• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Material microstructures analyzed by using gray level Co-occurrence matrices?

    2017-08-30 08:26:42YansuHu胡延蘇ZhijunWang王志軍XiaoguangFan樊曉光JunjieLi李俊杰andAngGao高昂
    Chinese Physics B 2017年9期
    關鍵詞:王志軍高昂李俊

    Yansu Hu(胡延蘇),Zhijun Wang(王志軍),Xiaoguang Fan(樊曉光), Junjie Li(李俊杰),and Ang Gao(高昂)

    1 School of Electronics and Control,Chang’an University,Xi’an 710064,China

    2 School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    3 School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China

    Material microstructures analyzed by using gray level Co-occurrence matrices?

    Yansu Hu(胡延蘇)1,Zhijun Wang(王志軍)2,?,Xiaoguang Fan(樊曉光)2, Junjie Li(李俊杰)2,and Ang Gao(高昂)3

    1 School of Electronics and Control,Chang’an University,Xi’an 710064,China

    2 School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    3 School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China

    The mechanical properties of materials greatly depend on the microstructure morphology.The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design.At present, the quantitative characterization methods mainly rely on the microstructure characterization of shape,size,distribution, and volume fraction,which related to the mechanical properties.These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors.In this paper,we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly.The statistical approach is based on gray level Co-occurrence matrix(GLCM),allowing an objective and repeatable study on material microstructures.We first present how to identify GLCM with the optimal parameters,and then apply the method on three systems with different microstructures.The results show that GLCM can reveal the interface information and microstructures complexity with less human impact.Naturally,there is a good correlation between GLCM and the mechanical properties.

    microstructures,quantitative characterization,mechanical properties,gray level Co-occurrence matrix

    1.Introduction

    The mechanical properties greatly depend on the microstructure morphology.The performance,composition,microstructures,and processing technology which are interrelated with each other together compose the research framework of material science.[1]Among all these factors,microstructures play an important part in the material analysis and design.It is well known that there is a famous Hall–Petch formula to illustrate the relationship between the grain size and material strength for single-phase alloys.For duplexphase complex structures,such as hypereutectic structures and precipitated structures,the strength isrelated to two-phase volume fraction,morphology and micro-distribution.Regulating microstructures by improving the composition and technology to enhance the mechanical properties is an eternal theme in material science.

    Quantitative characterization of material microstructures is the foundation of microstructures investigation.[2]As the computing power increases and the microscope technology (such as optical microscopy,electron microscope,transmission electron microscope,and atomic force microscope)develops over time,image analysis and processing have become more and more important for the microstructure characterization and performance prediction.[3,4]At present,digital image preprocessing including binaryzation,filtering,erosion,dilation,open-close operation,and so on has been widely used in the microstructure quantitative characterization.However,the images still need to be manually separated for the data reliability and repeatability.[5]After that,the information such as grain shape,size,distribution and volume fraction can be extracted to quantitatively characterize the microstructures and related to the mechanical properties.In the premise of huge statistics,the mechanical properties can be predicted by the quantitative information.Although the image acquisition technology and processing software are more and more advanced, the basic methods applied for the quantitative characterization have remained the same for several decades[2,6–9]and may induce appreciable error to the final results.For example,the phase volume fraction is usually measured by the area ratio of section,the percentage of interception of line segments or the percentage of point numbers observed,corresponding to area measurement method,intercept method,and point-count method,respectively.[10–14]Due to the easier realization on computer programming,the area method has become the most popular way to obtain the volume fraction.Even though it avoids the manual interception selection,the error still exists for the image quality,boundary segmentation,threshold value,and so on.

    In summary,the traditional operations first detect the microstructure characterization(grain shape,size,distribution, and volume fraction)by image processing techniques and then establish the correlation to mechanical properties,which is time consuming and offers low repeatability due to the human errors and subjectivity.Despite lots of researches have tried to apply computer and digital image processing technology for material science,[15,16]the original methods to obtain the microstructure characterization still depend on the subjectivity of human factors which will induce unavoidable error,but these approaches demonstrate the potential of computer vision concepts in microstructures.

    In this paper,we try to bypass the traditional operations and achieve the quantitative characterization of microstructures by a novel method which can be used to describe the relationship between the microstructures and the mechanical properties by the texture of image itself directly.The statistical approach is based on gray level Co-occurrence matrix (GLCM),allowing an objective and repeatable study on material microstructures.Three applications illustrate that the texture features reveal the intrinsic mechanism of microstructures and well reflect the mechanical properties.

