• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Origin of the low formation energy of oxygen vacancies in CeO2

    2022-10-26 09:47:10HanXu許涵TongtongShang尚彤彤XuefengWang王雪鋒AngGao高昂andLinGu谷林
    Chinese Physics B 2022年10期
    關(guān)鍵詞:高昂

    Han Xu(許涵) Tongtong Shang(尚彤彤) Xuefeng Wang(王雪鋒)Ang Gao(高昂) and Lin Gu(谷林)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: CeO2,oxygen vacancy,synchrotron x-ray diffraction,electron-density distribution

    1. Introduction

    CeO2has been extensively used as the active component of catalytic combustion to remove volatile organic compounds in virtue of its high efficiency and low operating temperature.[1,2]Bulk oxygen vacancies improve the flexibility and activity of lattice oxygen species,resulting in outstanding redox properties of CeO2.[3–5]Since the oxygen vacancy is one of the most important structural parameters and creates the catalytic properties of ceria-based catalysts, a large number of theoretical and experimental investigations have been focused on regulating the formation of oxygen vacancies and determining the corresponding catalytic activity.[6–8]Mapping of the oxygen vacancy using scanning tunneling microscopy has highlighted the critical role of oxygen vacancies in the redox properties of CeO2.[9]A previous study of oxygen vacancies on different exposed CeO2surfaces proposed that a high concentration of oxygen vacancies is beneficial to improve catalytic activity,especially at low temperatures.[10]Suet al.demonstrated that both surface and bulk vacancies promote the redox property in toluene catalytic combustion.[11]However, the direct relationship between the Ce–O bond interaction and the formation of oxygen vacancies remains elusive. The electron density of a functional material, one of the most information-rich observables, contains the complex deformation of valence electrons compared with independent atoms and the complicated chemical bonding interactions of bonded atoms.[12–15]Real-space electron density distribution plays a critical role in understanding properties of functional materials.[16,17]

    Recent years, we have witnessed profound progress in x-ray diffraction (XRD) and its wide applications in measurements of electron-density distribution and bonding interactions.[13,18,19]Synchrotron radiation is also available with high energy and excellent monochromaticity. Wavelengths of 0.5 ?A and 0.4 ?A are widely available, which allows acquisition of high-order diffraction,thus increasing experimental resolution.[17,20–22]As a result, synchrotron XRD has become a routine technique to obtain the experimental electron density of crystal materials.[23,24]Synchrotron charge density of the trinuclear carboxylate complex determined thatd(xy) charge depletion is important for determining active versus trapped Fe-III sites.[25]Investigation of bonding types in Sc3TC4carbides (T=Fe, Co, Ni) by topological analysis showed that the bond in Sc3TC4was primarily covalent.[26]The high-quality diffraction data from the third-generation synchrotron radiation x-ray sources combined with multipole refinement allow for more accurate measurement of electron density in CeO2.

    In this work,we investigate the atomic structure,electrondensity distribution, oxygen vacancy formation energy, and chemical bonding of CeO2using an integrated differential phase contrast scanning transmission electron microscope(iDPC-STEM),high-energy synchrotron XRD,first-principles calculations,and subsequent quantitative topological analysis.It is found that there is almost no electron overlap between Ce and O atoms. This indicates that the hybridization between Ce and O atoms is very weak. In addition,quantitative topological analysis based on the measured electron density is carried out to reveal the closed-shell interaction behavior of the Ce–O bond,proving weak interaction between Ce and O atoms. The oxygen vacancy formation energy of CeO2,TiO2,and Co3O4are calculated based on the density functional theory, which indicates that the oxygen vacancy formation energy of CeO2is the lowest among three redox catalysts. Thus,it is the relatively weak interaction between the bonded Ce and O atoms in CeO2that facilitates the formation of oxygen vacancies,making it superior to other catalysts.

