• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    亚洲国产最新在线播放| 亚洲欧美一区二区三区国产| av免费观看日本| 国产爱豆传媒在线观看| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 麻豆精品久久久久久蜜桃| 老女人水多毛片| 日韩,欧美,国产一区二区三区| 国产永久视频网站| 国产亚洲最大av| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 亚洲精品一二三| 亚洲欧美一区二区三区黑人 | 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 成人美女网站在线观看视频| 三级国产精品欧美在线观看| 免费久久久久久久精品成人欧美视频 | 最后的刺客免费高清国语| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 久久国产乱子免费精品| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 一个人看视频在线观看www免费| 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 韩国av在线不卡| 秋霞伦理黄片| 久久久亚洲精品成人影院| 又粗又硬又长又爽又黄的视频| 亚洲va在线va天堂va国产| 老熟女久久久| 男女免费视频国产| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 国产爱豆传媒在线观看| 久久ye,这里只有精品| 人妻少妇偷人精品九色| 久久婷婷青草| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| a级毛色黄片| 国产精品国产av在线观看| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 免费看日本二区| 十八禁网站网址无遮挡 | 免费大片18禁| 亚洲精品国产av蜜桃| 综合色丁香网| 一级黄片播放器| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 日本一二三区视频观看| 国产av一区二区精品久久 | 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 国产白丝娇喘喷水9色精品| 精品国产露脸久久av麻豆| 亚洲av国产av综合av卡| 日本猛色少妇xxxxx猛交久久| 国精品久久久久久国模美| 毛片女人毛片| 国产亚洲av片在线观看秒播厂| 免费看不卡的av| 久久国产精品大桥未久av | 久久精品国产自在天天线| 久久人人爽人人爽人人片va| 久久精品久久精品一区二区三区| 高清欧美精品videossex| 三级国产精品片| 亚洲精华国产精华液的使用体验| 美女主播在线视频| 国模一区二区三区四区视频| 精品亚洲成a人片在线观看 | 国产精品久久久久久久久免| 少妇高潮的动态图| 亚洲伊人久久精品综合| 欧美精品亚洲一区二区| 久久av网站| 亚洲美女黄色视频免费看| 狂野欧美激情性xxxx在线观看| 亚洲精品第二区| 欧美日本视频| 日韩精品有码人妻一区| 国产精品熟女久久久久浪| 成人综合一区亚洲| 久久99蜜桃精品久久| 天堂8中文在线网| 美女视频免费永久观看网站| 国产av精品麻豆| 国产精品国产三级国产av玫瑰| 中文字幕精品免费在线观看视频 | 亚洲国产av新网站| 80岁老熟妇乱子伦牲交| 18禁动态无遮挡网站| 男人和女人高潮做爰伦理| 免费观看性生交大片5| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩视频精品一区| 男女边摸边吃奶| 九九在线视频观看精品| 99re6热这里在线精品视频| 国产在线视频一区二区| 黄色欧美视频在线观看| 夜夜骑夜夜射夜夜干| 久久国内精品自在自线图片| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av成人精品| 91精品伊人久久大香线蕉| 精品一区二区免费观看| 少妇被粗大猛烈的视频| 日本av免费视频播放| 亚洲精品亚洲一区二区| 日韩av不卡免费在线播放| 婷婷色麻豆天堂久久| 国产精品无大码| 汤姆久久久久久久影院中文字幕| 亚洲熟女精品中文字幕| 少妇被粗大猛烈的视频| 久久久成人免费电影| av免费在线看不卡| 亚洲内射少妇av| 青春草亚洲视频在线观看| 狂野欧美激情性xxxx在线观看| 一级二级三级毛片免费看| 久久6这里有精品| 欧美xxxx黑人xx丫x性爽| 国内精品宾馆在线| 久久韩国三级中文字幕| 免费观看性生交大片5| 天天躁日日操中文字幕| 在现免费观看毛片| 国产成人aa在线观看| 黄色视频在线播放观看不卡| a 毛片基地| 国产 精品1| 欧美xxxx性猛交bbbb| 