• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering

    2022-09-29 00:21:12LIUQiangWANGQianCHENPenghuiLIXiaoyingZHANGLixuanXIETengfeiLIJiang
    無機材料學(xué)報 2022年8期
    關(guān)鍵詞:李江郭先生靜壓

    LIU Qiang, WANG Qian,2, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang

    Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering

    LIU Qiang1, WANG Qian1,2, CHEN Penghui2,3, LI Xiaoying2,3, ZHANG Lixuan2,3, XIE Tengfei2,3, LI Jiang2,3

    (1. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; 3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Color zirconia ceramics are widely used in electronics and decoration fields due to their bright colors, high refractive index, wear resistance, corrosion resistance, and non-toxicity to the human body. Cubic cerium doped 8% yttria mol percent stabilized zirconia (Ce-doped 8YSZ) nano-powder with average particle size of 15.9 nm was synthesized by co-precipitation method. Using the powder calcined at 800 ℃ for 4 h as starting material, red zirconia transparent ceramics with high optical transparency and high redness value were prepared by two-step sintering method. Influences of pre-sintering temperature on microstructure, in-line transmittance and color performance of the red Ce-doped 8YSZ ceramics were studied. As the pre-sintering temperature increases from 1200 ℃ to 1300 ℃, average grain size of the ceramics increases from 0.3 μm to 2.2 μm and the relative density increases from 87.2% to 97.1%. The Ce-doped 8YSZ ceramics pre-sintered at 1275 ℃ for 2 h and hot isostatic pressed (HIP) at 1700 ℃ for 3 h show the best in-line transmittance of 47.6% at 700 nm and the highest redness of 52.0.

    Ce-doped 8YSZ; red transparent ceramics; air pre-sintering; hot isostatic pressing; optical property

    In recent decades, the applications of zirconia material extend to dental restoration materials, smart terminal materials, color decoration materials and other potential fields[1-4], which is attributed to its outstanding mechanical properties, chemical inertness, optical properties and biocompatibility[5-7]. In the past, the cubic yttria stabilized zirconia single crystal is an interesting material for an application as diamond imitation because of its high refractive index of 2.2 and high hardness[8-12]. However, there are some drawbacks for the single crystals, such as high fabrication temperature (2750oC), shape limitation and high cost[13]. In addition, the melting point of the colorants are much lower than that of the zirconia single crystal, causing serious volatilization of the coloring ions and making it difficult to achieve the desired colors. Investigations have demonstrated that zirconia transparent ceramics have many advantages compared with the zirconia single crystals[14-16]. For example, the preparation temperature of zirconia ceramics is low, which can avoid the volatilization of colorants.

    In 1986, the first report on transparent c-ZrO2ceramics was published by Tsukuma[14]. Since then, polycrystalline c-ZrO2transparent ceramics have been widely investigated[15-18]. On one hand, c-ZrO2transparent ceramics were fabricated using commercially available yttria stabilized zirconia powders as starting materials. Peuchert,[16]fabricated polycrystalline c-ZrO2transparent ceramics after sintering at 1650 ℃ for 3 h followed by HIP treatment at 1750 ℃ for 1 h using high purity cubic yttria stabilized zirconia powder (Tosoh Corporation, Tokyo, Japan), and the in-line transmittance of 5.6 mm thick samples reached 68% at 600 nm. On the other hand, co-precipitation method is an effective route to synthesize yttria stabilized zirconia nano-powders with good dispersity and high sinterability[17-18], and it is also widely used to prepare various transparent ceramics[19-21]because of its simple and economical process. Chen,[22]prepared yttria-stabilized zirconia transparent ceramics after sintering at 1350 ℃ for 2 h and HIP treatment at 1800 ℃ for 3 h from the co-precipitated nano-powder, and the in-line transmittance of the ceramics with the thickness of 1.0 mm was 67.8% at 800 nm. Currently, there are also some investigations on zirconia ceramics with various colors[2,23].

    By doping transition metals or rare earths, various colors can be observed in zirconia ceramics. Compared with other rare earth ions that exist mostly in a trivalent state, cerium exists in the form of Ce3+and Ce4+in the zirconia. Ce3+can exhibits a strong absorption band at about 400 nm caused by 4f-5d transition, while Ce4+does not show any absorption band in the visible range[24]. In order to obtain a red zirconia ceramic with high redness value, Lv[25]fabricated Ce-doped red zirconia ceramics by a high-temperature reduction method, and the absorption band was in the range from 480 to 500 nm and the maximum redness value of the ceramics was 32. Additionally, iron oxide was widely used as a red colorant for the preparation of red ceramics[26-29]. Results showed that Fe2O3had poor color rendering and the samples were orange-red. At present, the redness value of zirconia ceramics was low and few studies were conducted on transparent zirconia ceramics with red color which can broaden the application of zirconia ceramics in filters, signal lampshades and other fields.

