許彥偉 王宇宏 李文生 柳思成 程全士 沈超 李祥 樊金桃
(1.航天精工股份有限公司,天津 300300) (2.天津市緊固連接技術(shù)企業(yè)重點(diǎn)實(shí)驗(yàn)室,天津 300300)(3.貴州航天精工制造有限公司,遵義 563006)
螺栓連接作為一種重要的緊固連接方式,由于其構(gòu)造簡(jiǎn)單、拆裝方便的特點(diǎn),在航空、航天、機(jī)械等領(lǐng)域中得到了廣泛的應(yīng)用[1, 2].在傳統(tǒng)的結(jié)構(gòu)設(shè)計(jì)中,螺栓通常是根據(jù)以往的經(jīng)驗(yàn)確定打孔位置后,再根據(jù)載荷工況,選用合適規(guī)格的螺栓標(biāo)準(zhǔn)件,以確保螺栓在結(jié)構(gòu)工作過(guò)程中能夠在安全載荷范圍內(nèi).然而,螺栓的分布位置往往會(huì)對(duì)螺栓載荷產(chǎn)生重要影響.合理的螺栓分布位置能夠有效地降低螺栓載荷,從而提高螺栓連接安全性、降低成本[3].因此,螺栓連接位置優(yōu)化對(duì)于結(jié)構(gòu)設(shè)計(jì)和分析具有重要意義.
目前,不少學(xué)者開(kāi)展的螺栓連接結(jié)構(gòu)分析大多是針對(duì)結(jié)構(gòu)的可靠性分析,即主要面向如何保證結(jié)構(gòu)的承載能力、安全性以及可靠性等[4-8].例如,王佩艷[9]、Khashaba等[10]通過(guò)試驗(yàn)和統(tǒng)計(jì)學(xué)方法來(lái)分析結(jié)構(gòu)可靠性.而對(duì)于螺栓本身,主要是研究螺栓預(yù)緊和結(jié)構(gòu)的力學(xué)特征,如文沛等[11]研究了不同外界因素對(duì)螺栓預(yù)緊力的影響,周紅磊[12]研究了預(yù)緊螺栓連接的蠕變損傷與疲勞壽命的分析方法.而對(duì)于如何確定螺栓連接設(shè)計(jì)中的螺栓位置分布,大多依賴(lài)經(jīng)驗(yàn)進(jìn)行設(shè)計(jì).基于經(jīng)驗(yàn)確定螺栓位置后,位置優(yōu)化方法也主要是采用傳統(tǒng)的優(yōu)化方法,即針對(duì)具體結(jié)構(gòu),首先確定優(yōu)化變量與優(yōu)化目標(biāo),再編寫(xiě)相應(yīng)的程序進(jìn)行優(yōu)化.但是,這種優(yōu)化程序一般僅適用于同類(lèi)型結(jié)構(gòu),結(jié)構(gòu)變化時(shí),往往需要對(duì)程序進(jìn)行一系列調(diào)整,以適用其他結(jié)構(gòu)的優(yōu)化.而且,對(duì)于螺栓位置優(yōu)化問(wèn)題,優(yōu)化變量隨螺栓數(shù)量增加而增加,使得變量的設(shè)計(jì)空間非常復(fù)雜,難以計(jì)算優(yōu)化變量的梯度信息,基于梯度的方法難以適用于螺栓打孔位置的優(yōu)化.由此可見(jiàn),目前的螺栓位置優(yōu)化方法仍然具有很大的局限性,難以滿足工程需求.為此,本文提出了一種基于自適應(yīng)代理模型的優(yōu)化設(shè)計(jì)方法.該方法融合了參數(shù)化建模與仿真、代理模型和參數(shù)空間探索策略,可以實(shí)現(xiàn)對(duì)螺栓位置優(yōu)化問(wèn)題的高效求解.
