• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles study of hafnium intercalation between graphene and Ir(111)substrate

    2022-10-26 09:47:10HaoPeng彭浩XinJin金鑫YangSong宋洋andShixuanDu杜世萱
    Chinese Physics B 2022年10期
    關(guān)鍵詞:金鑫

    Hao Peng(彭浩) Xin Jin(金鑫) Yang Song(宋洋) and Shixuan Du(杜世萱)

    1Institute of Physics,and University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    2CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    3Beijing National Center for Condensed Matter Physics,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: first principles calculation,intercalation,graphene,hafnium

    1. Introduction

    Graphene, an atomically thin two-dimensional (2D) material with excellent mechanical properties and unique electronic and optical properties, shows broad applications in a variety of functional devices.[1–3]One of the methods to get high-quality and single-crystalline graphene is the epitaxial growth on transition metal substrates.[4–9]However, the electronic structures of graphene obtained in such a way are usually distorted, hindering the applications of graphene.[10–12]One effective approach for this problem is intercalating heteroatoms into graphene/metal interfaces,which not only weakens the interaction between graphene and metal substrates,[13–19]but also provides the feasibility for the integration of graphene and other 2D materials without transfer process, whereby functional devices with clean interface can be achieved.[20,21]Recently, several studies reported the oxides intercalation between graphene and metal substrates,such as SiO2,[22,23]GeOx,[24]and MgO.[25]The oxides intercalation was achieved through the stepwise intercalation of heteroatoms and oxygen. After that,in situgraphene devices could be fabricated, and the transport properties of epitaxial graphene could be measured and explored.

    Due to the higher dielectric constant, HfO2can exhibit better performance in electronic devices compared to SiO2,GeOx, and MgO,[26]making the HfO2intercalation between graphene and metal substrates highly desired. To realize the HfO2intercalation, it is critical to achieve Hf intercalation in graphene/metal systems, since the successful intercalation of Hf as well as the maintenance of sharp interfaces and intact epitaxial graphene, which can be ensured by the intercalation method, are essential for the subsequent oxidation operation. To date, the Hf intercalation has been experimentally achieved in less than onemonolayer epitaxial graphene on Ir(111) substrates.[27]Although the incomplete graphene can facilitate the Hf intercalation through graphene edges or pre-existing defects, it is not suitable for the oxidation operation since it cannot resist the corrosion of oxygen.[28,29]Thus,investigation of Hf intercalation in epitaxial defect-free graphene is still desired.Previously,taking Si intercalation between graphene/Ru as a model,several mechanisms have been proposed to account for heteroatoms’ intercalation in epitaxial defect-free graphene.[30,31]However, considering that the atomic radius of Hf atom is significantly larger than that of Si atom, it is unknown whether the scenario of Si atoms applies to Hf atoms.

    In this paper,we investigate the Hf intercalation between graphene and Ir(111) substrate using first principle calculations. Based on previously reported mechanism which involves cooperative interaction of heteroatoms and substrates,we sequentially investigate the following processes: the adsorption of Hf atoms on graphene/Ir(111), the formation of carbon vacancies in Hf/graphene/Ir(111),the penetration of Hf adatoms, and the diffusion of intercalated Hf atoms at the interface.We find that during the process,the vacancy formation energies and diffusion barriers are small while the penetration barriers are abnormally large,which is different from the case where all energies or barriers are small in Si intercalation between graphene/Ru(0001).[30]The high penetration barriers indicate that the general condition usually employed in Si or SiO2intercalation experiments are not applicable to the Hf or HfO2intercalation. Therefore, we propose a strategy with a low deposition dose of Hf atoms and a high annealing temperature for Hf or HfO2intercalation,which would eliminate the effect of the high penetration barriers of Hf atoms.

