• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    色综合站精品国产| 小说图片视频综合网站| 少妇被粗大猛烈的视频| 99国产精品一区二区蜜桃av| 久久草成人影院| 少妇的逼水好多| 精品熟女少妇av免费看| 国产不卡一卡二| av在线天堂中文字幕| 1024手机看黄色片| 99热这里只有精品一区| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| 性插视频无遮挡在线免费观看| 成人鲁丝片一二三区免费| 国产在线男女| 国产极品天堂在线| a级毛片免费高清观看在线播放| 亚洲av免费高清在线观看| 在线播放国产精品三级| 亚洲经典国产精华液单| 国产成人免费观看mmmm| 午夜免费激情av| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 国产亚洲5aaaaa淫片| 成年女人永久免费观看视频| 一级黄片播放器| 成人欧美大片| 中文天堂在线官网| 男女国产视频网站| a级毛色黄片| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 国产乱来视频区| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 女人被狂操c到高潮| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| 深爱激情五月婷婷| 韩国高清视频一区二区三区| 国产精品99久久久久久久久| av国产免费在线观看| 乱人视频在线观看| 国产一级毛片在线| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 久久韩国三级中文字幕| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| 国产一区有黄有色的免费视频 | 伊人久久精品亚洲午夜| 色噜噜av男人的天堂激情| 狠狠狠狠99中文字幕| 男人狂女人下面高潮的视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费播放大片免费观看视频在线观看 | 成人性生交大片免费视频hd| 国产精品不卡视频一区二区| 色噜噜av男人的天堂激情| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆| 永久网站在线| 男女边吃奶边做爰视频| 国产美女午夜福利| 高清视频免费观看一区二区 | 国产黄a三级三级三级人| 成人av在线播放网站| 成人综合一区亚洲| 国产免费男女视频| 成人美女网站在线观看视频| 深爱激情五月婷婷| 中文字幕av成人在线电影| 在线播放无遮挡| 中文字幕精品亚洲无线码一区| 欧美日韩在线观看h| 极品教师在线视频| 日本wwww免费看| 尤物成人国产欧美一区二区三区| 18禁在线播放成人免费| 99在线人妻在线中文字幕| av在线播放精品| 欧美zozozo另类| 99久久无色码亚洲精品果冻| 国产亚洲精品久久久com| av女优亚洲男人天堂| 久久久精品欧美日韩精品| 免费观看在线日韩| 久久精品国产99精品国产亚洲性色| 视频中文字幕在线观看| 九九久久精品国产亚洲av麻豆| 自拍偷自拍亚洲精品老妇| 日韩一区二区视频免费看| 99久国产av精品国产电影| 一区二区三区乱码不卡18| 亚洲内射少妇av| 99久久中文字幕三级久久日本| www.色视频.com| av免费在线看不卡| 国产高清国产精品国产三级 | 免费观看的影片在线观看| 日本黄色片子视频| 国产色爽女视频免费观看| 国产成人一区二区在线| 久久精品91蜜桃| 亚洲乱码一区二区免费版| 国产精品,欧美在线| 久久久精品94久久精品| 国产在视频线精品| 日韩欧美在线乱码| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 日韩,欧美,国产一区二区三区 | 国产免费又黄又爽又色| 久久国产乱子免费精品| 欧美性猛交╳xxx乱大交人| 国产成人a∨麻豆精品| 色综合站精品国产| 国产av在哪里看| 寂寞人妻少妇视频99o| 国产又色又爽无遮挡免| 欧美成人免费av一区二区三区| 久久久久九九精品影院| 国产亚洲91精品色在线| 国产极品精品免费视频能看的| 国产亚洲精品av在线| 亚洲精华国产精华液的使用体验| 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 精品久久国产蜜桃| 精品久久久久久久末码| 国产在视频线精品| 亚洲一区高清亚洲精品| 三级毛片av免费| 91在线精品国自产拍蜜月| 国产乱人视频| 欧美激情国产日韩精品一区| 又爽又黄a免费视频| 99热精品在线国产| 国产成人精品久久久久久| 99久久精品热视频| 少妇猛男粗大的猛烈进出视频 | 亚洲丝袜综合中文字幕| 禁无遮挡网站| 