    2.Background of GLCM

    GLCM,proposed by Haralick et al.in the 1970s[17–19]is an important feature extraction method in the domain of texture analysis.Since then,it has been widely used for image classification and segmentation in many applications,for example,remote sensing image retrieval,[20–22]medicine disease detection,[23,24]and so on.However,this method has been seldom applied in microstructures of material science.It is encouraging that the development of interdiscipline is breaking the subject diversity.Very recently,Renzetti et al.[25,26]used GLCMin duplex stainless steels.They pointed out that GLCM is quite effective to classify material textures especially when the structure is fairly homogeneous.However,the relationship between the texture features and the material properties is ignored,which is the main purpose of this paper.

    GLCM provides a mature and effective statistical method for analyzing textures.Unlike histograms which carry no information regarding the relative position of pixels with respect to each other,GLCM considers not only the distribution of intensities,but also the relative positions of pixels in an image.

    By supposing that an image to be analyzed is rectangular with Nxcolumns and Nyrows and the gray level appearing at each pixel is quantized to Nglevels,the imagefcan be represented as a function that assigns some gray levels in G to each pixel

    Take the gray image in Fig.1(a)as an example with 4×4 pixels.Each pixel has a gray level(G=0,1,...,7). The corresponding matrix of imagefis shown in Fig.1(b) (Nx=Ny=4).

    Fig.1.(color online)An example to show how to obtain GLCM from an image.(a)Original image f,(b)matrix of image f,(c)initial GLCM (d=1,θ=0°),and(d)normalized GLCM(d=1,θ=0°).

    GLCM reflects the comprehensive information of the direction,adjacent interval,and amplitude variations of image gray levels.Hence,the texture-context information is specified by the matrix of relative frequencies P(i,j,d,θ)with two neighboring pixels separated by distance d and a specified angle θ occur on the image,one with gray leveliand the other with gray level j.[17]Because matrices of gray level cooccurrence frequencies are a function of d and θ between the neighboring pixels,the extraction of a single direction will induce the variation of texture features when the image rotates. Formally,for angles quantized to 45 intervals,the frequencies are defined in the following equations:

    where Lx×Lyis the set of pixels,and then GLCM can be described as follows:

    By supposing d=1 and θ=0°,the initial GLCM of imagefis shown in Fig.1(c).

    The next step to determine the texture features is to express GLCM’s terms as probabilities.Selected statistics are applied by iterating through the matrix.The probability describes how often one gray level will appear in a specified spatial relationship to another gray level on the image.The normalization equation is as follows:

    The properties of image texture cannot be obtained by GLCM directly.The texture features are secondary statistics defined in Haralick’s theory.[17–19]There are 14 different texture features,but only 4 of them are independent,[27]namely angular second moment(ASM),entropy(ENT),contrast(CON),and correlation(COR).

    ENT[17,18,28]In image processing,ENT measures the disorder or complexity of an image,and reflects the randomness of grayscale distribution.Its largest value is found when all elements in GLCM are as equal as possible.The more dense the texture is,the more scattered the grayscale distribution,and the more small elements GLCM has.Hence,the entropy value is higher.ENT is strongly but inversely correlated to ASM

    ASM[17,25]ASM is the squared sum of all the elements of GLCM,also called energy.ASM measures the texture uniformity or thickness and is the opposite of ENT.Its value achieves the smallest when all elements are almost equal.This is a measure of local homogeneity

    CON[29,30]CON which is the moment of inertia of the matrix around its main diagonal is a measure of intensity contrast between a pixel and its neighbor over the entire image.A low value of CON is obtained when the image has almost constant gray levels;vice versa,this indicator presents high values for images of high contrast

    COR[30,31]COR is a measure of gray level linear dependencies in an image.This also reflects the degree of the rows(or columns)of GLCM relative to each other.For example,when the number of the texture in horizontal direction is more than other directions,the value of the correlation feature is higher along this direction compared to the values for others

    All the definitions above have no relationship with the real size of physical objects.Obviously,more pixels present better average texture features.However,in essence,the textural features of material microstructures should be coincident no matter what the amplification factor of the electron microscope sets or the size of image segmentation region selects.Hence,the unit statistics are used to characterize the texture features of one pixel corresponding to the real dimension. Take ENT as an example.The unit ENT value is as follows:

    where d x(μm)and d y(μm)are the physical dimensions of one pixel in the material microstructures.

    3.Benchmark of GLCM

    Before using the texture features to describe the material microstructures,the effects of parameters(i.e.,pixels distance d,angular relationship θ,and gray level G)on the features of GLCM should be discussed firstly.The typical grain structure is used as a benchmark to identify the proper parameters.Figure 2 shows different grain sizes when the grain grows with the annealing time.This mainly refers to the numeric calculation, so we ignore the scale here.

    Fig.2.Evolution of grain size along with the annealing time(an-time). The results are from phase field simulation,where the dimensionless time is 10000d t(720×720 pixels).(a)An-time=2,(b)an-time=8,(c)antime=16,(d)an-time=30.