    2. Methods

    First principles calculations based on density functional theory (DFT) were performed using Viennaab initiosimulation package (VASP).[32,33]The projector augmented wave method[34]was used to describe the electron–ion interaction.For the graphene/Ir(111) and Hf/graphene/Ir(111) system, as suggested in the literature[35–37]and in our test calculations(see Figs. 1 and S1), local density approximation functional was employed, which allows us to obtain similar geometric and electronic structures with two layers of substrate as those using PBE-D3 functional (in which Grimme’s empirical correction is used to describe the van der Waals interaction[38])with three layers of substrate. The energy cutoff of the planewave basis sets was 400 eV and aΓpointk-sampling was employed. The periodic slab model of the graphene/Ir(111)system included two layers of 9×9 Ir(111), one layer of 10×10 graphene, and a vacuum layer of at least 20 ?A. All atoms except the bottom substrate layer were fully relaxed until the net force on each relaxed atom was less than 0.01 eV/?A.Various sites were calculated for the adsorption of Hf atoms on graphene/Ir(111) and the creation of carbon vacancies in Hf/graphene/Ir(111). Both fcc and hcp regions were taken into account for the Hf penetration calculations. The pathways for the penetration and interfacial diffusion of Hf atoms were simulated using the climbing-image nudged elastic band(CI-NEB)method.[39,40]

    3. Results and discussion

    According to the mechanism for heteroatoms’ intercalation in epitaxial defect-free graphene proposed by Liet al.,[30]the whole intercalation process consists of the following four key stages: (i) adsorption of heteroatoms on graphene/metal and creation of carbon vacancies,(ii)penetration of heteroatoms into graphene/metal interface via carbon vacancies, (iii) self-repairing of graphene lattice, (iv) migration of heteroatoms at the interface and growth of an intercalated layer. Based on this mechanism,we first investigate the possible adsorption sites of Hf atoms on graphene/Ir(111).For graphene/Ir(111),the optimized atomic configuration is shown in Figs.1(a)and 1(b). The graphene is slightly corrugated due to the weak interaction between graphene and Ir(111). The interface spacing is 3.19 ?A and the graphene ripple size is 0.57 ?A, in agreement with the calculated results using PBED3(see Figs.S1(a)and S1(b)). Four high-symmetric regions,namely fcc,hcp,atop and bridge,are marked in Fig.1(a). We calculate the electronic structures of graphene/Ir(111)to check the strength of orbital hybridization between Hf atoms and carbon atoms of the four high-symmetric regions, whereby the possible adsorption sites of Hf atoms can be determined. Figure 1(c) shows the projected density of states (PDOS) on pzorbitals of Caand Cbatoms,which denote the two types of carbon atoms contained in graphene lattice. We find that the Caatoms in hcp region have the highest PDOS intensity near the Fermi level,implying that they are most active to interact with the Hf adatoms. The electronic structures of graphene/Ir(111)calculated using PBE-D3 have similar results(see Fig.S1(c)).

    Fig. 1. Configuration and projected density of states of graphene on Ir(111). (a) and (b) Top and side views of the configuration of graphene/Ir(111),respectively.The carbon atoms in the fcc,hcp,bridge and atop regions are marked in grey, black, orange and blue, respectively. Two types of carbon atoms are contained in a unit cell of graphene lattice, as labelled by Ca and Cb in the upper-right inset of(a). The lower-right inset of (a) shows the typical adsorption sites on graphene/Ir(111)with red dots. H,B,and T denote hollow,bridge,and top adsorption sites, respectively. The interface spacing and graphene corrugation in graphene/Ir(111)are illustrated in(b). (c)The projected density of states on pz orbitals of Ca and Cb atoms in different regions of graphene/Ir(111).

    The adsorption sites of Hf atoms on graphene/Ir(111)are further checked by calculating the adsorption energies between Hf atoms and graphene/Ir(111). The definition of adsorption sites is illustrated in the lower-right inset of Fig.1(a).Among them,T1andT2denote the top of Caor Cbatoms,B denotes the bridge of two nearest carbon atoms, and H denotes the hollow of a hexagonal benzene ring. The adsorption energyEadsis defined as follows:

    whereEHf/graphene/Iris the total energy of a Hf adatom on graphene/Ir(111),Egraphene/Iris the total energy of graphene/Ir(111), andEHfis the energy of a single Hf atom.The adsorption energies at different adsorption sites are summarized in Table 1. We find that for each high-symmetric region,the most stable adsorption site for Hf atoms is the hollow site. Such results can be attributed to the electronic structure of Hf atoms,which has a valence shell configuration of 5d26s2with four unpaired electrons. The maximum number of Hf–C bonds can be formed when Hf atoms are absorbed at hollow sites. Hollow sites in the hcp region are most preferred,which is consistent with the PDOS calculations in Fig. 1(c). However, since the adsorption energy in the fcc region is almost the same as that in the hcp region,the adsorption of Hf atoms in both regions will be taken into account in the subsequent calculations.