    2. Experimental and theoretical methods

    CeO2polycrystalline powder with 99.5%purity was purchased from Sigma-Aldrich, USA. Atomic-resolution iDPCSTEM photographs of CeO2were collected via a scanning transmission electron microscope (STEM, FEI Titan Cubed Themis G2 300) equipped with a DCOR+ corrector. The acceleration voltage of the electron beam was 300 kV and the convergence semiangle was 10 mrad.[27]A high-pass filter was used to block the low frequency signal in atomicresolution photographs. A four-quadrant DF4 detector was used to obtain four images for two-dimensional integration.Synchrotron XRD data was collected at 100 K using a highprecision diffractometer at the BL19B2 beamline of SPring-8. During XRD data collection,the CeO2powder was sealed in a Lindeman glass tube with an inner diameter of 0.3 mm.The contribution of capillary diffraction was removed in subsequent refinements. The wavelength of the synchrotron radiation x-rays is 0.41334 ?A,corresponding to energy of 30 keV.An imaging plate was used as a detector to cover a wide range of 2θ,up to 78.165°.

    First-principles calculations were based on the density functional theory. The theoretical model was built through the Viennaab initiosimulation package (VASP).[28–31]In the parameterization of the Perdew–Burke–Ernzerhof pseudopotential,[32]the electronic exchange-correlation interactions and generalized gradient approximation functional were represented by projector augmented wave (PAW)potentials.[33]The wave function was represented as a plane wave with a 500-eV cutoff energy. Geometry adjustments were carried out using conjugate gradient minimization until all ion forces were less than 0.01 eV/?A per atom. AK-point mesh with a spacing of~0.03 ?A-1was used. The extended supercells Ce32O64(2a×2b×2c), Ti32O64(2a×2b×4c),and Co48O64(2a×1b×1c) were adopted for the prediction of oxygen vacancy formation energy with an oxygen vacancy.The following expression for oxygen vacancy formation energy was used in this calculation (at room temperature, the chemical potential of oxygen Vowas 8.99 eV/molecule[34]):

    3. Results and discussion

    The crystal structure of CeO2is fluorite and the structure of the unit cell is face-centered cubic(fcc)in the space groupFmˉ3m. As shown in Fig. 1(a), the eight equivalent nearest oxygen ions are located at the eight corners of the cube centered on the cerium ion, and each oxygen ion is coordinated by four cerium ions forming a tetrahedron. Figure 1(b)is the structure projection of CeO2along the [100] zone axis. The iDPC-STEM image is linearly related to the electrostatic potential and the contrast is almost linearly dependent on the atomic number.[27]Therefore, iDPC-STEM enables simultaneous atomic-resolution imaging of light and heavy elements.The iDPC-STEM photograph of CeO2along the [110] axis shows exact projected position of each atom, as illustrated in Fig. 1(c), especially for the O elements. The atoms are arranged neatly,with uniform contrast,and no defects were detected. In the fast Fourier transform (FFT) image (Fig. 1(d))of Fig. 1(c), the (0ˉ46) plane provides an information transfer approximately equal to 0.75 ?A.

    Fig. 1. Atomic structural characterization of CeO2: (a) crystal structures of the CeO2 cubic fluorite lattice(Fmˉ3m);(b)projection of CeO2 along its[100]zone axis;(c)iDPC-STEM image along the[100]direction and(d)the corresponding FFT pattern.

    By virtue of synchrotron powder XRD, we collected a diffraction pattern with plenty of higher-order diffraction (sinθ ·λ-1= 1.52 ?A-1). This diffraction pattern met the requirements of multipole refinement for experimental data and guaranteed sufficient resolution in charge density distribution.[35]Rietveld refinement and multipole refinement of synchrotron radiation data were performed using Jana 2006.[36]In order to reduce the background noise of the XRD data, twelve Legendre expansions were used to fit the experimental background. Through Rietveld refinement, the structure factor of CeO2, which is the Fourier component of the charge density, was obtained. Then, information related to charge density distribution could be obtained by further multipole refinement.[23]

    An experimental multipole model is used to refine electron densities from high-precision diffraction data. The multipole model used in this work was the Hansen–Coppens model:[20]