對(duì)于一個(gè)不規(guī)則三維結(jié)構(gòu),有N個(gè)不重疊的允許打孔區(qū)域,表示為D={D1,D2,…,DN}.對(duì)于第i個(gè)區(qū)域,其外輪廓表示為Si,在區(qū)域內(nèi)布置直徑為d的螺栓bi,螺栓中心點(diǎn)位置Ci與外輪廓的距離Li不超過(guò)m1倍的螺栓直徑.各個(gè)區(qū)域螺栓之間的距離不超過(guò)m2倍的螺栓直徑.該優(yōu)化問(wèn)題旨在求得一個(gè)最優(yōu)的螺栓位置,使得各螺栓拉伸載荷F={F1,F2,…,FN}之間的差異最小.
這一優(yōu)化問(wèn)題的數(shù)學(xué)表述為
s.t.Li (1) 為了求解式中的優(yōu)化設(shè)計(jì)問(wèn)題,本文提出了一種基于自適應(yīng)代理模型的求解方法.該方法融合了參數(shù)化建模與仿真、代理模型和參數(shù)空間探索策略,可以實(shí)現(xiàn)對(duì)螺栓位置優(yōu)化問(wèn)題的高效求解.其基本流程如圖 1所示. 圖1 整體流程圖Fig.1 The flowchart of the proposed method (1)生成螺栓設(shè)計(jì)區(qū)域并提取邊界 首先在建模軟件中設(shè)定若干待布置螺栓的區(qū)域,并對(duì)這些區(qū)域劃分三角形網(wǎng)格,利用網(wǎng)格中邊界結(jié)點(diǎn)與內(nèi)部結(jié)點(diǎn)的差異,提取邊界結(jié)點(diǎn),將其連接為多段線,形成若干區(qū)域的輪廓S={S1,S2,…,SN}. 圖2 提取設(shè)計(jì)區(qū)域邊界(a) 選擇設(shè)計(jì)區(qū)域,(b) 劃分三角形網(wǎng)格,(c)篩選邊界點(diǎn),(d)連接點(diǎn)形成輪廓Fig.2 Extract the boundary of the design region (a) select the design region, (b) mesh the design region with triangular grids, (c) filter out the nodes on the boundary, (d) one by one join the nodes to form the outline of the design region (2)生成滿足邊距要求的螺栓布孔區(qū)域 在得到區(qū)域邊界的多段線表示后,可以依次對(duì)多段線中與一個(gè)頂點(diǎn)相連的兩條線段進(jìn)行平移操作,得到這兩條線段新的交點(diǎn).原理如下: 圖3 按邊距內(nèi)縮邊界示意圖Fig.3 Indent the boundary according to the margin constraint 如圖3所示,當(dāng)兩條線段的交點(diǎn)為P時(shí),將兩條直線分別沿法線方向向內(nèi)縮進(jìn)距離L,得到新的交點(diǎn)Q.可以看作將P點(diǎn)沿矢量V1移動(dòng),再沿矢量V2移動(dòng),得到新的交點(diǎn)即為Q.可以表示為 Q=P+V1+V2 (2) 在這里,矢量V1和V2是等長(zhǎng)的,長(zhǎng)度 |V1|=|V2|=L/sinθ (3) 其中,θ為兩條線段的夾角. (4) 因此,交點(diǎn)Q可以重新表示為 (5) 取此處的L=m1d,對(duì)于輪廓Si上兩兩相連的線段分別執(zhí)行以上操作,即可求出滿足邊距要求的螺栓布孔區(qū)域. (3)參數(shù)化螺栓可行布置區(qū)域 將螺栓在若干打孔區(qū)域的位置使用一系列的優(yōu)化參數(shù)表示.首先,計(jì)算區(qū)域所有邊界點(diǎn)的平均值,設(shè)為區(qū)域中心點(diǎn).將打孔區(qū)域坐標(biāo)從笛卡兒坐標(biāo)系轉(zhuǎn)換到極坐標(biāo)系,打孔區(qū)域內(nèi)任一設(shè)計(jì)點(diǎn)可表示為與區(qū)域中心點(diǎn)的距離r和弧度θ.