    Table 1.Adsorption energies of a hafnium atom on different adsorption sites of graphene/Ir(111),in units of eV.For some adsorption sites,the hafnium atom cannot be stably adsorbed and migrate to other sites after structure optimization,which is represented by initial adsorption site →final adsorption site.

    Then we investigate the formation of a carbon vacancy in Hf/graphene/Ir(111),which is the prerequisite for the penetration of Hf atoms,as schematically shown in Fig.2(a). We calculate the vacancy formation energies of the carbon vacancies,which can provide the possibility of their formation. The formula used to calculate the vacancy formation energy is given as follows:

    whereEHf/graphenevac/Iris the total energy of a Hf adatom on top of defected graphene on Ir(111),ECarbonis the chemical potential of a single carbon atom in free-standing graphene,EHf/graphene/Iris the total energy of Hf/graphene/Ir(111). Considering that Hf atoms were absorbed at the hollow sites in graphene, we locate the vacancy at various carbon sites of the hexagonal ring and calculate the corresponding vacancy formation energies (see Fig. S2 and Table S1). The vacancy formation energies in the fcc and hcp regions are 0.50 eV and 0.30 eV, respectively. These vacancy sites were chosen for the following penetration barrier calculations. It has been reported that for graphene/metal systems, the adsorption of heteroatoms will facilitate the formation of carbon vacancies in graphene.[30]In the case of Si/graphene/Ru, the vacancy formation energy in graphene is as low as 0.23 eV.[30]Our calculated values are comparable to those of Si/graphene/Ru,indicating the possibility of creating carbon vacancies in Hf/graphene/Ir(111).

    In the presence of a carbon vacancy in graphene,the penetration of Hf atoms from the surface to the interface can be achievable. We then investigate the penetration process of Hf atoms and the corresponding energy barriers. Figure 2(a)shows the intercalation path of a Hf atom in graphene/Ir(111).From the middle panel, we find that the Hf atom passes through the vacancy with neighboring carbon atoms on its one side being pressed down and those on the other side being lifted up. We speculate that this penetration behavior is induced by the large atomic size of Hf, since the Hf atom enlarges the vacancy hole before passing through.The corresponding energy barriers of Hf atoms penetration in the fcc and hcp regions of graphene/Ir(111) are shown in Figs. 2(d) and 2(e), respectively. The energy barriers are 2.14 eV and 2.38 eV in the fcc and hcp regions, respectively.Both energy barriers are larger than that of Si intercalation at graphene/Ru(0001) interface[30]because of the large size of Hf atoms. For comparison,we also calculate the Hf atoms intercalation in free-standing graphene, as shown in Figs. 2(b)and 2(c). The penetration process of Hf atoms in free-standing graphene is analogous to that in graphene/Ir(111),but the penetration barrier in free-standing graphene is even higher, that is, 5.15 eV,suggesting that this process is unlikely to happen in reality. As reported previously,[30]the penetration barriers of Si atoms in graphene/Ru and free-standing graphene are 0.66 eV and 0.33 eV,respectively,which are smaller than those of Hf atoms. The larger penetration barriers of Hf atoms suggest that the Hf intercalation process will happen at annealing temperatures higher than those of Si intercalation.Moreover, we estimate that even the annealing temperature is increased to 1300 K, the intercalation rate of Hf atoms in graphene/Ir(111)is still 5 to 6 orders of magnitude lower than that of Si atoms in graphene/Ru(0001)with the annealing temperature at around 700 K–900 K(see Fig.S3). As mentioned in previous work,[31]low intercalation rates would induce a longer average penetration time and surface residues. This suggests that in addition to increasing the annealing temperature, the amount of Hf atoms deposited should be reduced,which will help to avoid Hf atoms remaining on the surface due to low intercalation rates. Therefore, due to the highly large penetration barriers, Hf intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures.