    Here, the electron densityρis divided into three parts. The first two terms are the spherical core(ρc)and valence densities(ρv). The summation in the third term is the valence deformation.In addition,dlm±is the real part of the density normalized spherical harmonic function,similar to hydrogenic orbitals in polar coordinates;ρvand the radial function (Rl) are modified by the refinable parameters(κandκ′)to account for the expansion or contraction of the valence shell.The function expansion of O is truncated at the hexadecapolar level(lmax=4).Venturing into Ce with the 4f electron, it is necessary to use even higher functions (lmax=6). The aspherical features are modeled using the 6s,5d,and 4f electrons of Ce,while other orbitals of Ce are considered to be part of the core.

    Table 1. Refinement results for CeO2.

    Synchrotron radiation experiments were performed in the liquid nitrogen temperature region(100 K).The low temperature suppressed the thermal vibration of atoms in the crystal so that atomic displacement parameters(ADPs)in the sample had limited influence on the diffraction data. During refinement,it was found that the thermal vibration of oxygen and cerium atoms can be accurately reflected using second-order isotropic ADPs. TheRfactor, ADPs, and other parameters with their error ranges obtained by multipole refinement are listed in Table 1. SinceRp=7.10%andRwp=9.40%,credibility of the refinement results is confirmed. Figure 2 shows the experimental XRD data and fitting values of CeO2. In Fig. 2, the black-cross line representing the experimental data coincides well with the red line representing the calculated fitting value,which also indicates accurate multipole refinement results.

    Fig.2. Experimental XRD data and fitting values of CeO2. The orange box highlights the local amplification of CeO2 high-order diffraction;black-cross,red,green,and blue lines indicate the synchrotron radiation experimental data,the calculated fitting value, the difference between experimental and calculated values,and the corresponding Bragg diffraction peaks,respectively.

    The deformation electron density, residual electron density, and Laplacian maps in the (110) and (111) planes of CeO2are presented in Fig.3. The residual electron density is not accounted for during the multipole refinement, which reflects the accuracy of the obtained deformation electron density. The residual electron density is the difference between the experiment data and the multipole model; it is uniform and featureless [Figs. 3(b) and 3(e)] except near the nucleus where it accumulates, which indicates high-precision diffraction data and adequate modeling. The deformation densities are defined by the difference between the spherical atom and nonspherical multipole models, and typically show electrondensity accumulation in lone pair regions and bonds. The deformation density can be regarded as the valence electron distribution. It is clearly seen in Fig. 3(a) that there is a nearly spherical electron-density distribution around the Ce ions and a low electron density in the Ce–O interstitial region(ρBCP=0.39e·?A-3). The Laplacian maps are the second partial derivative of the electron-density maps and more significantly indicate the electron-density trends. Figures 3(c) and 3(f) show that electron density is depleted in the interaction surface as a result of the contraction of electron density toward Ce and O.This indicates that the interaction between Ce and O is weak.[23]If there is a strong hybridization between Ce and O, the electron density overlap between these two atoms would be obvious.[37,38]However, no shared electron picture was observed between any pair of atoms in Figs.3(a)and 3(d),which is characteristic of covalent bonds. This approximately isotropic(or spherical)valence electron density indicates that the Ce–O interaction is weak, which is beneficial for the formation of oxygen vacancies in CeO2.

    Fig.3. Deformation electron density,residual electron density,and Laplacian maps of CeO2. (a)and(d)Static multipole deformation density maps of CeO2 in the(110)and (111)planes, respectively. (b)and (e)The residual electron density maps in the(110) and(111) planes, respectively. Positive and negative areas are represented by red(solid contour line)and blue(dashed contour line),respectively. Contour line intervals in[(a),(b)]and[(d),(e)]are 0.1 e· ?A-3. (c)and(f)Experimental contour maps of the Laplacian of the electron density,L(r)=-?2ρ(r)with(c)being based on(a), and(f)being based on(c). Contours in(c)and(f)are drawn at±a·10n e· ?A-5 with a=2,4,8 and n=±3,±2,±1,0(positive and negative values are represented by solid and dashed lines).

