高潮喷水网站| 美女 人体艺术 gogo| 99久久人妻综合| 美女脱内裤让男人舔精品视频 | 免费大片18禁| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久成人| 日日啪夜夜撸| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 亚洲性久久影院| 少妇人妻一区二区三区视频| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 国内久久婷婷六月综合欲色啪| av黄色大香蕉| 日韩三级伦理在线观看| 自拍偷自拍亚洲精品老妇| 国产精品,欧美在线| 超碰av人人做人人爽久久| 1024手机看黄色片| 晚上一个人看的免费电影| 精品国内亚洲2022精品成人| 看免费成人av毛片| 久久精品人妻少妇| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 免费观看的影片在线观看| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 五月玫瑰六月丁香| 深夜精品福利| 精品久久久久久久末码| 成人永久免费在线观看视频| 男女边吃奶边做爰视频| 免费看av在线观看网站| 亚洲精品乱码久久久久久按摩| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 日日撸夜夜添| 国产精品国产三级国产专区5o| 久久精品人人爽人人爽视色| 国产黄片视频在线免费观看| 免费看不卡的av| 亚洲精品乱久久久久久| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 九色成人免费人妻av| 自线自在国产av| 久久99蜜桃精品久久| 夜夜骑夜夜射夜夜干| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 人妻夜夜爽99麻豆av| 好男人视频免费观看在线| 国产精品99久久久久久久久| √禁漫天堂资源中文www| 亚洲人成网站在线播| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 国产精品.久久久| 日韩强制内射视频| 成人综合一区亚洲| 成人国语在线视频| 国产日韩欧美亚洲二区| 极品人妻少妇av视频| 免费看av在线观看网站| 久久99蜜桃精品久久| a 毛片基地| 国产精品久久久久久久电影| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲不卡免费看| 欧美日韩成人在线一区二区| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 久久国内精品自在自线图片| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 中国美白少妇内射xxxbb| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 26uuu在线亚洲综合色| 一边摸一边做爽爽视频免费| 日韩av在线免费看完整版不卡| 国产在视频线精品| 亚洲成色77777| 国产综合精华液| 80岁老熟妇乱子伦牲交| 97在线视频观看| 天天影视国产精品| 大码成人一级视频| av在线老鸭窝| 国产精品人妻久久久影院| 97在线人人人人妻| 九九久久精品国产亚洲av麻豆| 亚洲成人一二三区av| 午夜日本视频在线| 在线 av 中文字幕| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 人体艺术视频欧美日本| av电影中文网址| 亚洲经典国产精华液单| 久久 成人 亚洲| 国产毛片在线视频| 国产日韩一区二区三区精品不卡 | 亚州av有码| 国产深夜福利视频在线观看| 日韩伦理黄色片| 999精品在线视频| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 美女大奶头黄色视频| 热99国产精品久久久久久7| 国产成人精品在线电影| 午夜91福利影院| 岛国毛片在线播放| 观看美女的网站| 久久久欧美国产精品| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 高清av免费在线| 国产一区有黄有色的免费视频| 久久久久久伊人网av| 99久久人妻综合| 国产国语露脸激情在线看| 性色av一级| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 欧美日韩成人在线一区二区| 三级国产精品片| 这个男人来自地球电影免费观看 | 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 国产 一区精品| 国产精品久久久久久精品古装| 18在线观看网站| 在线免费观看不下载黄p国产| a级毛片在线看网站| 亚洲国产精品成人久久小说| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 国产精品国产三级国产专区5o| freevideosex欧美| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 最近2019中文字幕mv第一页| 亚洲精品视频女| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 亚洲av.av天堂| 国产在线一区二区三区精| 九九久久精品国产亚洲av麻豆| 亚洲国产精品国产精品| 久久久久视频综合| 亚洲精品久久成人aⅴ小说 | 免费少妇av软件| 中文精品一卡2卡3卡4更新| 中文字幕久久专区| 97在线视频观看| 丝袜喷水一区| 美女大奶头黄色视频| 热re99久久国产66热| 日韩电影二区| 3wmmmm亚洲av在线观看| 日韩亚洲欧美综合| 亚洲中文av在线| 日韩av免费高清视频| 中文字幕免费在线视频6| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 日韩成人伦理影院| 97超视频在线观看视频| 久久久久久久大尺度免费视频| 久久热精品热| 99九九在线精品视频| 18+在线观看网站| 各种免费的搞黄视频| 999精品在线视频| 母亲3免费完整高清在线观看 | 如何舔出高潮| 久久99一区二区三区| 国产精品嫩草影院av在线观看| 