對(duì)于n個(gè)打孔區(qū)域,設(shè)計(jì)變量的數(shù)目為2n.對(duì)于不規(guī)則結(jié)構(gòu),可行布置區(qū)域的輪廓并不是一個(gè)標(biāo)準(zhǔn)的圓形,因此首先以區(qū)域中心點(diǎn)為圓心,以最大距離為半徑,確定區(qū)域的一個(gè)外接圓,在外接圓內(nèi)使用拉丁超立方采樣(LHS)方法采樣,并排除掉區(qū)域外的采樣點(diǎn). 為了保證代理模型的構(gòu)建,在可打孔區(qū)域應(yīng)保證采集的樣本在區(qū)域內(nèi)均布.如果直接對(duì)點(diǎn)與圓心距離r和弧度θ按照均勻分布采樣,得到的采樣點(diǎn)將更多地分布于圓心附近.因此,將其轉(zhuǎn)換為一個(gè)數(shù)學(xué)問(wèn)題:在半徑為R的圓內(nèi)隨機(jī)拋一個(gè)點(diǎn),這個(gè)點(diǎn)落在圓內(nèi)任意位置是等可能的,那么,此點(diǎn)到圓心的距離r的分布函數(shù)為 (6) 通過(guò)在點(diǎn)與圓心距離r的分布函數(shù)F(r)和弧度θ的均勻分布函數(shù)上進(jìn)行拉丁超立方采樣,即可在半徑R的圓內(nèi)實(shí)現(xiàn)較為均勻采樣. 接下來(lái)需要排除圓內(nèi)不屬于可打孔區(qū)域的樣本.具體流程為對(duì)于圓內(nèi)任意一個(gè)采樣點(diǎn),計(jì)算其相對(duì)于區(qū)域中心點(diǎn)的距離r和弧度θ,根據(jù)θ可以確定打孔區(qū)域輪廓對(duì)應(yīng)的距離rb,當(dāng)r 在采樣得到足夠數(shù)量的樣本后,將樣本的設(shè)計(jì)參數(shù)重新轉(zhuǎn)換為每個(gè)打孔區(qū)域內(nèi)的笛卡兒坐標(biāo),自動(dòng)調(diào)用ANSYS進(jìn)行自動(dòng)打孔和有限元仿真,計(jì)算每個(gè)樣本對(duì)應(yīng)螺栓打孔位置的載荷,作為訓(xùn)練代理模型的數(shù)據(jù)集.由于本研究的優(yōu)化中僅考慮螺栓受到的軸力,不考慮螺栓預(yù)緊力.因此,在ANSYS中分析時(shí),采用了等效的螺栓建模方式,即在螺栓孔處施加了約束條件,將分析獲得的支反力作為螺栓受力. 圖4 基于外接圓識(shí)別可打孔區(qū)域 (4)螺栓批量建模與仿真構(gòu)建數(shù)據(jù)集 本文中,我們采用了一種自適應(yīng)的基于代理模型的優(yōu)化方法.首先采樣初始數(shù)目的樣本,構(gòu)建代理模型,并基于代理模型進(jìn)行優(yōu)化.這時(shí)由于樣本數(shù)量較少,代理模型所表征的設(shè)計(jì)空間與真實(shí)設(shè)計(jì)空間差異較大,優(yōu)化得到的最優(yōu)位置與真實(shí)情況的差異較大.所以,對(duì)于優(yōu)化得到的最優(yōu)位置重新調(diào)用有限元仿真計(jì)算其真實(shí)載荷,與代理模型預(yù)測(cè)的載荷進(jìn)行比較,如果差異較大,則將該位置的設(shè)計(jì)參數(shù)和計(jì)算載荷加入數(shù)據(jù)集中,并在設(shè)計(jì)空間中隨機(jī)采樣若干樣本,添加到數(shù)據(jù)集中,重新訓(xùn)練代理模型并進(jìn)行優(yōu)化.重復(fù)這一過(guò)程,直到優(yōu)化得到的最優(yōu)位置預(yù)測(cè)的載荷與真實(shí)載荷的差異滿足要求,或者達(dá)到最大采樣數(shù)目,停止優(yōu)化.最后,對(duì)比優(yōu)化結(jié)果與樣本中的最好結(jié)果,選擇二者中最好的輸出. (5)構(gòu)建代理模型 使用上一步構(gòu)建的數(shù)據(jù)集,構(gòu)建代理模型,用于擬合設(shè)計(jì)參數(shù)與螺栓載荷之間的關(guān)系.由于神經(jīng)網(wǎng)絡(luò)的擬合能力,本文選用神經(jīng)網(wǎng)絡(luò)構(gòu)建代理模型. 