    Fig.2. Configurations of Hf intercalation process and the corresponding energy barriers. (a)and(b)Configurations during the Hf intercalation process for graphene/Ir(111)and free-standing graphene,respectively. The process includes creation of a carbon vacancy,penetration of the Hf atom,and self-repairing of graphene. Gr denotes graphene. IS,TS,and FS denote initial state,transition state,and final state of the penetration process, respectively. In the penetration process, the Hf atom locates at the site of the missing C atom. (c)–(e) Energy barriers of Hf atoms penetrating through the freestanding graphene,the fcc region of graphene/Ir(111),and the hcp region of graphene/Ir(111),respectively.

    Fig. 3. Hf atoms diffusion at the interface of graphene/Ir(111). (a)Schematic diffusion paths and (b) diffusion barriers of Hf atoms from the fcc region to the atop and hcp regions.

    Finally, we investigate the Hf atoms diffusion at the interface of graphene/Ir(111). According to the proposed mechanism, when the penetration of Hf atoms is accomplished, the self-repairing of defected graphene will occur simultaneously,[30]as schematically shown in Fig.2(a). Then the Hf atoms will diffuse under the graphene to form an interface layer. We calculate the interfacial diffusion barriers to provide the possibility of the formation of the interface layer.We first evaluate the preferable regions for Hf atoms to stay under graphene by calculating the total energies of different graphene/Hf/Ir(111)structures. Table S2 shows that the structure is most stable when Hf atoms are located in the atop region, followed by the hcp region, then the bridge region, and finally the fcc region. By assuming that Hf atoms penetrate in the fcc region, we then simulate two diffusion paths: one is from fcc to atop, corresponding to the diffusion of Hf atoms from the penetration region to the most stable region underneath graphene;the other is from fcc to hcp,which is the subsequent process after the atop region is filled with Hf atoms.The two diffusion paths and their corresponding diffusion barriers are shown in Figs. 3(a) and 3(b), respectively. We find that the interfacial diffusion barriers of Hf atoms are in the range of 0.31–0.59 eV, which are comparable to that of Si atoms(0.5 eV)in graphene/Si/Ru(0001).[30]The small interfacial diffusion barriers suggest that Hf atoms can easily diffuse at the interface of graphene/Ir(111) and form an intercalated layer.

    Previous experimental results have shown that a 2×2 superlattice of Hf atoms can be formed at the interface of graphene/Ir(111).[27]Furthermore,the Raman spectra have indicated that the graphene is decoupled from the Ir(111) substrate after Hf intercalation.[27]Therefore,we believe that the intercalated Hf layer weakens the interaction between epitaxial graphene and Ir substrate.

    4. Conclusions and perspectives

    In summary,we have studied the Hf intercalation between graphene and Ir(111). Due to the large atomic size of Hf,the energy barriers of Hf penetration are large, which will lead to restricted conditions for Hf intercalation experiments.When Hf intercalation is performed based on intact epitaxial graphene,we suggest that it should be carried out with low deposition doses of Hf atoms and high annealing temperatures,which will prevent Hf atoms from aggregating into larger clusters and provide sufficient energy supply for Hf atoms to overcome the large penetration barriers. Otherwise,Hf atoms may be pinned to the surface or get stuck in the created vacancies, which cannot guarantee the clean interface of the fabricated heterostructure and the high quality of graphene. These theoretical results can provide important guidance for the future integration of epitaxial graphene and the high-κHfO2dielectrics.

    Acknowledgements

    A portion of the research was performed in CAS Key Laboratory of Vacuum Physics. Computational resources were provided by the National Supercomputing Center in Tianjin.

    Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    金鑫
    好朋友的話,吵架也沒關(guān)系
    Electronic structures of vacancies in Co3Sn2S2*
    電廠熱工控制系統(tǒng)中抗干擾技術(shù)運用分析
    金鑫:保證乘客安全、貨物安全,是中國鐵路的自信
    中華兒女(2020年22期)2020-02-09 03:02:34
    闖入你的特立獨行
    “視光師金小鑫”其人
    ——專訪淮南壽陽眼鏡總經(jīng)理金鑫
    雙魚鑰匙扣
    High-precision method of detecting motion straightness based on plane mirror interference
    Fuzzycontrol method to minimize the needle deflection duringneedle insertion therapy
    Roundness error evaluation by minimum zone circle via microscope inspection
    搡老熟女国产l中国老女人| 女人被躁到高潮嗷嗷叫费观| 国产av国产精品国产| 日韩一卡2卡3卡4卡2021年| 最黄视频免费看| 久久人妻福利社区极品人妻图片| 精品人妻在线不人妻| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区| 免费av中文字幕在线| 国产男女内射视频| 国产一区二区在线观看av| 香蕉丝袜av| 国产免费视频播放在线视频| av国产精品久久久久影院| 中文字幕最新亚洲高清| xxxhd国产人妻xxx| 亚洲专区国产一区二区| 国产又爽黄色视频| 欧美日韩中文字幕国产精品一区二区三区 | 免费女性裸体啪啪无遮挡网站| 欧美亚洲日本最大视频资源| 中文字幕精品免费在线观看视频| 多毛熟女@视频| 国产成人一区二区三区免费视频网站| 免费人妻精品一区二区三区视频| 欧美日韩成人在线一区二区| av欧美777| 欧美变态另类bdsm刘玥| 他把我摸到了高潮在线观看 | 国产主播在线观看一区二区| 日本91视频免费播放| 秋霞在线观看毛片| 无限看片的www在线观看| 国产精品亚洲av一区麻豆| 精品视频人人做人人爽| 精品一区二区三卡| 91成人精品电影| 91精品国产国语对白视频| 久久精品成人免费网站| 交换朋友夫妻互换小说| 亚洲一码二码三码区别大吗| 人妻人人澡人人爽人人| 午夜老司机福利片| 亚洲视频免费观看视频| avwww免费| 9191精品国产免费久久| 波多野结衣一区麻豆| 男女边摸边吃奶| 久久精品国产亚洲av高清一级| 老熟女久久久| 一边摸一边做爽爽视频免费| 夜夜骑夜夜射夜夜干| 脱女人内裤的视频| 狠狠狠狠99中文字幕| a级毛片黄视频| 欧美国产精品va在线观看不卡| 大片电影免费在线观看免费| 久9热在线精品视频| 一级黄色大片毛片| 日日夜夜操网爽| 中文字幕av电影在线播放| 伦理电影免费视频| 中文字幕精品免费在线观看视频| 亚洲欧美清纯卡通| netflix在线观看网站| 日韩一区二区三区影片| 水蜜桃什么品种好| 国产日韩欧美视频二区| 久久国产精品影院| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费| 91精品三级在线观看| 午夜福利,免费看| 考比视频在线观看| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| 老鸭窝网址在线观看| 18禁裸乳无遮挡动漫免费视频| 免费不卡黄色视频| 黄片播放在线免费| 少妇的丰满在线观看| 中文字幕色久视频| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜制服| 亚洲av美国av| 午夜福利乱码中文字幕| 岛国毛片在线播放| tocl精华| 国产一区二区 视频在线| 亚洲欧美清纯卡通| 丝袜喷水一区| 成人亚洲精品一区在线观看| 免费高清在线观看日韩| 久久久国产精品麻豆| 国产精品成人在线| 免费观看a级毛片全部| 久久国产精品大桥未久av| 亚洲男人天堂网一区| 国产一区二区三区综合在线观看| 少妇裸体淫交视频免费看高清 | 欧美日韩中文字幕国产精品一区二区三区 | 狠狠婷婷综合久久久久久88av| 欧美xxⅹ黑人| 欧美黄色淫秽网站| netflix在线观看网站| 999久久久国产精品视频| 亚洲精品一二三| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡动漫免费视频| 在线观看免费高清a一片| 欧美日韩黄片免| 久久亚洲国产成人精品v| 中文字幕另类日韩欧美亚洲嫩草| 国产极品粉嫩免费观看在线| 777米奇影视久久| 国产精品亚洲av一区麻豆| 色播在线永久视频| 嫩草影视91久久| tube8黄色片| 日本91视频免费播放| 19禁男女啪啪无遮挡网站| 电影成人av| 婷婷丁香在线五月| 一本久久精品| 91字幕亚洲| 女人高潮潮喷娇喘18禁视频| 国产精品av久久久久免费| 99精品久久久久人妻精品| 