    In order to obtain red zirconia ceramics with high transparency and large redness value, two-step sintering method was used. In this work, the Ce-doped 8YSZ nano-powder used as the starting material was synthesizedby a reverse co-precipitation method. Red Ce-doped 8YSZ transparent ceramics were prepared by air pre-sintering combined with HIP post-treatment. The influences of pre-sintering temperatures on microstructure, in-line transmittance and color parameters of Ce-doped 8YSZ ceramics were studied.

    1 Experimental

    ZrOCl2?8H2O (99.5%, Zhongkai New Materials Co., Ltd., Jining, China) was dissolved in deionized water to obtain the solution containing Zr4+. Ce(NO3)3and Y(NO3)3solutions were prepared by dissolving CeO2(99.995%, Golden Dragon Rare-earth Co., Ltd., Fujian, China) and Y2O3(99.999%, Golden Dragon Rare-earth Co., Ltd., Fujian, China) into the high-purity hot nitric acid. The solutions were mixed in stoichiometrical proportions of Ce3+:Zr4+:Y3+=0.01:0.91:0.16. Ammonium hydroxide (25.0%–28.0%, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) solution was used as precipitant solution and PEG4000 (Aladdin Industrial Co., Ltd., Shanghai, China) was added as dispersant. The mixed salt solution was dropped into the precipitant solution at a rate of 20 mL/min under stirring and the terminal pH was 9.0. After aging for 1 h at room temperature, the resultant slurry was washed for 4 times with deionized water and twice with anhydrous ethanol. After drying at 70 ℃ for 30 h, the precursor was seived through a 75 μm (200-mesh) screen. Then the precursor was calcined at 800 ℃ for 4 h to obtain the Ce-doped 8YSZ powder. After that, the powder was uniaxially dry-pressed into pellets at 40 MPa, and then cold isostatically pressed at 250 MPa to get the ceramic green bodies. The green pellets were pre-sintered at 1200–1300 ℃ for 2 h in air and HIP treated at 1700 ℃ for 3 h under 176 MPa in Ar atmosphere. The ceramic samples were then polished to 1 mm thickness for subsequent testing. The pre-sintered and HIP post-treated ceramics were thermally etched at 1100 and 1450 ℃ for 3 h, respectively.

    Thermogravimetry and differential thermal analysis (TG-DTA, Thermo Plus Evo II, Rigaku, Japan) were used to test the thermal behavior of precursor in air at a heating rate of 10 ℃/min. X-ray diffraction (XRD, Model D/MAX2200 PC, Rigaku, Japan) was used to analyze the phase of the nano-powder and the ceramics in the range of 2=20°–80°, which was excited by a Cu Kαradiation. Norcross ASAP 2010 micromeritics was used to determine the specific surface area of the nano- powder with the nitrogen adsorption isothermal at 77 K. Field emission scanning electron microscope (FESEM, SU9000, Hitachi, Japan) was used to analyze the morphologies of precursor and calcined powder. The microstructures and energy-dispersive X-ray spectrometry (EDS) mapping of sintered ceramics were observed by field emission scanning electron microscope (FESEM, SU8220, Hitachi, Japan). UV-VIS-NIR spectrophotometer (Model Cary-5000, Varian, USA) was used to measure the in-line transmittance, absorption spectrum and the CIE value with the Color software. The*×*×*colorimetry method recommended by the International Commission on Illumination (CIE 15-2004) was used. And the normal/normal geometry (0°:0°) for transmission measurements was used. For the color measurement system,*is the lightness axis 0 (black) – 100 (white),*is the red (+) – green (–) axis, and*is the yellow (+) – blue (–) axis.

    2 Results and discussion

    The TG-DTA curves of the Ce-doped 8YSZ precursor are shown in Fig. 1. The total weight loss of the precursor is 30.0% in the heating process from room temperature to 1200 ℃. The weight loss of 24.4% below 280 ℃ is mainly caused by the removal of absorbed water, hydrate water and residual ethanol and the decomposition of hydroxides, accompanied with a large endothermic peak at 115 ℃[19]. The exothermic peak at 290 ℃ is due to the decomposition of PEG4000. The exothermic peak at 461 ℃ is related to the crystallization of Ce-doped 8YSZ phase[30].

    Fig. 2 shows the XRD patterns of the as-synthesized Ce-doped 8YSZ precursor and the powder calcined at 800 ℃ for 4 h. The result shows that the precursor is amorphous. After calcined at 800 ℃, the specimen shows good crystallinity and the peaks are consistent with the c-ZrO2phase (JCPDS 49-1642). The average crystallite size (XRD) of the Ce-doped 8YSZ powder is 11.5 nm calculated by Scherrer’s formula using the full width at half maximum (FWHM) of XRD pattern.