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)也簡(jiǎn)稱(chēng)為神經(jīng)網(wǎng)絡(luò)(NNs),如圖5所示,它是一種模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型.這種網(wǎng)絡(luò)依靠系統(tǒng)的復(fù)雜程度,通過(guò)調(diào)整內(nèi)部大量節(jié)點(diǎn)之間相互連接的關(guān)系,從而達(dá)到處理信息的目的. 圖5 神經(jīng)網(wǎng)絡(luò)示意圖Fig.5 Schematic diagram of the neural network model 該神經(jīng)網(wǎng)絡(luò)擬合的函數(shù)可以表示為 F=M(r,θ) (7) 其中,F(xiàn)={F1,F2,…,FN}表示螺栓載荷集合,r={r1,r2,…,rN}表示每個(gè)螺栓位置相對(duì)于對(duì)應(yīng)圓心距離的集合,θ={θ1,θ2,…,θN}表示每個(gè)螺栓位置相對(duì)于對(duì)應(yīng)圓心弧度的集合. 在本文中,使用MATLAB軟件的神經(jīng)網(wǎng)絡(luò)工具箱訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型.網(wǎng)絡(luò)結(jié)構(gòu)為單隱層神經(jīng)網(wǎng)絡(luò),隱層神經(jīng)元數(shù)目取為15,訓(xùn)練方法選用Levenberg-Marquardt算法.訓(xùn)練得到的神經(jīng)網(wǎng)絡(luò)模型可以根據(jù)輸入的螺栓位置優(yōu)化參數(shù)快速預(yù)測(cè)螺栓載荷,是對(duì)高精度有限元仿真的代理模型,其精度很大程度上取決于樣本數(shù)目. (6)基于代理模型的優(yōu)化 螺栓位置優(yōu)化問(wèn)題存在優(yōu)化變量多,變量的設(shè)計(jì)空間復(fù)雜,且難以計(jì)算優(yōu)化變量的梯度信息的特點(diǎn),因此難以應(yīng)用傳統(tǒng)的基于梯度的優(yōu)化方法,如梯度下降法,進(jìn)行求解.而群體/進(jìn)化算法對(duì)目標(biāo)和約束的數(shù)學(xué)性質(zhì),如凸性,連續(xù)性或顯式定義等要求不高,是解決一些復(fù)雜優(yōu)化問(wèn)題的較好選擇.在本文中,我們選擇蜘蛛猴優(yōu)化算法作為螺栓打孔位置優(yōu)化問(wèn)題的求解算法.蜘蛛猴優(yōu)化(Spider Monkey Optimizaton,SMO)是一個(gè)全局的優(yōu)化算法,由Bansal等[1]于2014年提出.該算法的靈感來(lái)自現(xiàn)實(shí)生活中蜘蛛猴種群的裂變-融合(FFSS)機(jī)制.該算法具有原理簡(jiǎn)單、高效、控制參數(shù)少的優(yōu)點(diǎn),近年來(lái)得到了廣泛的應(yīng)用. SMO算法流程如下: (1)初始化種群數(shù)量:N,本地領(lǐng)導(dǎo)者限制次數(shù):LocalLeaderLimit,全局領(lǐng)導(dǎo)者限制次數(shù):GlobalLeaderLimit,擾動(dòng)率:pr. (2)計(jì)算每個(gè)蜘蛛猴個(gè)體的適應(yīng)度值. (3)通過(guò)貪婪選擇選取全局領(lǐng)導(dǎo)者以及本地領(lǐng)導(dǎo)者. (4)當(dāng)不滿足終止條件時(shí),執(zhí)行以下步驟: ①為找到最優(yōu)解,利用式(2)產(chǎn)生新的位置. ②在舊位置和新位置之間應(yīng)用貪婪選擇,根據(jù)適應(yīng)度值選擇較好的位置. ③ 根據(jù)式(4),計(jì)算所有小組成員的被選擇概率. ④ 利用式(3),為 probi選中的所有小組成員更新位置. ⑤ 