日韩大片免费观看网站| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 亚洲国产av新网站| 国产成人a∨麻豆精品| 成人av一区二区三区在线看 | 成人三级做爰电影| 2018国产大陆天天弄谢| 精品第一国产精品| 国产精品一区二区精品视频观看| 97在线人人人人妻| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 一级片'在线观看视频| 在线观看免费高清a一片| 中文字幕制服av| 十八禁网站免费在线| 超色免费av| 正在播放国产对白刺激| 欧美 日韩 精品 国产| h视频一区二区三区| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | 亚洲自偷自拍图片 自拍| 亚洲伊人色综图| 大陆偷拍与自拍| 亚洲国产av新网站| 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 黄色视频,在线免费观看| 久久精品久久久久久噜噜老黄| 高清在线国产一区| 老司机靠b影院| 亚洲精品一区蜜桃| 蜜桃在线观看..| 麻豆国产av国片精品| 黄色a级毛片大全视频| 超碰97精品在线观看| 亚洲av美国av| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 亚洲成人免费av在线播放| 亚洲国产欧美一区二区综合| xxxhd国产人妻xxx| 久久久久久久国产电影| 日本a在线网址| 亚洲avbb在线观看| 欧美日韩av久久| av视频免费观看在线观看| 男女下面插进去视频免费观看| 亚洲人成电影免费在线| 日日爽夜夜爽网站| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区| 亚洲精品乱久久久久久| 日日夜夜操网爽| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 大片电影免费在线观看免费| 啦啦啦啦在线视频资源| 亚洲中文av在线| 人人妻人人澡人人看| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 亚洲精品中文字幕一二三四区 | 午夜精品久久久久久毛片777| svipshipincom国产片| 午夜激情av网站| 1024香蕉在线观看| 亚洲国产av新网站| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 免费看十八禁软件| 精品一区二区三区av网在线观看 | av在线播放精品| 亚洲精品在线美女| 亚洲欧美色中文字幕在线| 国产一区二区激情短视频 | 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 色老头精品视频在线观看| 少妇被粗大的猛进出69影院| 成人黄色视频免费在线看| 美女福利国产在线| 精品国产一区二区三区四区第35| 91国产中文字幕| 一级毛片精品| 国产又爽黄色视频| 汤姆久久久久久久影院中文字幕| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 天堂8中文在线网| 久久久久久久大尺度免费视频| 欧美日韩亚洲综合一区二区三区_| 午夜激情久久久久久久| 曰老女人黄片| 99国产综合亚洲精品| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 国产区一区二久久| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 午夜91福利影院| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 永久免费av网站大全| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看 | 丝袜脚勾引网站| 考比视频在线观看| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 日本精品一区二区三区蜜桃| 一本—道久久a久久精品蜜桃钙片| 美女国产高潮福利片在线看| 午夜免费观看性视频| 狠狠婷婷综合久久久久久88av| 日韩大片免费观看网站| 久久久久久免费高清国产稀缺| 亚洲av日韩精品久久久久久密| 中文字幕色久视频| 在线观看www视频免费| 国产在线免费精品| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 国产精品.