色哟哟·www| 日韩人妻高清精品专区| 特级一级黄色大片| 久久草成人影院| 免费观看的影片在线观看| av又黄又爽大尺度在线免费看 | 韩国av在线不卡| 丝袜喷水一区| 国语自产精品视频在线第100页| 久久久亚洲精品成人影院| 自拍偷自拍亚洲精品老妇| 国产一区二区三区av在线| 天堂中文最新版在线下载 | 免费观看a级毛片全部| 亚洲国产高清在线一区二区三| 亚洲中文字幕一区二区三区有码在线看| 搡女人真爽免费视频火全软件| 69av精品久久久久久| 日本av手机在线免费观看| 精品午夜福利在线看| 免费看a级黄色片| 岛国毛片在线播放| 高清视频免费观看一区二区 | 亚洲图色成人| 最近的中文字幕免费完整| 能在线免费看毛片的网站| 99在线人妻在线中文字幕| 性插视频无遮挡在线免费观看| 国产精品一区www在线观看| 久久久a久久爽久久v久久| 特级一级黄色大片| 日韩一本色道免费dvd| eeuss影院久久| 长腿黑丝高跟| 日韩人妻高清精品专区| 欧美最新免费一区二区三区| 不卡视频在线观看欧美| 亚洲精华国产精华液的使用体验| 99久久精品一区二区三区| 永久网站在线| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说 | 久久精品久久久久久噜噜老黄 | av在线天堂中文字幕| av又黄又爽大尺度在线免费看 | 国产熟女欧美一区二区| 免费一级毛片在线播放高清视频| 亚洲婷婷狠狠爱综合网| 少妇的逼好多水| 乱人视频在线观看| 亚洲国产精品成人久久小说| 夜夜爽夜夜爽视频| 免费观看在线日韩| 少妇被粗大猛烈的视频| 少妇裸体淫交视频免费看高清| 亚洲国产精品成人久久小说| 久久精品久久久久久久性| 亚洲国产色片| 亚洲精品国产av成人精品| 亚洲欧美清纯卡通| 亚洲av熟女| 青青草视频在线视频观看| 我要搜黄色片| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验| 观看免费一级毛片| 丝袜喷水一区| 亚洲不卡免费看| 少妇人妻精品综合一区二区| 最近手机中文字幕大全| 综合色丁香网| 欧美一区二区国产精品久久精品| 免费电影在线观看免费观看| 日韩成人av中文字幕在线观看| 国产亚洲91精品色在线| 色吧在线观看| 综合色丁香网| 色视频www国产| 国产大屁股一区二区在线视频| 国产免费男女视频| 久久久久久九九精品二区国产| 国产精品一区二区在线观看99 | 免费看av在线观看网站| 日本黄色片子视频| 联通29元200g的流量卡| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 久久久久久久久久黄片| 亚洲18禁久久av| 性色avwww在线观看| 热99re8久久精品国产| 国产91av在线免费观看| 丝袜喷水一区| 欧美日本视频| 九九在线视频观看精品| 久久久亚洲精品成人影院| 免费播放大片免费观看视频在线观看 | 日韩欧美精品v在线| 菩萨蛮人人尽说江南好唐韦庄 | 一区二区三区免费毛片| 春色校园在线视频观看| 最近的中文字幕免费完整| 特大巨黑吊av在线直播| 国产在视频线在精品| 一级毛片aaaaaa免费看小| 91狼人影院| av天堂中文字幕网| 中文字幕av成人在线电影| 精品人妻视频免费看| 亚洲国产精品专区欧美| 一级毛片久久久久久久久女| 国产亚洲av嫩草精品影院| 建设人人有责人人尽责人人享有的 | 亚洲自偷自拍三级| 最近中文字幕高清免费大全6| 99在线视频只有这里精品首页| 欧美另类亚洲清纯唯美| 青春草视频在线免费观看| 久久久久久久久久久免费av| 久久热精品热| 99热网站在线观看| 亚洲怡红院男人天堂| 中文欧美无线码| 一边亲一边摸免费视频| 丝袜美腿在线中文| 精品无人区乱码1区二区| 十八禁国产超污无遮挡网站| 国产成人一区二区在线| 1000部很黄的大片| 久久婷婷人人爽人人干人人爱| 欧美性猛交╳xxx乱大交人| 一本一本综合久久| 久久久久久久国产电影| kizo精华| 久久精品91蜜桃| 在线观看一区二区三区| 中文字幕熟女人妻在线| 好男人在线观看高清免费视频| 最近2019中文字幕mv第一页| АⅤ资源中文在线天堂| 99久国产av精品国产电影| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站 | 特级一级黄色大片| 亚洲欧美精品专区久久| 久久韩国三级中文字幕| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| 亚洲欧洲日产国产| 国产单亲对白刺激| 日本-黄色视频高清免费观看| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 长腿黑丝高跟| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 国产av不卡久久| 青春草国产在线视频| 一区二区三区高清视频在线| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 丝袜美腿在线中文| 国产精品.