    As discussed above,GLCM is the function of pixel distance d,angular relationship θ,and gray level G.To eliminate the influence of direction,the angular θ takes 0°,45°,90°, 135°,respectively and the mean value of the four directions is taken as the texture features.The effects of these parameters are evaluated to obtain the optimal GLCM.

    Set G=16.Figure 3 shows the curves of texture features (ENT,ASM,CON,and COR)in different an-time when the distance varies.For the same distance,the value of ENT and CON decreases along with the annealing time while ASM and COR increase.That is because when the grain size increases with an-time,the texture becomes simple and sparse with less grain boundary.The value of texture features changes correspondingly which is coincident to the analysis above in Section 2.With the increase of distance,ENT,ASM,COR,and CON reach a constant value after a transient stage.When the distance d≥3,all the texture features tend to be stable and show a good dispersion for the grain images at different time. Considering that there may exist errors of texture features if the distance d is larger than a grain,d=3 will be the optimal choice for GLCM.

    Next,we fix d=3 and discuss the impact of gray level on GLCM shown in Fig.4(G=2n,n=[3,4,...,8]).Considering the data dispersion and computation complexity,we take G=128 as the optimal gray level.Noted that although GLCM is a function of d,θ,and G,the texture features of ENT and ASM are convergent to a constant and coincident in the same variable environment.

    Fig.3.(color online)Variation curves of texture features along with distance.(a)ENT with an-time,(b)ASM with an-time,(c)CON with an-time,and(d)COR with an-time.

    Fig.4.(color online)Variation of texture features along with the gray level G=2n,n=[3,4,...,8](d=3).(a)ENT with an-time, (b)ASM with an-time,(c)CON with an-time,and(d)COR with an-time.

    4.Applications and results

    Three applications are presented in this paper to illustrate how to use GLCM to analyze the material microstructures. Considering that CON is sensitive to the brightness contrast among one pixel and its neighboring pixels,it is effective for image segmentation but insignificant for images obtained by the electron microscope along with the microstructure evolution.Meanwhile,different from artificial textures,the texture direction of microstructures is random,which means that there is no principal direction as shown in Figs.3 and 4.Therefore, COR is negligible for the material textures analysis without dominant orientation.Consequently,we only take the strong factors ENT and ASM into consideration in this paper.

    4.1.Grains in single phase

    The grain growth is from the phase field simulation.In general,the average grain size has a power law relationship with the annealing time in single phase,i.e.,D=Kt1/2.Based on the Hall–Petch formula,the yield strength depends on the average grain size[1]

    Using GLCM in Fig.2,we plot the ENT and ASM curves along with the annealing time as shown in Fig.5.The figures indicate that both ENT and ASM have a power law with the annealing time.Accordingly,the yield strength have a power law with ENT and ASM in the grain structure

    Fig.5.The power law relationship between texture features and annealing time of grain structure and the error bar by defining a detection window(540×540 pixels).(a)ENT with an-time and(b)ASM with an-time.

    where k1and k2can be determined by the obtained GLCM. Then,the texture features can be directly related to the mechanical properties.The basic idea behind GLCM is that the interface(grain boundary)blocks the migration of dislocations while GLCM reveals the statistic information of the grain boundary.

    4.2.Duplex phases

    In the systems of duplex phases,there is no simple relationship between the microstructures and mechanical properties.The characterization of complex microstructures is one of the obstacles to find a quantitative relationship.Figure 6 presents the typical microstructures of duplex-phase titanium after heat treatment at different temperatures.It is difficult to quantitatively identify the microstructures,although there are some differences in these figures with a glance.By using GLCM,we have two parameters of ENT and ASM to quantitatively reveal the difference of these images after different heat treatment.Figure 7 indicates that the heat treatment around 940°C may show the optimal mechanical properties which are coincident with the practical situation.

    Fig.6.Microstructures of duplex-phase titanium after heat treatment at different temperatures(960×1280 pixels).(a)Temp=860°C, (b)Temp=910°C,(c)Temp=920°C,(d)Temp=930°C,(e)Temp=940°C,(f)Temp=950°C,(g)Temp=960°C,and(h)Temp=970°C.

    Fig.7.Texture features at different temperatures of duplex-phase titanium and the error bar by defining a detection window(720×960 pixels). (a)Unit ENT with temperature and(b)unit ASM with temperature.

    4.3.Eutectic microstructure

    In the regular eutectic phase,the typical microstructure is a lamellar structure.The lamellar spacing and the volume fraction of the primary phase are usually measured to reveal the mechanical properties.Figure 8 shows the microstructures of eutectic high entropy alloys CoCrFeNiNbxwith different additions of element Nb.It has been reported that the hardness and compress strength increase but the compress elongation decreases with the increase of addition of Nb.[32]The variation of mechanical properties is attributed to the increase of volume fraction of the eutectic phase.The microstructure characterization is shown in Fig.9.Both ENT and ASM have a monotonic relation with the increase addition of Nb.The results show that ENT and ASM have a good relationship with the mechanical properties in the eutectic alloys.