對(duì)所有小組進(jìn)行貪婪選擇,更新本地領(lǐng)導(dǎo)者和全局領(lǐng)導(dǎo)者的位置. ⑥ 如果任何本地領(lǐng)導(dǎo)者沒(méi)有在指定次數(shù) (Local Leader Limit)后更新它的位置,則通過(guò)本地領(lǐng)導(dǎo)者決策階段重新引導(dǎo)該組所有成員進(jìn)行覓食. ⑦ 如果全局領(lǐng)導(dǎo)者沒(méi)有在指定次數(shù) (Global Leader Limit)后更新其位置,若此時(shí)未達(dá)到最大組數(shù)MG,則全局領(lǐng)導(dǎo)者將種群分成更小的組;否則,全局領(lǐng)導(dǎo)者將所有的組融合成一個(gè)組. 在本文中,個(gè)體的適應(yīng)度值使用代理模型計(jì)算.但是,如果代理模型要達(dá)到一個(gè)較好的預(yù)測(cè)精度,可能需要較多的訓(xùn)練樣本.而調(diào)用高保真有限元仿真是比較耗時(shí)的.因此,這里采用一種自適應(yīng)的代理模型構(gòu)建與使用策略. 在當(dāng)前步驟中通過(guò)蜘蛛猴優(yōu)化算法得到優(yōu)化結(jié)果后,將優(yōu)化后得到的最優(yōu)變量輸入?yún)?shù)化建模仿真程序中,利用高保真有限元仿真對(duì)該結(jié)果進(jìn)行校核,并將其與代理模型預(yù)測(cè)結(jié)果對(duì)比,如果二者差異較大,說(shuō)明代理模型的精度較差,得到的優(yōu)化結(jié)果并不可靠,需要進(jìn)一步采用自適應(yīng)采樣的方式增加樣本;如果二者差異較小,說(shuō)明代理模型準(zhǔn)確,優(yōu)化結(jié)果可信,退出優(yōu)化. 每次增加的樣本分為三種類(lèi)型: 第一類(lèi):上一步優(yōu)化結(jié)果重新仿真計(jì)算后的樣本. 第二類(lèi):鄰域開(kāi)發(fā). 尋找現(xiàn)有樣本集合中最優(yōu)樣本附近的參數(shù)組合,可以稱(chēng)之為開(kāi)發(fā).對(duì)現(xiàn)有最優(yōu)樣本施加局部擾動(dòng),得到若干新的樣本,添加到樣本集合中. 第三類(lèi):空間探索. 在可行的參數(shù)空間內(nèi)隨機(jī)采樣生成若干樣本,添加到樣本集合中. 將這三類(lèi)樣本添加到樣本集合中,得到新的樣本集合,重新調(diào)用蜘蛛猴優(yōu)化算法進(jìn)行優(yōu)化. 第一個(gè)算例為一個(gè)六邊形加筋結(jié)構(gòu),如圖6與圖7所示.螺栓設(shè)計(jì)區(qū)域?yàn)榻顥l劃分出的六個(gè)區(qū)域.材料為硬鋁合金,彈性模量為70GPa,泊松比0.3.需要注意的是,這里結(jié)構(gòu)中的筋條并不是對(duì)稱(chēng)分布的,因此六個(gè)區(qū)域并不相同,且每個(gè)區(qū)域靠近結(jié)構(gòu)中心的邊是一條圓弧,這使得這些區(qū)域具有足夠的復(fù)雜度.其中,最大樣本數(shù)目設(shè)定為1000個(gè),初始樣本數(shù)目為最大樣本數(shù)目的10%.每次新增的鄰域開(kāi)發(fā)樣本數(shù)目為3,參數(shù)空間探索樣本的數(shù)目為3. 圖6 六邊形結(jié)構(gòu)等軸測(cè)圖Fig.6 Isometric drawing of the hexagonal structure 圖7 六邊形結(jié)構(gòu)俯視圖Fig.7 Top drawing of the hexagonal structure 算例相關(guān)參數(shù)如表1所示. 對(duì)該結(jié)構(gòu)劃分的網(wǎng)格和節(jié)點(diǎn)數(shù)據(jù)進(jìn)行處理,得到其中一個(gè)區(qū)域的結(jié)點(diǎn)信息如圖8所示,其中,綠色表示邊界結(jié)點(diǎn),紅色表示內(nèi)部結(jié)點(diǎn). 