欧美精品一区二区大全| 亚洲精品第二区| 久久久午夜欧美精品| 免费看av在线观看网站| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 男女高潮啪啪啪动态图| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频| 日本免费在线观看一区| 日本欧美国产在线视频| 满18在线观看网站| 简卡轻食公司| av在线观看视频网站免费| 久久久精品区二区三区| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 亚洲国产精品国产精品| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 国产精品一区二区在线观看99| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 免费人成在线观看视频色| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 99九九线精品视频在线观看视频| 99国产精品免费福利视频| 久久99热这里只频精品6学生| 少妇高潮的动态图| 国产精品国产三级专区第一集| 日韩亚洲欧美综合| 午夜日本视频在线| 久久久久久久大尺度免费视频| 亚洲综合色惰| 久热这里只有精品99| 久久午夜综合久久蜜桃| www.av在线官网国产| 一级毛片我不卡| 纵有疾风起免费观看全集完整版| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 人人妻人人爽人人添夜夜欢视频| 精品卡一卡二卡四卡免费| 亚洲av日韩在线播放| 一边摸一边做爽爽视频免费| 亚洲欧洲国产日韩| 午夜影院在线不卡| 成人漫画全彩无遮挡| 成年人免费黄色播放视频| videossex国产| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av成人精品| 母亲3免费完整高清在线观看 | 国精品久久久久久国模美| 国产精品久久久久久久电影| 一级黄片播放器| 免费观看a级毛片全部| av黄色大香蕉| 精品一区在线观看国产| 日韩成人伦理影院| av国产久精品久网站免费入址| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费男女啪啪视频观看| 国产日韩一区二区三区精品不卡 | 一本色道久久久久久精品综合| 午夜免费观看性视频| 黄片播放在线免费| 国产av码专区亚洲av| 少妇 在线观看| av免费观看日本| av在线老鸭窝| 亚洲情色 制服丝袜| 成人亚洲欧美一区二区av| 亚洲国产色片| 婷婷色综合大香蕉| 少妇精品久久久久久久| 国产国拍精品亚洲av在线观看| 人人妻人人爽人人添夜夜欢视频| 插阴视频在线观看视频| 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 日韩三级伦理在线观看| 人人妻人人爽人人添夜夜欢视频| av电影中文网址| 欧美精品人与动牲交sv欧美| 超碰97精品在线观看| 成人国语在线视频| 色5月婷婷丁香| 一级毛片我不卡| 亚洲精品日韩在线中文字幕| 内地一区二区视频在线| 高清av免费在线| 日本黄色日本黄色录像| 色婷婷久久久亚洲欧美| av免费观看日本| 国产日韩欧美在线精品| 校园人妻丝袜中文字幕| 亚洲欧美精品自产自拍| 91精品国产九色| xxx大片免费视频| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 制服诱惑二区| 国产一区有黄有色的免费视频| 久久综合国产亚洲精品| 日本-黄色视频高清免费观看| 久久99热6这里只有精品| 美女国产视频在线观看| a级片在线免费高清观看视频| 成人无遮挡网站| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 精品久久蜜臀av无| 免费看光身美女| av国产久精品久网站免费入址| 午夜日本视频在线| 国产精品久久久久久久久免| 最近最新中文字幕免费大全7| 午夜免费男女啪啪视频观看| 午夜老司机福利剧场| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 一级毛片电影观看| 欧美最新免费一区二区三区| 久久久久国产精品人妻一区二区| 亚洲av成人精品一二三区| av视频免费观看在线观看| 免费观看无遮挡的男女| 寂寞人妻少妇视频99o| 国产一级毛片在线| 高清av免费在线| 国产精品.久久久| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精华国产精华液的使用体验| 国产在视频线精品| 午夜av观看不卡| 精品99又大又爽又粗少妇毛片| 国产精品欧美亚洲77777| 五月开心婷婷网| 下体分泌物呈黄色| 日本wwww免费看| 亚洲欧美成人精品一区二区| 高清欧美精品videossex| 成人手机av| 国产色婷婷99| 久久97久久精品| 91午夜精品亚洲一区二区三区| 97在线人人人人妻| 综合色丁香网| 91久久精品电影网| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 久久久久久久亚洲中文字幕| 日日爽夜夜爽网站| 亚洲精品亚洲一区二区| 精品亚洲成国产av| 人人妻人人添人人爽欧美一区卜| 国产成人精品无人区| 午夜精品国产一区二区电影| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 51国产日韩欧美| 亚洲国产精品专区欧美| 99re6热这里在线精品视频| 色婷婷久久久亚洲欧美| 人人妻人人澡人人看| 在线播放无遮挡| 热99国产精品久久久久久7| 国产欧美日韩综合在线一区二区| 中文字幕久久专区| 成人18禁高潮啪啪吃奶动态图 | 亚洲天堂av无毛| 午夜精品国产一区二区电影| av福利片在线| 久久婷婷青草| 日韩欧美精品免费久久| 成人黄色视频免费在线看| 日韩欧美一区视频在线观看| 亚洲婷婷狠狠爱综合网| 国产午夜精品久久久久久一区二区三区| 大又大粗又爽又黄少妇毛片口| 18禁在线无遮挡免费观看视频| 亚洲美女黄色视频免费看| 国产免费又黄又爽又色| 丝袜美足系列| 国产精品无大码| 99久久精品一区二区三区| 人妻人人澡人人爽人人| 日韩中字成人| 国产精品不卡视频一区二区| 最后的刺客免费高清国语|