    Fig.8.Microstructures of eutectic high entropy alloys CoCrFeNiNb x(x=0.1,0.25,0.5,0.65)[29](960×1280 pixels).(a)Nb0.1,(b)Nb0.25, (c)Nb0.5,and(d)Nb0.65.

    Fig.9.Texture features of eutectic high entropy alloys CoCrFeNiNb x (x=0.1,0.25,0.5,0.65)and the error bar by defining a detection window(720×960 pixels).(a)Unit ENT with Nb x and(b)unit ASM with Nb x.

    5.Results analysis

    Three applications of GLCM have been presented on the microstructure characterization.ENT and ASM show significant correlation with the mechanical properties.The intrinsic mechanism of the correlation depends on the description of interface in GLCM.For the mechanical properties,the interface including grain boundary in a single phase and interface between phases in duplex phases,will be the barrier of dislocation migration.In the microstructures,it is the interface again outlines the grains and phases.In previous microstructure characterization,the grains and phases were focused and the related information was statistically counted.Here,by GLCM,the interface gains more attentions,and the complexity of the microstructures is revealed.That is why GLCM can reveal the mechanical properties quantitatively.However,the properties are also determined by the property of phases and interface in different systems.Therefore,the correlation function of ENT or ASM and the mechanical properties may be different in different systems,where the function type or parameter may differ.

    Meanwhile,figures 5,7,and 9 also show the error bars by GLCM calculations of different areas of the original figures.Take grains in the single phase(Fig.5)as an example. The areas are defined by a detection window smaller than the original one and 5 different positions for the texture features are calculated.Then,the error range and the average value are identified in the figures.The details are shown in the corner of the figure.It is obvious that the error is very small(no more than 2%)and the power law relationship keeps constant. There is similar phenomenon in both duplex phases(Fig.7) and duplex phases(Fig.8)applications.The reason is that the microstructures are uniform as while as the texture features are statistics,and the errors depend on the homogeneity of the microstructures.That is why the error is much smaller in single phase and the largest error appears for Fig.8(a).It also demonstrates that GLCM method is objective and repeatable.

    As to the errors in relationship between the microstructures and the mechanical properties,the errors from GLCM analysis will be smaller than that in traditional analysis. Firstly,there are errors in the measurements of mechanical properties,which are inevitable.Secondly,the previous methods[10–14]have limitations in image segmentations and introduce errors from the subjectivity of human factors. GLCM is more powerful in characterizing the image with high precision.Therefore,the error range by using GLCM to predict the mechanical properties is smaller than previous methods.The exact error range depends on the homogeneity of the microstructures and the scatter of the material properties in specific processing.

    6.Conclusion

    In summary,the strategy of material microstructure analysis using GLCM is proposed.The mechanical properties mainly depend on the microstructures which can be well described by its texture features of the microscope image.This enables the idea that bypasses the traditional microstructure characterization methods and establishes the relationship between the mechanical properties and the image features itself be possible.Taking the typical grain structures as an example, we discuss the effect of different parameters,i.e.,the distance d and the gray level G on GLCM and present how to identify the proper value,and then the GLCM method is applied in three different microstructure systems.The results show that GLCM can reveal the interface information and the microstructures complexity.The parameters in GLCM can be used as fundamental parameters to establish models for the correlation of microstructures with the mechanical properties.

    [1]Meyers M A and Chawla K K 2009 Mechanical Behavior of Materials (Cambridge:Cambridge University Press)pp.1–7

    [2]Wojnar L 1988 Image Analysis:Applications in Materials Engineering (Crc Press)pp.3–8

    [3]Xu L,Zhao W M,Ding H L,Ma Z Y,Xu J,Chen K J and Li W 2010 Chin.Phys.B 19 047308

    [4]Zheng O,Ma J Y,Zhou J P,Jin L,Zhao D S and Wang R H 2009 Chin. Phys.B 18 4370

    [5]Wang K X,Zeng W D,Shao Y T,Zhao Y Q and Zhou Y G 2009 Rare Metal.Mater.Eng.38 398

    [6]Sampath S,Jiang X Y,Matejicek J,Leger A C and Vardelle A 1999 Mater.Sci.Eng.A 272 181

    [7]Czerwinski F,Zielinska-Lipiec A,Pinet P J and Overbeeke J 2001 Acta Materialia 49 1225