久久久| 偷拍熟女少妇极品色| 国产在线男女| 九九热线精品视视频播放| 99热精品在线国产| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 国产成人91sexporn| 亚洲国产成人一精品久久久| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| 日本色播在线视频| 欧美3d第一页| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 亚洲中文字幕日韩| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| videossex国产| 三级经典国产精品| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 一区二区三区免费毛片| 99视频精品全部免费 在线| 免费观看性生交大片5| 成人欧美大片| 男女下面进入的视频免费午夜| videossex国产| 亚洲三级黄色毛片| 国产一级毛片七仙女欲春2| 国产私拍福利视频在线观看| 人妻系列 视频| 中文字幕久久专区| 熟女电影av网| 国产av在哪里看| 一级二级三级毛片免费看| 好男人在线观看高清免费视频| 男人狂女人下面高潮的视频| 99视频精品全部免费 在线| 深夜a级毛片| 日韩av在线大香蕉| 啦啦啦观看免费观看视频高清| 国产极品天堂在线| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 三级毛片av免费| 男女啪啪激烈高潮av片| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 国产精品无大码| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄 | 午夜a级毛片| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有精品一区| 亚洲美女视频黄频| 国产 一区 欧美 日韩| 国产精品国产三级国产av玫瑰| 最近最新中文字幕大全电影3| 日韩大片免费观看网站 | 国产一区二区在线观看日韩| 国产久久久一区二区三区| 亚洲欧美成人综合另类久久久 | 男女边吃奶边做爰视频| 国产亚洲精品av在线| 18禁在线播放成人免费| 国内精品一区二区在线观看| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在| 男人的好看免费观看在线视频| 欧美三级亚洲精品| 国产成人aa在线观看| 亚洲精品乱码久久久久久按摩| 水蜜桃什么品种好| 亚洲欧美精品专区久久| 国产91av在线免费观看| av免费在线看不卡| 久久精品熟女亚洲av麻豆精品 | 69av精品久久久久久| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版 | 女的被弄到高潮叫床怎么办| www.色视频.com| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 天天一区二区日本电影三级| 精品久久久久久久末码| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 亚洲乱码一区二区免费版| 嘟嘟电影网在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| 成年版毛片免费区| 日本欧美国产在线视频| 中文字幕av成人在线电影| 国产精品国产三级国产专区5o | 国产高清三级在线| 床上黄色一级片| 亚洲成av人片在线播放无| 视频中文字幕在线观看| av福利片在线观看| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡| 久久久国产成人精品二区| 26uuu在线亚洲综合色| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产av玫瑰| 免费人成在线观看视频色| 狂野欧美激情性xxxx在线观看| 女人被狂操c到高潮| 国产精品福利在线免费观看| 中文字幕制服av| 日日撸夜夜添| 国产探花在线观看一区二区| 日日撸夜夜添| 国产久久久一区二区三区| 免费观看a级毛片全部| 青春草国产在线视频| 91午夜精品亚洲一区二区三区| 久久久国产成人免费| 纵有疾风起免费观看全集完整版 | 亚洲国产欧洲综合997久久,| 国产一级毛片在线| 日本免费在线观看一区| 色视频www国产| 国产一级毛片七仙女欲春2| 亚洲综合精品二区| 欧美+日韩+精品| 久久久久久国产a免费观看| 久久久a久久爽久久v久久| 