久久久| 777米奇影视久久| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 午夜成年电影在线免费观看| 国产精品影院久久| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 亚洲av成人一区二区三| av视频免费观看在线观看| 久久香蕉激情| 下体分泌物呈黄色| 亚洲国产欧美网| 欧美午夜高清在线| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网 | 性少妇av在线| 精品福利观看| 大香蕉久久网| 国产一区二区在线观看av| a 毛片基地| 亚洲精品粉嫩美女一区| 首页视频小说图片口味搜索| 狂野欧美激情性bbbbbb| 国产成人精品在线电影| 日本wwww免费看| 色老头精品视频在线观看| 久久av网站| bbb黄色大片| 99国产精品99久久久久| 美女午夜性视频免费| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 日韩有码中文字幕| 男男h啪啪无遮挡| 久久亚洲精品不卡| 国产一区二区在线观看av| 老熟妇乱子伦视频在线观看 | 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 蜜桃国产av成人99| 黄频高清免费视频| 91老司机精品| 免费黄频网站在线观看国产| 欧美成狂野欧美在线观看| 人妻人人澡人人爽人人| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| 欧美乱码精品一区二区三区| 午夜福利,免费看| 成人国产av品久久久| 亚洲欧美清纯卡通| 久久久久精品人妻al黑| 成人黄色视频免费在线看| 热99国产精品久久久久久7| 少妇被粗大的猛进出69影院| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 夫妻午夜视频| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 又黄又粗又硬又大视频| 精品少妇黑人巨大在线播放| 99热网站在线观看| 国产精品1区2区在线观看. | 正在播放国产对白刺激| 亚洲精品国产av蜜桃| 亚洲黑人精品在线| 美国免费a级毛片| 日本精品一区二区三区蜜桃| 三级毛片av免费| 亚洲精华国产精华精| 新久久久久国产一级毛片| 国产日韩欧美亚洲二区| 一个人免费看片子| 天天添夜夜摸| 久久这里只有精品19| 午夜福利视频精品| 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品秋霞免费鲁丝片| 精品国内亚洲2022精品成人 | 电影成人av| 亚洲色图综合在线观看| 亚洲av美国av| 亚洲国产中文字幕在线视频| av天堂在线播放| 亚洲一区二区三区欧美精品| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产 | 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 一个人免费在线观看的高清视频 | 巨乳人妻的诱惑在线观看| 欧美黄色淫秽网站| 亚洲伊人色综图| 老司机午夜十八禁免费视频| 亚洲精品一区蜜桃| 日本撒尿小便嘘嘘汇集6| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 精品熟女少妇八av免费久了| 国产在线一区二区三区精| 日韩制服骚丝袜av| 午夜免费成人在线视频| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲美女黄色视频免费看| 亚洲成人免费电影在线观看| 欧美人与性动交α欧美精品济南到| 女人被躁到高潮嗷嗷叫费观| 老司机午夜十八禁免费视频| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 午夜福利视频精品| 90打野战视频偷拍视频| av电影中文网址| 91av网站免费观看| 成年人午夜在线观看视频| 男女之事视频高清在线观看| 成年人午夜在线观看视频| 久久免费观看电影| 建设人人有责人人尽责人人享有的| a在线观看视频网站| 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 成年美女黄网站色视频大全免费| 97人妻天天添夜夜摸| cao死你这个sao货| 亚洲五月色婷婷综合| 亚洲人成电影观看| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 久久影院123| 1024香蕉在线观看| 日日爽夜夜爽网站| 日韩欧美免费精品| 国产精品久久久久久精品电影小说| 午夜福利在线观看吧| av免费在线观看网站| a级毛片在线看网站| 九色亚洲精品在线播放| 亚洲精品久久久久久婷婷小说| 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 精品亚洲乱码少妇综合久久| 亚洲综合色网址| 精品一品国产午夜福利视频| 久久久久久久久免费视频了| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 亚洲成人国产一区在线观看| 亚洲 欧美一区二区三区| 捣出白浆h1v1| 日韩免费高清中文字幕av| 51午夜福利影视在线观看| 免费日韩欧美在线观看| 桃红色精品国产亚洲av| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 啦啦啦免费观看视频1| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 日本av手机在线免费观看| www.av在线官网国产| 99久久99久久久精品蜜桃| 狠狠婷婷综合久久久久久88av| 水蜜桃什么品种好| 69精品国产乱码久久久| 亚洲成人免费av在线播放| 