    [8]Abrams H 1971 Metallography 4 59

    [9]Qin M H,Lin L,Li L,Jia X T and Liu J M 2015 Chin.Phys.B 24 037509

    [10]Xu J L and Chen C 2004 Acta Metrologica Sin.4 369

    [11]Zhang Y X,Wang J C,Yang Y J,Yang G C and Zhou Y H 2009 Chin. Phys.B 18 4407

    [12]Lee J H,Moon H,Lee H W,Kim J,Kim J D and Yoon K H 2002 Solid State Ionics 148 15

    [13]Dallair M and Furrer D 2004 Adv.Mater.Process.162 25

    [14]Li G R,Wang F F,Wang H M,Zheng R,Xue F and Cheng J F 2017 Chin.Phys.B 26 046201

    [15]Campbell A,Murray P,Yakushina E,Marshall S and Ion W 2016 Proceedings of the 4th International Conference Recent Trends in Structural Materials,November 9–11,2016,Czech Republic,p.012011

    [16]DeCost B L and Holm E A 2015 Comput.Mater.Sci.110 126

    [17]Haralick R M,Shanmugam K and Dinstein I 1973 IEEE Trans.Syst. Man Cybern.SMC-3 610

    [18]Haralick R M 1979 Proc.IEEE 67 786

    [19]Haralick R M and Shanmugam K 1973 IEEE Trans.Geosci.Electron. 11 171

    [20]Champion I,Germain C,Da Costal J P,Alborini A and Dubois-Femandez P 2014 IEEE Geosci.Remote Sens.Lett.11 5

    [21]Su H,Wang Y P,Xiao J and Li L L 2013 ISPRS J.Photogram.Remote Sens.85 13

    [22]Eichkitz C G,Davies J,Amtmann J,Schreilechner M G and De Groot P 2015 First Break 33 71

    [23]Hu S,Xu C,Guan W Q,Tang Y and Liu Y N 2014 Bio-medical Mater. Eng.24 129

    [24]Tan T C,Ritter L J,Whitty A,Fernandez R C,Moran L J,Robertson S A,Thompson J G and Brown H M 2016 Mol.Reprod.Dev.83 701

    [25]Renzetti F R and Zortea L 2011 Frattura ed Integrita Strutturale 16 43

    [26]Renzetti F R and Zortea L 2010 Proceedings of the Youth Symposium on Experimental Solid Mechanics 2010,Trieste,Italy

    [27]Ulaby F T,Kouyate F,Brisco B and Williams T L 1986 IEEE Trans. Geosci.Remote Sens.GE-24 235

    [28]Ou X,Pan W and Xiao P 2014 Int.J.Pharmaceutics 460 28

    [29]Gonzalez R C and Woods R E 2006 Digital Image Processing(Pearson Education)p.849

    [30]Conners R W and Harlow C A 1980 IEEE Trans.Pattern Anal.Mach. Intell.PAMI-2 204

    [31]Kekre H B,Thepade S D,Sarode T K and Suryawanshi V 2010 Int.J. Comput.Theory Eng.2 695

    [32]He F,Wang Z J,Cheng P,Wang Q,Li J J,Dang Y Y,Wang J C and Liu C T 2016 J.Alloys Compd.656 284

    1 April 2017;revised manuscript

    5 June 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/098104

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.5147113 and 51505037)and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.3102017zy029,310832163402,and 310832163403).