日韩 亚洲 欧美在线| 亚洲精品中文字幕在线视频 | 日日啪夜夜撸| 精品人妻视频免费看| 日韩精品有码人妻一区| 亚洲av.av天堂| 久久人人爽人人爽人人片va| av又黄又爽大尺度在线免费看| 国产男女内射视频| 久久影院123| 观看美女的网站| 嫩草影院新地址| 青春草视频在线免费观看| 亚洲国产精品国产精品| 亚洲国产精品国产精品| 高清在线视频一区二区三区| 久久婷婷青草| 亚洲人成网站在线观看播放| 午夜视频国产福利| 不卡视频在线观看欧美| 九草在线视频观看| 国产av精品麻豆| freevideosex欧美| 精品国产乱码久久久久久小说| av免费在线看不卡| 国产视频首页在线观看| 日本av手机在线免费观看| av国产精品久久久久影院| 97热精品久久久久久| 中文乱码字字幕精品一区二区三区| 韩国av在线不卡| 久久精品国产亚洲av天美| 亚洲人成网站高清观看| 另类亚洲欧美激情| 亚洲久久久国产精品| 永久网站在线| 少妇人妻一区二区三区视频| 精品国产三级普通话版| 国产一区亚洲一区在线观看| a级毛片免费高清观看在线播放| 91精品国产国语对白视频| 亚洲国产精品成人久久小说| 蜜桃亚洲精品一区二区三区| 老师上课跳d突然被开到最大视频| 日韩电影二区| 国产毛片在线视频| 久久久久久久久久人人人人人人| 久久久久久九九精品二区国产| 亚洲av成人精品一二三区| 国国产精品蜜臀av免费| 王馨瑶露胸无遮挡在线观看| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 久久婷婷青草| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 亚洲av男天堂| 丰满迷人的少妇在线观看| 大片免费播放器 马上看| 下体分泌物呈黄色| 精品99又大又爽又粗少妇毛片| 精品一品国产午夜福利视频| 亚洲中文av在线| 男女边摸边吃奶| 精品久久久久久电影网| 18禁在线播放成人免费| 婷婷色综合www| 久热久热在线精品观看| 久久精品熟女亚洲av麻豆精品| 大香蕉久久网| av网站免费在线观看视频| 日本wwww免费看| 国产视频首页在线观看| 大香蕉97超碰在线| 国产精品久久久久久久久免| 国产日韩欧美在线精品| 高清视频免费观看一区二区| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 有码 亚洲区| 最后的刺客免费高清国语| 国产精品国产三级国产专区5o| 极品少妇高潮喷水抽搐| 尾随美女入室| 1000部很黄的大片| 免费观看a级毛片全部| 亚洲欧洲日产国产| 一级毛片我不卡| 国产69精品久久久久777片| 中文字幕久久专区| 日本黄色日本黄色录像| 日本-黄色视频高清免费观看| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 极品教师在线视频| 在线观看免费视频网站a站| 插逼视频在线观看| 亚洲熟女精品中文字幕| 亚洲精品国产色婷婷电影| 一区二区三区免费毛片| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 交换朋友夫妻互换小说| 美女国产视频在线观看| 最近中文字幕高清免费大全6| a级毛色黄片| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 亚洲国产av新网站| 久久国产亚洲av麻豆专区| 国产乱来视频区| 成人综合一区亚洲| 免费av不卡在线播放| 最黄视频免费看| 国产精品一区二区在线不卡| 男人爽女人下面视频在线观看| 尤物成人国产欧美一区二区三区| 九草在线视频观看| 汤姆久久久久久久影院中文字幕| 免费久久久久久久精品成人欧美视频 | 久久久色成人| 联通29元200g的流量卡| 内射极品少妇av片p| 国产乱人视频| 一级a做视频免费观看| 成人无遮挡网站| 在线亚洲精品国产二区图片欧美 | 亚洲av.av天堂| av国产精品久久久久影院| 亚洲精品中文字幕在线视频 | 国产精品国产三级国产专区5o| av专区在线播放| 一级毛片黄色毛片免费观看视频| 亚洲成人中文字幕在线播放| a级毛片免费高清观看在线播放| 国产片特级美女逼逼视频| 亚洲精品一区蜜桃| 国产精品一区二区三区四区免费观看| 中文欧美无线码| 亚洲国产精品一区三区| 在线免费观看不下载黄p国产| 国产大屁股一区二区在线视频| 欧美人与善性xxx| 街头女战士在线观看网站| 欧美一区二区亚洲| 建设人人有责人人尽责人人享有的 | 少妇 在线观看| 精品视频人人做人人爽| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 国产精品99久久99久久久不卡 | 亚洲婷婷狠狠爱综合网| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 七月丁香在线播放| 婷婷色综合www| 老师上课跳d突然被开到最大视频| 