    Quantitative topological analysis of electron density distribution provides a quantitative description of the interatomic interactions based on bond critical points (BCPs), i.e., the maximum or minimum electron densities between bonding atoms.[39,40]The topological properties of the Ce–O bond are shown in Table 1.The BCP of Ce–O is 1.2912 ?A and 1.0998 ?A away from the Ce and O atoms, respectively. The electron density (ρBCP) and the Laplacian (?2ρBCP) at the BCP are 0.39e·?A-3and 5.41e·?A-5,respectively,indicating a closedshell interaction between bonded Ce and O atoms. This also proves a relatively weak interaction between bonded Ce and O atoms.[41]Based on the above findings,it could be deduced that the weak interaction of the Ce–O bond facilitates the formation of oxygen vacancies in CeO2, making it an excellent catalyst for redox reactions.is the reason for the low oxygen vacancy formation energy,which makes the redox performance and catalytic activity temperature of CeO2superior to the other two catalysts.

    Table 2. Oxygen vacancy formation energy of CeO2 and two other redox catalysts.

    To verify the above experimental results, first-principles calculations were performed to obtain the oxygen vacancy formation energy of CeO2and two other redox catalysts, as shown in Table 2. The space groups of TiO2and Co3O4used in the calculations areP42/mnmandFmˉ3m,respectively.The oxygen vacancy formation energy of CeO2is obviously lower than those of the other two catalysts. A previous study of deformation charge density in TiO2indicated that there is obvious hybridization between bonded Ti and O atoms, which resulted in a stronger Ti–O bond.[14]Therefore, it can be inferred that the weak closed-shell interaction of Ce–O bond

    4. Conclusions

    In summary, we have investigated the atomic structure,electron-density distribution, oxygen vacancy formation energy, and chemical bonding of CeO2by iDPC-STEM, synchrotron powder XRD, and first-principles calculations. The structure of CeO2has been unraveled using iDPC-STEM via high-contrast imaging of light O atoms and its high resolution(~0.75 ?A).Through multipole refinement of synchrotron powder XRD data, we model deformation density and negative Laplacian maps of CeO2. No obvious electron density between the Ce–O bond due to hybridization is observed. Based on quantitative topological analysis, we analyze the unique BCPs of the Ce–O bond to confirm that the electron concentration has a relatively small value (ρBCP=0.39e·?A-3) and the electron density is depleted in the interaction surface between Ce and O atoms. The result of first-principles calculations proposes that the oxygen vacancy formation energy of CeO2is lower than those of two other redox catalysts (TiO2and Co3O4). These findings indicate that the strength of the Ce–O bond is relatively weak and it is this weak chemical bond strength that leads to its low oxygen vacancy formation energy. This subsequently low oxygen vacancy formation energy makes it easy to produce oxygen vacancies in CeO2, which subsequently provides superior catalytic activity. This work reveals the mechanism of oxygen vacancy formation from the point of view of electron density and provides new insight into controlling the formation of oxygen vacancies in catalytic materials through weakening the bonding strength of metal-oxygen bonds, such as through doping or interfacial construction.

    Acknowledgements

    This work was supported by the Beijing Natural Science Foundation(Grant No.Z190010),the National Key R&D Program of China(Grant No. 2019YFA0308500), the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200),the Key Research Projects of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC035), and the National Natural Science Foundation of China (Grant Nos. 51421002, 51672307,51991344,and 52025025).