    ?Corresponding author.E-mail:zhjwang@nwpu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    王志軍高昂李俊
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    Origin of the low formation energy of oxygen vacancies in CeO2
    高昂書法作品欣賞
    王志軍 油畫作品
    吹畫
    《厲害了,我的國》觀后感
    李俊彥
    A Brief Analysis On How To Improve Students’ Participation Enthusiasm In Classroom
    李俊邑
    公關世界(2016年20期)2016-02-27 11:15:14
    Numerical Simulation on New Perforator
    黑人巨大精品欧美一区二区mp4| tocl精华| 别揉我奶头~嗯~啊~动态视频| 色av中文字幕| 国产免费男女视频| 日本五十路高清| 1024香蕉在线观看| 国产亚洲欧美在线一区二区| 午夜福利欧美成人| 少妇的丰满在线观看| 一级片免费观看大全| 美女高潮到喷水免费观看| 午夜福利,免费看| 午夜免费观看网址| 两个人视频免费观看高清| 很黄的视频免费| 看免费av毛片| 午夜福利高清视频| 亚洲中文av在线| 日韩欧美免费精品| 变态另类丝袜制服| 久热爱精品视频在线9| ponron亚洲| 国产在线观看jvid| 精品人妻在线不人妻| 免费av毛片视频| 久久精品人人爽人人爽视色| 麻豆av在线久日| 久久久国产成人精品二区| 亚洲色图综合在线观看| 亚洲一区中文字幕在线| 婷婷精品国产亚洲av在线| АⅤ资源中文在线天堂| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 成人国产综合亚洲| 不卡一级毛片| 午夜福利欧美成人| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 成人18禁在线播放| 国产成人免费无遮挡视频| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合婷婷激情| 欧美日韩精品网址| 亚洲国产欧美日韩在线播放| 97人妻精品一区二区三区麻豆 | 丝袜在线中文字幕| 人人妻人人澡欧美一区二区 | 精品日产1卡2卡| 国产成人av激情在线播放| 日日爽夜夜爽网站| 精品久久久精品久久久| 成人国产综合亚洲| 亚洲专区中文字幕在线| 一进一出抽搐gif免费好疼| 国产三级在线视频| 久久婷婷人人爽人人干人人爱 | 久久久久国产一级毛片高清牌| 可以免费在线观看a视频的电影网站| 国产人伦9x9x在线观看| 欧美最黄视频在线播放免费| 久久精品亚洲熟妇少妇任你| 国产亚洲av高清不卡| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 欧美久久黑人一区二区| 18禁观看日本| 精品久久久久久久毛片微露脸| 国产精品秋霞免费鲁丝片| 国产精品电影一区二区三区| 日本五十路高清| 久久中文字幕一级| √禁漫天堂资源中文www| 九色亚洲精品在线播放| www.999成人在线观看| 一边摸一边抽搐一进一小说| 免费观看精品视频网站| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 变态另类成人亚洲欧美熟女 | 国产1区2区3区精品| 欧美+亚洲+日韩+国产| 黄色视频不卡| 国产97色在线日韩免费| 搞女人的毛片| 不卡一级毛片| 欧美激情久久久久久爽电影 | 老汉色∧v一级毛片| 亚洲专区中文字幕在线| 在线观看免费视频网站a站| 亚洲av成人av| 久久久久国内视频| 美女 人体艺术 gogo| 国内久久婷婷六月综合欲色啪| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人一区二区三| 中文字幕高清在线视频| 手机成人av网站| 在线观看66精品国产| 男女下面进入的视频免费午夜 | 50天的宝宝边吃奶边哭怎么回事| 免费一级毛片在线播放高清视频 | 免费女性裸体啪啪无遮挡网站| 午夜福利视频1000在线观看 | 午夜福利一区二区在线看| 一级,二级,三级黄色视频| 最新美女视频免费是黄的| 亚洲三区欧美一区| av有码第一页| 日韩一卡2卡3卡4卡2021年| 亚洲国产日韩欧美精品在线观看 | 久久久久久久精品吃奶| 亚洲在线自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线大香蕉| 午夜免费鲁丝| 搡老岳熟女国产| 国产精品日韩av在线免费观看 | 神马国产精品三级电影在线观看 | 成人国产一区最新在线观看| 色播亚洲综合网| 在线播放国产精品三级| 韩国精品一区二区三区| 免费搜索国产男女视频| 黄色丝袜av网址大全| 老汉色∧v一级毛片| 亚洲无线在线观看| 国产激情久久老熟女| 在线观看免费视频日本深夜| 成人免费观看视频高清| 午夜福利成人在线免费观看| 一区二区三区激情视频| 黄色视频,在线免费观看| 欧美一级毛片孕妇| 身体一侧抽搐| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 叶爱在线成人免费视频播放| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 男人的好看免费观看在线视频 | 精品第一国产精品| 人人妻,人人澡人人爽秒播| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 欧美国产精品va在线观看不卡| 黄色女人牲交| aaaaa片日本免费| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| 如日韩欧美国产精品一区二区三区| 亚洲av片天天在线观看| 欧美黑人精品巨大| www.www免费av| 啦啦啦韩国在线观看视频| 色在线成人网| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 又大又爽又粗| 香蕉久久夜色| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 欧美成人午夜精品| 一夜夜www| 欧美成人免费av一区二区三区| 国产精品亚洲美女久久久| 国产蜜桃级精品一区二区三区| 制服诱惑二区| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 制服诱惑二区| 亚洲av五月六月丁香网| 91成年电影在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 欧美大码av| 