高清午夜精品一区二区三区| 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 永久网站在线| 777米奇影视久久| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 国产av码专区亚洲av| 日韩大片免费观看网站| 午夜老司机福利剧场| 欧美成人午夜免费资源| 看十八女毛片水多多多| 99热国产这里只有精品6| 卡戴珊不雅视频在线播放| 欧美极品一区二区三区四区| 日本黄色日本黄色录像| 国产一区二区在线观看日韩| av在线播放精品| 亚洲美女搞黄在线观看| av福利片在线观看| 日本vs欧美在线观看视频 | 高清不卡的av网站| 欧美极品一区二区三区四区| 成人免费观看视频高清| 亚洲美女黄色视频免费看| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 看非洲黑人一级黄片| 高清不卡的av网站| 中文字幕免费在线视频6| 网址你懂的国产日韩在线| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 久久鲁丝午夜福利片| 视频区图区小说| 久久韩国三级中文字幕| 新久久久久国产一级毛片| 亚洲第一区二区三区不卡| 日韩av免费高清视频| 99热6这里只有精品| 亚洲精品国产av蜜桃| 国产在线免费精品| 亚洲av成人精品一二三区| 亚洲成人手机| 少妇精品久久久久久久| 女性生殖器流出的白浆| 久久久成人免费电影| 免费观看性生交大片5| 久久精品国产亚洲av天美| 肉色欧美久久久久久久蜜桃| 日本猛色少妇xxxxx猛交久久| 国产美女午夜福利| 中国美白少妇内射xxxbb| 99热网站在线观看| 我要看黄色一级片免费的| 免费少妇av软件| 亚洲av中文av极速乱| 少妇裸体淫交视频免费看高清| 亚洲av不卡在线观看| 欧美区成人在线视频| 亚州av有码| 老司机影院成人| 午夜视频国产福利| av国产免费在线观看| 亚洲va在线va天堂va国产| 亚洲三级黄色毛片| 国产亚洲5aaaaa淫片| 亚洲精品国产成人久久av| a级毛色黄片| 岛国毛片在线播放| 日韩中文字幕视频在线看片 | 夜夜看夜夜爽夜夜摸| 亚洲精品国产色婷婷电影| 久热久热在线精品观看| 久久久久久久久久人人人人人人| 大码成人一级视频| 久久久久精品性色| 在线精品无人区一区二区三 | 青春草国产在线视频| 免费大片黄手机在线观看| 九九久久精品国产亚洲av麻豆| 日本欧美视频一区| 边亲边吃奶的免费视频| 日韩av免费高清视频| 美女视频免费永久观看网站| 熟女电影av网| 少妇的逼好多水| 国产精品一二三区在线看| 熟女电影av网| 欧美少妇被猛烈插入视频| 男人狂女人下面高潮的视频| 精品国产一区二区三区久久久樱花 | 在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频| 国产一区二区三区av在线| 少妇猛男粗大的猛烈进出视频| 国产 一区 欧美 日韩| 久久久午夜欧美精品| 99久久综合免费| 日韩电影二区| 久久国产乱子免费精品| 天天躁日日操中文字幕| 日韩欧美一区视频在线观看 | av网站免费在线观看视频| 欧美一区二区亚洲| av在线app专区| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 尤物成人国产欧美一区二区三区| 久久热精品热| 免费观看无遮挡的男女| 国产成人a区在线观看| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 一区二区三区精品91| 六月丁香七月| 日韩电影二区| 最新中文字幕久久久久| 黄色视频在线播放观看不卡| 国产成人freesex在线| 高清日韩中文字幕在线| 色视频www国产| 国产男女超爽视频在线观看| 九色成人免费人妻av| 国产91av在线免费观看| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 亚洲av福利一区| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 免费观看性生交大片5| 亚洲三级黄色毛片| 国产 一区精品| 美女cb高潮喷水在线观看| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 免费在线观看成人毛片| 老司机影院毛片| 亚洲国产精品一区三区| 又爽又黄a免费视频| 欧美日韩在线观看h| 一级毛片我不卡| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 天堂俺去俺来也www色官网| 肉色欧美久久久久久久蜜桃| h视频一区二区三区| 日产精品乱码卡一卡2卡三| 欧美成人一区二区免费高清观看| 97超碰精品成人国产| 视频区图区小说| 一级黄片播放器| 久久久久久久久久人人人人人人| 一级a做视频免费观看| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 亚洲av中文字字幕乱码综合| 九九久久精品国产亚洲av麻豆| 久久久久精品性色| h日本视频在线播放| 麻豆国产97在线/欧美| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久毛片免费看一区二区三区| 日韩伦理黄色片| 久久久久精品性色| 国产精品.