    猜你喜歡
    高昂
    修德箴言
    高昂書法作品欣賞
    《厲害了,我的國》觀后感
    Material microstructures analyzed by using gray level Co-occurrence matrices?
    美特種藥品價(jià)格高昂遭抵制
    淺析小學(xué)語文課堂教學(xué)藝術(shù)
    淺析小學(xué)語文課堂教學(xué)藝術(shù)
    高昂作品
    大眾文藝(2014年16期)2014-07-12 15:49:56
    你是否該買一部iPhone
    海外英語(2013年6期)2013-08-27 09:23:45
    氣勢(shì)磅礴 情感激越
    一级作爱视频免费观看| 妹子高潮喷水视频| 午夜福利一区二区在线看| 亚洲性夜色夜夜综合| 高清毛片免费观看视频网站| 老司机福利观看| 亚洲午夜理论影院| av中文乱码字幕在线| www.999成人在线观看| 久久精品91无色码中文字幕| 色av中文字幕| 老司机在亚洲福利影院| 国产主播在线观看一区二区| 99国产综合亚洲精品| 欧美日韩一级在线毛片| 看黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 黄色女人牲交| 69av精品久久久久久| xxxwww97欧美| 91九色精品人成在线观看| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 99久久99久久久精品蜜桃| 无限看片的www在线观看| 韩国精品一区二区三区| 成在线人永久免费视频| 国产视频内射| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 美女 人体艺术 gogo| 欧美最黄视频在线播放免费| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| 欧美人与性动交α欧美精品济南到| 国产又黄又爽又无遮挡在线| 在线观看66精品国产| 国产又色又爽无遮挡免费看| 精品久久久久久久末码| 校园春色视频在线观看| 岛国在线观看网站| 欧美午夜高清在线| 麻豆成人午夜福利视频| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 久久人妻福利社区极品人妻图片| 色综合欧美亚洲国产小说| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 欧美成人性av电影在线观看| 国产久久久一区二区三区| 女性被躁到高潮视频| www日本黄色视频网| 亚洲七黄色美女视频| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 午夜福利欧美成人| 日韩大码丰满熟妇| 免费在线观看日本一区| 午夜福利高清视频| 亚洲九九香蕉| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 亚洲午夜理论影院| 国内揄拍国产精品人妻在线 | 操出白浆在线播放| 久久国产亚洲av麻豆专区| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 看免费av毛片| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| xxx96com| www.自偷自拍.com| 两个人视频免费观看高清| 精品久久蜜臀av无| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 99久久无色码亚洲精品果冻| 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 久久久久久大精品| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 又大又爽又粗| 看黄色毛片网站| 国产三级在线视频| 成人18禁高潮啪啪吃奶动态图| 久久香蕉精品热| 亚洲成人国产一区在线观看| 美女 人体艺术 gogo| 香蕉久久夜色| 久久99热这里只有精品18| 久久久久九九精品影院| 我的亚洲天堂| 国产亚洲精品第一综合不卡| 两个人视频免费观看高清| 久久伊人香网站| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 99久久国产精品久久久| 女性被躁到高潮视频| 国产蜜桃级精品一区二区三区| 啪啪无遮挡十八禁网站| 又黄又爽又免费观看的视频| 亚洲人成伊人成综合网2020| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 国语自产精品视频在线第100页| 亚洲一区二区三区色噜噜| 最好的美女福利视频网| 久久久国产精品麻豆| 俺也久久电影网| 别揉我奶头~嗯~啊~动态视频| 国产单亲对白刺激| 熟妇人妻久久中文字幕3abv| 亚洲熟女毛片儿| 男人舔女人下体高潮全视频| 99国产综合亚洲精品| 日本一区二区免费在线视频| 精品久久蜜臀av无| 亚洲国产日韩欧美精品在线观看 | 嫩草影视91久久| 一进一出好大好爽视频| 免费搜索国产男女视频| 99久久综合精品五月天人人| 美国免费a级毛片| 