欧美+亚洲+日韩+国产| av网站免费在线观看视频| 窝窝影院91人妻| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 久久久久国产一级毛片高清牌| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影| 久久青草综合色| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆成人av在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| 日韩精品青青久久久久久| 亚洲黑人精品在线| 9191精品国产免费久久| 精品欧美国产一区二区三| 精品欧美一区二区三区在线| 日韩大尺度精品在线看网址 | 成在线人永久免费视频| 麻豆av在线久日| 国产av一区在线观看免费| 欧美精品亚洲一区二区| 欧美一区二区精品小视频在线| 少妇被粗大的猛进出69影院| 琪琪午夜伦伦电影理论片6080| 国产国语露脸激情在线看| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线美女| 久久国产精品男人的天堂亚洲| 久久中文字幕人妻熟女| 亚洲精品国产一区二区精华液| 人妻久久中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 欧美激情高清一区二区三区| 成人欧美大片| 一进一出好大好爽视频| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av | 午夜a级毛片| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 精品不卡国产一区二区三区| 香蕉丝袜av| 两个人看的免费小视频| 久久婷婷人人爽人人干人人爱 | 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 999久久久精品免费观看国产| 91av网站免费观看| 国产成人精品久久二区二区免费| 国产欧美日韩一区二区三| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 夜夜爽天天搞| 757午夜福利合集在线观看| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 亚洲av五月六月丁香网| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜精品一区,二区,三区| 亚洲无线在线观看| 可以在线观看毛片的网站| 一进一出好大好爽视频| 人妻久久中文字幕网| 此物有八面人人有两片| 好男人在线观看高清免费视频 | 国产一卡二卡三卡精品| 色av中文字幕| 日本欧美视频一区| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 精品国产国语对白av| 国产91精品成人一区二区三区| 首页视频小说图片口味搜索| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟女乱码| 麻豆久久精品国产亚洲av| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 满18在线观看网站| 国产精品亚洲美女久久久| 长腿黑丝高跟| 两个人看的免费小视频| 国产私拍福利视频在线观看| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看 | 窝窝影院91人妻| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| av免费在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品av麻豆狂野| 日韩欧美三级三区| xxx96com| 深夜精品福利| 欧美一级a爱片免费观看看 | 婷婷六月久久综合丁香| 老司机福利观看| 亚洲美女黄片视频| 日本vs欧美在线观看视频| 国产一级毛片七仙女欲春2 | 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 色尼玛亚洲综合影院| 国产在线观看jvid| 91麻豆av在线| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| av中文乱码字幕在线| 国产熟女午夜一区二区三区| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片 | 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 欧美精品亚洲一区二区| 久久天躁狠狠躁夜夜2o2o| 岛国在线观看网站| 两个人视频免费观看高清| 成人永久免费在线观看视频| 国产av精品麻豆| 国产成人免费无遮挡视频| 免费高清视频大片| 可以在线观看毛片的网站| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 国产真人三级小视频在线观看| 日本撒尿小便嘘嘘汇集6| ponron亚洲| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 色老头精品视频在线观看| 亚洲人成77777在线视频| 中文字幕av电影在线播放| 免费在线观看日本一区| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣av一区二区av| 亚洲免费av在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区三区免费视频网站| 18禁观看日本| 欧美色欧美亚洲另类二区 | 午夜久久久在线观看| 免费少妇av软件| 国产成人欧美在线观看| 精品国产一区二区三区四区第35| 午夜福利成人在线免费观看| 久热这里只有精品99| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 最近最新中文字幕大全电影3 | 亚洲狠狠婷婷综合久久图片| 亚洲专区字幕在线| 99国产精品一区二区蜜桃av| 亚洲午夜精品一区,二区,三区| 69av精品久久久久久| 又黄又爽又免费观看的视频| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 中国美女看黄片| 麻豆成人av在线观看| 又大又爽又粗| 色哟哟哟哟哟哟| 在线观看午夜福利视频| 国产乱人伦免费视频| 亚洲aⅴ乱码一区二区在线播放 | 性欧美人与动物交配| 亚洲欧美日韩无卡精品| 美女扒开内裤让男人捅视频| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全电影3 | 久久中文字幕一级| 亚洲国产精品合色在线| 麻豆av在线久日| 