對(duì)該區(qū)域的邊緣輪廓線向內(nèi)收縮2倍的螺栓直徑,得到收縮后的可布孔區(qū)域如圖9所示. 表1 六邊形加筋結(jié)構(gòu)算例參數(shù)Table 1 Parameters of the hexagonal stiffened structure 圖8 六邊形結(jié)構(gòu)內(nèi)某一區(qū)域的離散結(jié)點(diǎn)信息Fig.8 The discrete nodes in a region of the hexagonal structure 圖9 由設(shè)計(jì)區(qū)域邊界向內(nèi)收縮得到可布孔區(qū)域邊界Fig.9 Obtain the boundary of the perforable region by shrinking the boundary of the design region 計(jì)算可布孔區(qū)域的最大半徑,使用距外接圓圓心距離和弧度作為參數(shù),使用拉丁超立方采樣法結(jié)合接受拒絕法采樣,可以生成若干可行樣本,圖10展示了一個(gè)區(qū)域采集的10000個(gè)樣本.實(shí)際運(yùn)行過(guò)程中,首次采集為100個(gè)樣本. 對(duì)6個(gè)區(qū)域進(jìn)行初始采樣,得到的六個(gè)區(qū)域采樣結(jié)果如圖11所示. 將采樣參數(shù)轉(zhuǎn)換為螺栓的布孔坐標(biāo),調(diào)用ANSYS APDL參數(shù)化建模仿真程序,計(jì)算每個(gè)樣本對(duì)應(yīng)的螺栓載荷,形成數(shù)據(jù)集.初始數(shù)據(jù)集的樣本數(shù)目為100個(gè). 基于神經(jīng)網(wǎng)絡(luò)方法訓(xùn)練代理模型,其中,神經(jīng)網(wǎng)絡(luò)的輸入為6個(gè)區(qū)域的半徑和弧長(zhǎng),共12個(gè)參數(shù),輸出為6個(gè)螺栓的載荷. 利用蜘蛛猴優(yōu)化算法開(kāi)展基于代理模型的自適應(yīng)優(yōu)化.優(yōu)化前后標(biāo)準(zhǔn)差結(jié)果如表2所示. 圖10 基于可布孔區(qū)域參數(shù)生成的樣本Fig.10 Generated samples based on the parameters in the perforable region 圖11 六邊形加筋結(jié)構(gòu)六個(gè)設(shè)計(jì)區(qū)域的初始樣本點(diǎn)圖像Fig.11 Initial sample points in the six design regions of the hexagonal stiffened structure 表2 六邊形加筋結(jié)構(gòu)優(yōu)化前后各螺栓載荷標(biāo)準(zhǔn)差對(duì)比Table 2 Comparison of standard deviations of bolt loads before and after optimization of the hexagonal stiffened structure 從表2可以看出,優(yōu)化后,螺栓載荷的標(biāo)準(zhǔn)差從0.5579降到了0.2406,下降了43.12%,說(shuō)明優(yōu)化具有較好的效果.圖12展示了優(yōu)化前后螺栓位置的對(duì)比.可以看到最終的優(yōu)化位置附近采集的樣本比較密集,說(shuō)明鄰域開(kāi)發(fā)策略起到了一定的作用. 圖12 六邊形加筋結(jié)構(gòu)優(yōu)化前后的螺栓位置對(duì)比Fig.12 Comparison of bolt positions before and after optimization of the hexagonal stiffened structure 圖13展示了六邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中目標(biāo)函數(shù)值與樣本數(shù)目的關(guān)系.