精品人妻视频免费看| 国产成人aa在线观看| 在线天堂最新版资源| 91在线精品国自产拍蜜月| 麻豆一二三区av精品| 黑人高潮一二区| 高清毛片免费看| 91aial.com中文字幕在线观看| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 啦啦啦韩国在线观看视频| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av成人在线电影| 午夜免费激情av| 国产黄片美女视频| 日韩成人av中文字幕在线观看| 欧美潮喷喷水| 国产精品国产三级国产av玫瑰| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 毛片女人毛片| 黄色日韩在线| 久久精品久久精品一区二区三区| 欧美高清成人免费视频www| 亚洲国产欧美在线一区| 国产av一区在线观看免费| 3wmmmm亚洲av在线观看| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 少妇的逼水好多| 99在线人妻在线中文字幕| 男女那种视频在线观看| 日韩制服骚丝袜av| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 国产黄色视频一区二区在线观看 | 美女内射精品一级片tv| 看免费成人av毛片| 免费大片18禁| 久久久欧美国产精品| 国产一区二区在线av高清观看| 男女那种视频在线观看| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 日本午夜av视频| 久久久国产成人精品二区| 亚洲精品日韩在线中文字幕| 国产成人aa在线观看| 身体一侧抽搐| 禁无遮挡网站| 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 九草在线视频观看| 超碰av人人做人人爽久久| 亚洲性久久影院| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 亚洲乱码一区二区免费版| 国产中年淑女户外野战色| 日韩欧美 国产精品| 久久久久网色| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 九九在线视频观看精品| 国产精品久久视频播放| 亚洲欧美日韩东京热| 免费观看人在逋| 国产伦在线观看视频一区| 青春草亚洲视频在线观看| 精品久久久久久久人妻蜜臀av| 精品久久国产蜜桃| 欧美潮喷喷水| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 国产精品一及| 99久久人妻综合| 99久久精品热视频| av线在线观看网站| 免费播放大片免费观看视频在线观看 | 亚洲国产精品成人久久小说| 国产免费福利视频在线观看| 99久国产av精品国产电影| 免费观看在线日韩| 亚洲最大成人手机在线| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 国产精品.久久久| 国产免费视频播放在线视频 | 国产黄片美女视频| 一个人观看的视频www高清免费观看| 少妇熟女aⅴ在线视频| av在线播放精品| 国产精品.久久久| 一二三四中文在线观看免费高清| 精品酒店卫生间| 天天躁日日操中文字幕| av天堂中文字幕网| 美女内射精品一级片tv| 天堂中文最新版在线下载 | 欧美变态另类bdsm刘玥| 国产成人精品婷婷| 秋霞伦理黄片| 亚洲最大成人av| 日韩,欧美,国产一区二区三区 | 欧美不卡视频在线免费观看| 一二三四中文在线观看免费高清| 久久久久久久久久成人| 在线观看美女被高潮喷水网站| 亚洲在久久综合| 免费观看性生交大片5| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 人妻夜夜爽99麻豆av| 三级国产精品片| 精华霜和精华液先用哪个| av黄色大香蕉| 亚洲自偷自拍三级| av黄色大香蕉| 床上黄色一级片| 校园人妻丝袜中文字幕| 国产伦精品一区二区三区四那| 我要搜黄色片| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 亚洲自拍偷在线| 又爽又黄a免费视频| 久久久久久国产a免费观看| 日本熟妇午夜| 国产亚洲精品久久久com| 国产极品天堂在线| 日本三级黄在线观看| 高清av免费在线| 色5月婷婷丁香| videossex国产| 久久精品人妻少妇| 少妇人妻精品综合一区二区| 久久热精品热| 韩国av在线不卡| 热99在线观看视频| 日本三级黄在线观看| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 日韩中字成人| 夜夜爽夜夜爽视频| 综合色丁香网| 日本黄色视频三级网站网址| 人妻系列 视频| 亚洲综合色惰| 18+在线观看网站|