午夜两性在线视频| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 亚洲熟女毛片儿| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 满18在线观看网站| 一级黄色大片毛片| 最近最新免费中文字幕在线| 少妇 在线观看| 最近最新免费中文字幕在线| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 欧美日韩黄片免| 欧美日韩一级在线毛片| 涩涩av久久男人的天堂| 老司机福利观看| 婷婷六月久久综合丁香| 久久久久久久久免费视频了| 99在线人妻在线中文字幕| 窝窝影院91人妻| 一个人免费在线观看的高清视频| av电影中文网址| 日日干狠狠操夜夜爽| 免费无遮挡裸体视频| 欧美成人一区二区免费高清观看 | 亚洲免费av在线视频| 美女免费视频网站| 日本三级黄在线观看| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 岛国在线观看网站| 久久久久九九精品影院| 纯流量卡能插随身wifi吗| 无人区码免费观看不卡| 亚洲第一av免费看| 欧美大码av| 亚洲熟妇熟女久久| 香蕉久久夜色| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| 波多野结衣av一区二区av| 国产激情久久老熟女| 久久中文看片网| 国产精品电影一区二区三区| 亚洲 欧美 日韩 在线 免费| 后天国语完整版免费观看| 欧美+亚洲+日韩+国产| 国产精品亚洲av一区麻豆| 日本欧美视频一区| 中文字幕最新亚洲高清| 国产亚洲欧美在线一区二区| 9191精品国产免费久久| 男女下面插进去视频免费观看| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 色播在线永久视频| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 午夜福利一区二区在线看| 女人精品久久久久毛片| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 亚洲五月婷婷丁香| 国产精品98久久久久久宅男小说| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 精品高清国产在线一区| 国产三级黄色录像| 怎么达到女性高潮| www.999成人在线观看| 亚洲av成人一区二区三| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| av欧美777| 国产精品一区二区免费欧美| 极品教师在线免费播放| 侵犯人妻中文字幕一二三四区| 久久午夜亚洲精品久久| 日本五十路高清| 国产精品 欧美亚洲| 亚洲精品美女久久av网站| 久久精品亚洲精品国产色婷小说| www.www免费av| 好男人电影高清在线观看| 色综合欧美亚洲国产小说| 美女高潮喷水抽搐中文字幕| 美国免费a级毛片| 欧美成人一区二区免费高清观看 | 亚洲第一欧美日韩一区二区三区| 亚洲,欧美精品.| 国产亚洲精品综合一区在线观看 | 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 丰满的人妻完整版| 免费一级毛片在线播放高清视频 | 999精品在线视频| 最新在线观看一区二区三区| 国产私拍福利视频在线观看| 在线观看舔阴道视频| 亚洲国产精品成人综合色| 亚洲精品在线美女| 久久久国产成人精品二区| 国产精品免费一区二区三区在线| 国产亚洲精品av在线| 久久亚洲真实| 男人舔女人的私密视频| 法律面前人人平等表现在哪些方面| 久久久水蜜桃国产精品网| 一本大道久久a久久精品| 亚洲精品久久国产高清桃花| 嫩草影视91久久| 国产精品 欧美亚洲| 国产亚洲欧美在线一区二区| 午夜激情av网站| 久久香蕉激情| 一a级毛片在线观看| 夜夜躁狠狠躁天天躁| 亚洲九九香蕉| 日本黄色视频三级网站网址| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 一区在线观看完整版| 搡老岳熟女国产| 欧美一级a爱片免费观看看 | 精品久久久久久久毛片微露脸| 亚洲欧美精品综合一区二区三区| 午夜老司机福利片| 国产高清激情床上av| 看片在线看免费视频| 久久久久久久久久久久大奶| 伊人久久大香线蕉亚洲五| 亚洲精品国产一区二区精华液| 亚洲精品粉嫩美女一区| 97人妻天天添夜夜摸| 精品熟女少妇八av免费久了| 亚洲精品久久成人aⅴ小说| 91精品国产国语对白视频| 亚洲精华国产精华精| 日韩免费av在线播放| 亚洲av电影不卡..在线观看| 国产精品日韩av在线免费观看 | 免费在线观看黄色视频的| 一区福利在线观看| 成人欧美大片| 日本 欧美在线| 好男人电影高清在线观看| 高清在线国产一区| 叶爱在线成人免费视频播放| 久久久久久免费高清国产稀缺| 女人精品久久久久毛片| 国产精品二区激情视频| 久久久久国产精品人妻aⅴ院| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 亚洲av片天天在线观看| 高清毛片免费观看视频网站| 欧美av亚洲av综合av国产av| 啦啦啦韩国在线观看视频| av网站免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 亚洲精品粉嫩美女一区| 黄色成人免费大全| e午夜精品久久久久久久| 深夜精品福利| 国产精品国产高清国产av| 在线观看免费午夜福利视频| 少妇被粗大的猛进出69影院| 国产伦一二天堂av在线观看| 一区在线观看完整版| 久久亚洲精品不卡| 男男h啪啪无遮挡| 国产成人影院久久av| 在线视频色国产色| 亚洲色图综合在线观看| 久久精品91无色码中文字幕| 亚洲美女黄片视频| 99精品在免费线老司机午夜| 国产精品久久视频播放| 久久久国产欧美日韩av| 脱女人内裤的视频| 最近最新免费中文字幕在线| 久久人人精品亚洲av| 看免费av毛片| 一级,二级,三级黄色视频| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 一个人观看的视频www高清免费观看 | 十八禁网站免费在线| 免费无遮挡裸体视频| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区久久 | 国产高清视频在线播放一区| 国内久久婷婷六月综合欲色啪| 嫩草影院精品99| 欧美成人午夜精品| 国产麻豆成人av免费视频| 亚洲第一av免费看| 久久影院123| 亚洲自偷自拍图片 自拍| 精品免费久久久久久久清纯| 亚洲 欧美 日韩 在线 免费| e午夜精品久久久久久久| 一区福利在线观看| 日日爽夜夜爽网站| 日本a在线网址| 精品国产超薄肉色丝袜足j| 国产国语露脸激情在线看| 中文字幕人成人乱码亚洲影|