国产亚洲午夜精品一区二区久久| 捣出白浆h1v1| 亚洲视频免费观看视频| 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 免费一级毛片在线播放高清视频 | 狂野欧美激情性xxxx| 国产淫语在线视频| 久久久久久久精品精品| 少妇裸体淫交视频免费看高清 | 精品免费久久久久久久清纯 | 亚洲午夜精品一区,二区,三区| 黄片大片在线免费观看| 99久久人妻综合| 老司机午夜福利在线观看视频 | 国产免费现黄频在线看| 超碰成人久久| 亚洲精品久久久久久婷婷小说| 999久久久国产精品视频| 少妇的丰满在线观看| 热99久久久久精品小说推荐| 真人做人爱边吃奶动态| 永久免费av网站大全| 热re99久久精品国产66热6| 亚洲欧美成人综合另类久久久| 自线自在国产av| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 男人操女人黄网站| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 亚洲av成人一区二区三| 色94色欧美一区二区| 又黄又粗又硬又大视频| 亚洲五月婷婷丁香| 涩涩av久久男人的天堂| av天堂久久9| 啦啦啦 在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 精品国内亚洲2022精品成人 | 涩涩av久久男人的天堂| 欧美精品av麻豆av| videosex国产| 日韩 亚洲 欧美在线| 欧美精品一区二区免费开放| 人人妻,人人澡人人爽秒播| 午夜成年电影在线免费观看| 亚洲中文av在线| 久久综合国产亚洲精品| 精品国产一区二区三区久久久樱花| 老司机在亚洲福利影院| 久久久国产成人免费| 国产亚洲av片在线观看秒播厂| √禁漫天堂资源中文www| 日本精品一区二区三区蜜桃| 高清欧美精品videossex| 中国美女看黄片| 亚洲精品国产av蜜桃| 大片电影免费在线观看免费| 十八禁网站网址无遮挡| 亚洲欧美清纯卡通| 大香蕉久久成人网| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 国产伦理片在线播放av一区| 美国免费a级毛片| 超色免费av| 午夜免费成人在线视频| 制服人妻中文乱码| 99国产综合亚洲精品| 麻豆乱淫一区二区| 色婷婷av一区二区三区视频| 亚洲第一青青草原| 又黄又粗又硬又大视频| 欧美日韩视频精品一区| 少妇精品久久久久久久| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 一区二区三区激情视频| 99热网站在线观看| 亚洲av美国av| 欧美性长视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产淫语在线视频| 国产免费视频播放在线视频| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 爱豆传媒免费全集在线观看| 亚洲视频免费观看视频| 在线观看舔阴道视频| 黄片大片在线免费观看| 欧美精品高潮呻吟av久久| 中国国产av一级| 免费观看人在逋| 啦啦啦啦在线视频资源| 自拍欧美九色日韩亚洲蝌蚪91| 久久久水蜜桃国产精品网| www日本在线高清视频| 国产一区二区三区av在线| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| 国产伦人伦偷精品视频| 超碰97精品在线观看| 老司机福利观看| 国产精品.久久久| 欧美精品亚洲一区二区| 久久这里只有精品19| 热99久久久久精品小说推荐| 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 国产深夜福利视频在线观看| 国产精品免费大片| 精品乱码久久久久久99久播| 国产免费一区二区三区四区乱码| 欧美精品一区二区大全| 亚洲精品国产av蜜桃| 久久久久精品国产欧美久久久 | 精品国内亚洲2022精品成人 | 蜜桃在线观看..| 亚洲欧美清纯卡通| 久9热在线精品视频| 一区二区日韩欧美中文字幕| 99久久综合免费| 中亚洲国语对白在线视频| 男女午夜视频在线观看| 日本av手机在线免费观看| 啪啪无遮挡十八禁网站| av线在线观看网站| 人人澡人人妻人| 男女免费视频国产| 丝瓜视频免费看黄片| 久久热在线av| 纵有疾风起免费观看全集完整版| 天天躁夜夜躁狠狠躁躁| 久久影院123| 高清黄色对白视频在线免费看| 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 日本91视频免费播放| 一区二区三区四区激情视频| 天天操日日干夜夜撸| 自线自在国产av| 国产高清videossex| 午夜福利免费观看在线| 亚洲成人免费电影在线观看| 成人三级做爰电影| 日韩视频一区二区在线观看| 婷婷成人精品国产| 法律面前人人平等表现在哪些方面 | 国产成人啪精品午夜网站| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲 | 久久国产精品影院| 久久久久视频综合| 亚洲av日韩精品久久久久久密| 丰满饥渴人妻一区二区三| 国产精品免费大片| 黑丝袜美女国产一区| 每晚都被弄得嗷嗷叫到高潮|