波多野结衣高清无吗| 哪里可以看免费的av片| 在线观看午夜福利视频| 国产v大片淫在线免费观看| 午夜日韩欧美国产| 中文亚洲av片在线观看爽| 亚洲欧美日韩无卡精品| 欧美黑人欧美精品刺激| 91av网站免费观看| av福利片在线| 丰满人妻熟妇乱又伦精品不卡| 国产免费男女视频| 亚洲专区中文字幕在线| 免费在线观看完整版高清| av超薄肉色丝袜交足视频| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 亚洲中文字幕日韩| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲| 青草久久国产| 一本精品99久久精品77| 一级a爱视频在线免费观看| 亚洲欧美日韩无卡精品| 叶爱在线成人免费视频播放| 日韩有码中文字幕| 91九色精品人成在线观看| 久热这里只有精品99| 99在线视频只有这里精品首页| 亚洲国产欧美网| 18禁黄网站禁片免费观看直播| 久久精品91无色码中文字幕| netflix在线观看网站| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡免费网站照片 | 两个人免费观看高清视频| 午夜精品久久久久久毛片777| 欧美乱码精品一区二区三区| 男女下面进入的视频免费午夜 | 少妇的丰满在线观看| 黑人欧美特级aaaaaa片| 欧美乱色亚洲激情| 久久精品人妻少妇| 国产精品二区激情视频| 国产成人影院久久av| 久久久久国产一级毛片高清牌| 熟妇人妻久久中文字幕3abv| 免费看a级黄色片| 亚洲熟妇熟女久久| 成人手机av| 精品国产乱码久久久久久男人| 久久久久久久精品吃奶| 色综合欧美亚洲国产小说| 中文字幕精品免费在线观看视频| 午夜免费成人在线视频| 久久中文字幕一级| 精品久久久久久久久久免费视频| 99re在线观看精品视频| 午夜老司机福利片| 麻豆成人av在线观看| 欧美性猛交黑人性爽| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 久久天躁狠狠躁夜夜2o2o| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 可以在线观看的亚洲视频| 激情在线观看视频在线高清| 成在线人永久免费视频| 久久青草综合色| 99re在线观看精品视频| 免费在线观看成人毛片| 老汉色∧v一级毛片| av在线天堂中文字幕| 国产久久久一区二区三区| 亚洲 国产 在线| 老鸭窝网址在线观看| 国产激情欧美一区二区| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 国产精品二区激情视频| 欧洲精品卡2卡3卡4卡5卡区| 变态另类丝袜制服| 久久青草综合色| 国产精品影院久久| 麻豆成人午夜福利视频| 国产精品98久久久久久宅男小说| 国产亚洲精品久久久久5区| 九色国产91popny在线| 国产av在哪里看| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 18禁国产床啪视频网站| www.精华液| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 在线国产一区二区在线| 亚洲久久久国产精品| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 日本 欧美在线| 亚洲av成人一区二区三| 亚洲av成人av| 国产成人啪精品午夜网站| 精品电影一区二区在线| 大香蕉久久成人网| 黄色成人免费大全| 午夜亚洲福利在线播放| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区| 国产精品 欧美亚洲| 午夜免费成人在线视频| 久久久国产成人免费| 国语自产精品视频在线第100页| 国产精品九九99| 法律面前人人平等表现在哪些方面| 悠悠久久av| 大型av网站在线播放| 男男h啪啪无遮挡| 在线永久观看黄色视频| 色av中文字幕| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 丝袜人妻中文字幕| 久久久久国产精品人妻aⅴ院| 琪琪午夜伦伦电影理论片6080| 国产又黄又爽又无遮挡在线| 日本 av在线| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕一区二区三区有码在线看 | 欧美又色又爽又黄视频| 亚洲人成电影免费在线| 身体一侧抽搐| 禁无遮挡网站| 亚洲熟女毛片儿| 满18在线观看网站| 国产伦一二天堂av在线观看| videosex国产| 真人做人爱边吃奶动态| 天堂动漫精品| 亚洲在线自拍视频| 国产精品久久久久久精品电影 | 久久天堂一区二区三区四区| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 日韩一卡2卡3卡4卡2021年| 色哟哟哟哟哟哟| 一个人观看的视频www高清免费观看 | 中亚洲国语对白在线视频| 亚洲一区二区三区不卡视频| 成人亚洲精品一区在线观看| 高潮久久久久久久久久久不卡| 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| 