久久久| 国产精品爽爽va在线观看网站| 丝瓜视频免费看黄片| 久久99蜜桃精品久久| 在现免费观看毛片| 一个人看的www免费观看视频| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 内射极品少妇av片p| 亚洲内射少妇av| 新久久久久国产一级毛片| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看| 亚洲色图av天堂| 中国国产av一级| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 国产精品国产三级国产专区5o| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久 | av在线播放精品| 亚洲精品一二三| 大片电影免费在线观看免费| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 免费观看在线日韩| av卡一久久| 亚洲精华国产精华液的使用体验| 免费久久久久久久精品成人欧美视频 | 亚洲天堂av无毛| 最近的中文字幕免费完整| 国产av精品麻豆| 毛片一级片免费看久久久久| 中文资源天堂在线| 亚洲欧洲日产国产| 极品少妇高潮喷水抽搐| 久久精品国产自在天天线| 韩国高清视频一区二区三区| 国产又色又爽无遮挡免| 国产亚洲91精品色在线| 成人二区视频| 婷婷色麻豆天堂久久| 国产美女午夜福利| 高清午夜精品一区二区三区| 91精品国产国语对白视频| 麻豆成人av视频| 欧美另类一区| 少妇精品久久久久久久| av免费在线看不卡| 国产久久久一区二区三区| 国产 一区精品| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 成年人午夜在线观看视频| 全区人妻精品视频| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱| 舔av片在线| 欧美高清成人免费视频www| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 亚洲精品中文字幕在线视频 | 国产淫语在线视频| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 欧美极品一区二区三区四区| 免费观看a级毛片全部| 欧美丝袜亚洲另类| 日本-黄色视频高清免费观看| 国模一区二区三区四区视频| 国产有黄有色有爽视频| 精品久久久精品久久久| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 国产欧美亚洲国产| 免费观看性生交大片5| 高清视频免费观看一区二区| 欧美一区二区亚洲| 国产伦理片在线播放av一区| 舔av片在线| 蜜桃在线观看..| 欧美少妇被猛烈插入视频| 午夜视频国产福利| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 777米奇影视久久| 国产免费又黄又爽又色| 各种免费的搞黄视频| 99热这里只有是精品50| 成人国产av品久久久| 最黄视频免费看| 男人狂女人下面高潮的视频| av播播在线观看一区| 青春草国产在线视频| av播播在线观看一区| 国产无遮挡羞羞视频在线观看| 深夜a级毛片| 欧美成人精品欧美一级黄| 欧美bdsm另类| 老熟女久久久| 亚洲av男天堂| 国产高清三级在线| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 黑人高潮一二区| 国产免费又黄又爽又色| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| xxx大片免费视频| a级一级毛片免费在线观看| 国产成人精品婷婷| 国产av一区二区精品久久 | 久久国内精品自在自线图片| 大话2 男鬼变身卡| a 毛片基地| 午夜福利在线在线| 欧美丝袜亚洲另类| 亚洲天堂av无毛| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 又粗又硬又长又爽又黄的视频| 99久久精品一区二区三区| 国产高清国产精品国产三级 | 久久人人爽人人爽人人片va| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 日韩欧美一区视频在线观看 | 国产精品三级大全| 蜜桃在线观看..|