可以看到,隨著優(yōu)化過(guò)程的不斷進(jìn)行,樣本數(shù)目不斷增加,目標(biāo)函數(shù)值在不斷下降.這說(shuō)明從優(yōu)化螺栓布局這一目標(biāo)來(lái)看,優(yōu)化取得了較好的效果. 圖14展示了六邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中優(yōu)化結(jié)果和校核結(jié)果之間的差異與樣本數(shù)目的關(guān)系.縱坐標(biāo)為使用ANSYS軟件校核后載荷計(jì)算的目標(biāo)函數(shù)值與代理模型預(yù)測(cè)載荷計(jì)算的目標(biāo)函數(shù)值之差的絕對(duì)值.可以發(fā)現(xiàn),代理模型的精度隨著樣本數(shù)目的增加并沒(méi)有顯著提高,這說(shuō)明當(dāng)設(shè)計(jì)區(qū)域較多時(shí),現(xiàn)有樣本數(shù)目所構(gòu)建的代理模型與高保真模型的偏差較大,需要更多的樣本數(shù)才能取得較好的代理模型預(yù)測(cè)精度.但是,從實(shí)際工程應(yīng)用出發(fā),使用過(guò)多的樣本數(shù)將使得優(yōu)化時(shí)間大幅增加,因此,在使用過(guò)程中需要對(duì)此進(jìn)行權(quán)衡. 圖13 六邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中目標(biāo)函數(shù)值與樣本數(shù)目的關(guān)系Fig.13 The relationship between objective function value and number of samples in the process of optimization of the hexagonal stiffened structure 圖14 六邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中優(yōu)化結(jié)果和校核結(jié)果之間的差異與樣本數(shù)目的關(guān)系Fig.14 Difference between surrogate-based optimization result and validation result and number of samples in the process of optimization of the hexagonal stiffened structure 該結(jié)構(gòu)整體為一個(gè)不規(guī)則五邊形加筋結(jié)構(gòu),如圖15所示,布孔設(shè)計(jì)區(qū)域?yàn)榻顥l劃分出的四個(gè)不規(guī)則區(qū)域.結(jié)構(gòu)承受打孔面法向1N的集中載荷.材料為硬鋁合金,彈性模量為70GPa,泊松比0.3.需要注意的是,與第一個(gè)算例一樣,此處四個(gè)區(qū)域并不相同,符合異形結(jié)構(gòu)的定義.其中,最大樣本數(shù)目設(shè)定為1000個(gè),初始樣本數(shù)目為最大樣本數(shù)目的10%,為100個(gè).每次新增的鄰域開(kāi)發(fā)樣本數(shù)目為20,參數(shù)空間探索樣本的數(shù)目為20.算例相關(guān)參數(shù)如表3所示.1000次后優(yōu)化終止,結(jié)果如表4所示.可以看到,優(yōu)化結(jié)束后,使用ANSYS校核后的四個(gè)螺栓的載荷基本趨于一致,說(shuō)明優(yōu)化取得了較好的效果.圖16展示了五邊形加筋結(jié)構(gòu)優(yōu)化前后的螺栓位置對(duì)比. 圖15 五邊形加筋結(jié)構(gòu)Fig.15 Pentagonal stiffened structure 圖17展示了五邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中目標(biāo)函數(shù)值與樣本數(shù)目的關(guān)系.