欧美av亚洲av综合av国产av| 在线av久久热| 国产亚洲精品第一综合不卡| 国产视频内射| 国产精品综合久久久久久久免费| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 色播在线永久视频| or卡值多少钱| 国产1区2区3区精品| 男女床上黄色一级片免费看| 黄片播放在线免费| 一区福利在线观看| 99在线视频只有这里精品首页| 又黄又爽又免费观看的视频| 日韩欧美免费精品| 亚洲在线自拍视频| 男女下面进入的视频免费午夜 | 嫩草影视91久久| 最近在线观看免费完整版| 国产精品亚洲一级av第二区| 色精品久久人妻99蜜桃| 又紧又爽又黄一区二区| 在线观看午夜福利视频| 麻豆成人av在线观看| 欧美在线一区亚洲| 欧美激情久久久久久爽电影| 精品免费久久久久久久清纯| 日本熟妇午夜| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 欧美一级a爱片免费观看看 | 久久九九热精品免费| av免费在线观看网站| 男女之事视频高清在线观看| 亚洲最大成人中文| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产| 99久久精品国产亚洲精品| 欧美成人午夜精品| 亚洲激情在线av| 欧美精品啪啪一区二区三区| 搡老岳熟女国产| 国产精华一区二区三区| 韩国av一区二区三区四区| 宅男免费午夜| 女人被狂操c到高潮| 999久久久精品免费观看国产| 黄色视频,在线免费观看| 久久热在线av| 美女午夜性视频免费| 久久久精品国产亚洲av高清涩受| 亚洲五月色婷婷综合| 国产精品自产拍在线观看55亚洲| 国产片内射在线| 国产男靠女视频免费网站| 国产精华一区二区三区| 亚洲自偷自拍图片 自拍| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 岛国在线观看网站| 黄色女人牲交| 男人的好看免费观看在线视频 | 香蕉国产在线看| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| 国产色视频综合| 在线观看舔阴道视频| 欧美午夜高清在线| 国内精品久久久久久久电影| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 亚洲欧美精品综合久久99| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 精品久久久久久,| 午夜精品在线福利| 不卡av一区二区三区| 国产午夜精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区精品小视频在线| 国产亚洲精品一区二区www| 一区福利在线观看| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 久久中文字幕人妻熟女| www.熟女人妻精品国产| 91字幕亚洲| 国产精华一区二区三区| 岛国在线观看网站| 露出奶头的视频| 国产激情久久老熟女| 亚洲全国av大片| 丝袜人妻中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 哪里可以看免费的av片| √禁漫天堂资源中文www| 亚洲真实伦在线观看| 国产精品久久视频播放| 热re99久久国产66热| 午夜免费观看网址| 老司机午夜福利在线观看视频| 国产精品综合久久久久久久免费| a级毛片在线看网站| 91九色精品人成在线观看| 亚洲久久久国产精品| 国产精品久久电影中文字幕| av天堂在线播放| 大香蕉久久成人网| 白带黄色成豆腐渣| 国产一区二区三区在线臀色熟女| 国产熟女xx| 欧美激情高清一区二区三区| 成人国产综合亚洲| 桃红色精品国产亚洲av| 午夜福利高清视频| 欧美丝袜亚洲另类 | 身体一侧抽搐| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 久久这里只有精品19| 午夜福利18| 中出人妻视频一区二区| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影 | 免费看美女性在线毛片视频| 老熟妇乱子伦视频在线观看| 在线观看免费日韩欧美大片| 一进一出抽搐gif免费好疼| 免费在线观看亚洲国产| 久久国产乱子伦精品免费另类| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 国产成人av激情在线播放| 日韩三级视频一区二区三区| 亚洲一区二区三区不卡视频| 日本 欧美在线| 欧美三级亚洲精品| 日本一区二区免费在线视频| 丁香欧美五月| 天堂影院成人在线观看| 国产精品九九99| 国产熟女xx| 国产成人精品无人区| 国产精品99久久99久久久不卡| 在线观看免费日韩欧美大片| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 亚洲专区字幕在线| 亚洲精品久久国产高清桃花| 大香蕉久久成人网| 一级a爱视频在线免费观看| 男人的好看免费观看在线视频 | 90打野战视频偷拍视频| 日韩国内少妇激情av| 欧美在线一区亚洲| 欧美日韩黄片免| 久久这里只有精品19| 欧美在线黄色| 人人澡人人妻人| 国产精品爽爽va在线观看网站 | 热99re8久久精品国产| 男女午夜视频在线观看| 在线播放国产精品三级| 亚洲中文av在线| 香蕉久久夜色| 免费看十八禁软件| 国内少妇人妻偷人精品xxx网站 | 热99re8久久精品国产| 一级a爱片免费观看的视频| 日韩欧美国产在线观看| 女生性感内裤真人,穿戴方法视频| 国产伦一二天堂av在线观看| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 成人三级做爰电影| 免费在线观看完整版高清| 亚洲中文日韩欧美视频| 一个人观看的视频www高清免费观看 | 母亲3免费完整高清在线观看| 91在线观看av| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 女性生殖器流出的白浆| 午夜免费鲁丝| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久精品aⅴ一区二区三区四区| 成人三级做爰电影| 在线视频色国产色| 99久久精品国产亚洲精品| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 丝袜在线中文字幕| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 1024视频免费在线观看| 久热爱精品视频在线9| 亚洲七黄色美女视频| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 男男h啪啪无遮挡| 色综合站精品国产| 精品高清国产在线一区| 国产一区二区在线av高清观看| 免费观看精品视频网站| 天堂√8在线中文| 一级毛片女人18水好多| 长腿黑丝高跟| 欧美一级a爱片免费观看看 | 国产精品自产拍在线观看55亚洲| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 精品卡一卡二卡四卡免费| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 免费观看人在逋| 欧美精品啪啪一区二区三区| 中亚洲国语对白在线视频| 亚洲色图av天堂| 老鸭窝网址在线观看| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 午夜精品在线福利| 身体一侧抽搐| x7x7x7水蜜桃| 嫩草影视91久久| 亚洲欧美激情综合另类| 最好的美女福利视频网| e午夜精品久久久久久久| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 国产精品综合久久久久久久免费| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 免费在线观看成人毛片| 99国产精品一区二区蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 免费无遮挡裸体视频| 亚洲精品久久国产高清桃花| 欧美日韩黄片免| 国产国语露脸激情在线看| 2021天堂中文幕一二区在线观 | 一进一出抽搐gif免费好疼| xxxwww97欧美| 亚洲av美国av| 天天一区二区日本电影三级| 丝袜人妻中文字幕| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 在线国产一区二区在线| 日韩成人在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产免费av片在线观看野外av| 91老司机精品| 丝袜在线中文字幕| 最近在线观看免费完整版| 久久精品人妻少妇| 成年女人毛片免费观看观看9| 精品国产美女av久久久久小说| 欧美久久黑人一区二区| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 国产黄色小视频在线观看| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 亚洲一区二区三区色噜噜| 无人区码免费观看不卡| 日韩欧美国产一区二区入口| 99久久综合精品五月天人人| 一进一出好大好爽视频| 国产激情欧美一区二区| 精品国产乱码久久久久久男人| 精品福利观看| a在线观看视频网站| 999久久久国产精品视频| 桃色一区二区三区在线观看| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 亚洲av成人av| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 制服诱惑二区| 亚洲精品一区av在线观看| 亚洲精品国产一区二区精华液| 黄片小视频在线播放| 国产1区2区3区精品| 51午夜福利影视在线观看| 女同久久另类99精品国产91| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 日日爽夜夜爽网站| 久久中文字幕人妻熟女| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 婷婷亚洲欧美| 亚洲五月婷婷丁香| 久久精品人妻少妇| 成年免费大片在线观看| 久久精品国产亚洲av香蕉五月| 中文在线观看免费www的网站 | 欧美又色又爽又黄视频|