可以看出,隨著樣本數(shù)目增加,目標(biāo)函數(shù)值在持續(xù)下降.與此同時(shí),圖18展示了五邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中優(yōu)化結(jié)果和校核結(jié)果之間的差異與樣本數(shù)目的關(guān)系.可以看到整體呈下降趨勢(shì),說(shuō)明代理模型的精度在逐步提高.這說(shuō)明當(dāng)設(shè)計(jì)區(qū)域較少時(shí),本文所提出的自適應(yīng)采樣策略可以逐步提高代理模型精度,加速優(yōu)化過(guò)程. 表3 五邊形加筋結(jié)構(gòu)算例參數(shù)Table 3 Parameters of the pentagonal stiffened structure 表4 五邊形加筋結(jié)構(gòu)優(yōu)化前后各螺栓載荷標(biāo)準(zhǔn)差對(duì)比Table 4 Comparison of standard deviations of bolt loads before and after optimization of the pentagonal stiffened structure 通過(guò)本文的研究,得出以下結(jié)論: (1) 將參數(shù)化建模與仿真、代理模型和參數(shù)空間探索策略融合,建立了一種基于自適應(yīng)代理模型的優(yōu)化設(shè)計(jì)方法,該方法可以實(shí)現(xiàn)對(duì)螺栓位置優(yōu)化問(wèn)題的高效求解. (2) 采用本文提出的優(yōu)化設(shè)計(jì)方法對(duì)螺栓位置進(jìn)行優(yōu)化,優(yōu)化結(jié)果表明,含6個(gè)打孔區(qū)域六邊形結(jié)構(gòu)的螺栓載荷標(biāo)準(zhǔn)差從0.5579降到了0.2406,下降了56.87%,含4個(gè)打孔區(qū)域五邊形結(jié)構(gòu)的螺栓載荷標(biāo)準(zhǔn)差從0.0991降到了0.0050,下降了94.95%.可見(jiàn),所提出的方法能夠有效地對(duì)多種結(jié)構(gòu)進(jìn)行螺栓位置優(yōu)化. 圖16 五邊形加筋結(jié)構(gòu)優(yōu)化前后的螺栓位置對(duì)比Fig.16 Comparison of bolt positions before and after optimization of the pentagonal stiffened structure 圖17 五邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中目標(biāo)函數(shù)值與樣本數(shù)目的關(guān)系Fig.17 The relationship between objec function value and number of samples in the process of optimization of the pentagonal stiffened structure 圖18 五邊形加筋結(jié)構(gòu)優(yōu)化過(guò)程中優(yōu)化結(jié)果和校核結(jié)果之間的差異與樣本數(shù)目的關(guān)系Fig.18 Difference between surrogate-based optimization result and validation result and number of samples in the process of optimization of the pentagonal stiffened structure1.2 優(yōu)化設(shè)計(jì)方法流程
2 典型結(jié)構(gòu)的優(yōu)化算例
2.1 含6個(gè)區(qū)域的六邊形加筋結(jié)構(gòu)
2.2 含4個(gè)區(qū)域的五邊形加筋結(jié)構(gòu)
3 結(jié)論