    Fig. 3 shows the FESEM micrographs of the Ce-doped 8YSZ precursor and the powder calcined at 800 ℃ for 4 h. It can be seen from Fig. 3(a) that the precursor is heavily aggregated. The reason for the agglomeration is the hydrogen bond between the hydroxides and the dispersant (PEG4000) covered on the surface of the precursor[17]. The powder exhibits good homogeneity and dispersity after calcination and the shape of the powder is quasi-spherical. The specific surface area (BET) of the Ce-doped 8YSZ powder is 63.3 m2/g and the average particle size (BET) is 15.9 nm.

    Fig. 1 TG-DTA curves of the Ce-doped 8YSZ precursor

    Fig. 2 XRD patterns of (a) Ce-doped 8YSZ precursor and (b) the powder calcined at 800 ℃ for 4 h

    Fig. 3 FESEM micrographs of (a) Ce-doped 8YSZ precursor and (b) the powder calcined at 800 ℃ for 4 h

    Fig. 4 FESEM micrographs of the thermally etched surfaces of Ce-doped 8YSZ ceramics pre-sintered at different temperatures in air for 2 h

    (a) 1200 ℃; (b) 1230 ℃; (c) 1250 ℃; (d) 1275 ℃; (e) 1300 ℃

    Fig. 5 Relative densities and average grain size of the Ce-doped 8YSZ ceramics pre-sintered at 1200–1300 ℃ in air for 2 h

    Fig. 6(a-e) show the FESEM micrographs of the thermally etched surfaces of Ce-doped 8YSZ ceramics pre-sintered at 1200–1300 ℃ in air for 2 h combined with HIP post-treatment at 1700 ℃ for 3 h. It can be seen that the grain size and porosity of the ceramics after HIP post-treatment have changed significantly compared with the pre-sintered ceramics. The average grain size of the ceramics pre-sintered at 1200 ℃ increases to 4.7 μm after HIP treatment. The relative density of the ceramics only increases to 91.3%, and it can be noticed from Fig. 6(a) that there are still a lot of pores in the ceramics after HIP post-treatment. The reason for this phenomenon is that there are many open pores in the pre-sintered ceramics, which result in the infiltration of argon and elimination of the driving force of pore migration[32]. For the ceramics pre-sintered at 1230 and 1250 ℃ combined with HIP post treated at 1700 ℃, most of the pores are eliminated and the average grain sizes are 83 and 104 μm, respectively. Meanwhile some intragranular pores are formed because the migration rate of grain boundaries is faster than the remove rate of pores during the HIP post-treatment[31]. After HIP treatment, the ceramics pre-sintered at 1275 ℃ have a nearly pore-free microstructure due to the effective removal of intergranular pores and the average gain size is 110 μm. For the HIP-treated ceramics pre-sintered at 1300 ℃, the intragranular pores are still in the ceramics after HIP post-treatment. Fig. 6(f-i) show the EDS elemental mapping of theCe-doped 8YSZ ceramics. The doped element of Ce is homogeneously distributed in the grains of the ceramics.

    Fig. 7 shows the XRD patterns of the pre-sintered and the HIP post-treated ceramics. The splitting peaks at high angles are caused by CuKα2. The result shows that the crystal structures of the ceramics before and after HIP treatment are both cubic fluorite type, which does not exhibit the birefringence effect at the grain boundaries.

    Fig. 6 (a-e) FESEM micrographs of the thermally etched surfaces of Ce-doped 8YSZ ceramics pre-sintered at 1200– 1300 ℃for 2 h and HIP post-treatment at 1700 ℃ for 3 h; (f-i) EDS element mapping of the Ce-doped 8YSZ ceramics pre-sintered at 1275 ℃

    (a) 1200 ℃; (b) 1230 ℃; (c) 1250 ℃; (d) 1275 ℃; (e) 1300 ℃

    Fig. 7 XRD patterns of the (a) pre-sintering and (b) HIP-treatment ceramics

    Fig. 8 (a) Photograph and (b) in-line transmittance of the Ce-doped 8YSZ ceramics (1 mm thick) pre-sintered at 1200–1300 ℃ in air for 2 h and HIP post-treatment at 1700 ℃ for 3 h under 176 MPa in Ar atmosphere

    Fig. 9 Absorption spectra of the ceramics pre-sintered at different temperatures and HIP post-treatment at 1700 ℃

    Table 1 CIE value of Ce-doped 8YSZ ceramics pre- sintered at 1230–1300 ℃ for 2 h and HIP post-treatment at 1700 ℃ for 3 h

    3 Conclusions

    In this work, Ce-doped 8YSZ transparent ceramics were prepared by air pre-sintering at 1200–1300 ℃ for 2 h combined with HIP post-treatment at 1700 ℃ for 3 h using the nano-powder synthesizeda co-precipitation method. By doping with cerium ions, the 8YSZ ceramics show a bright red color. The pre-sintering temperatures have a great influence on microstructure and optical performance. The ceramics pre-sintered at 1275 ℃ for 2 h combined with HIP post-treatment at 1700 ℃ for 3 h show the highest in-line transmittance of 47.6% at 700 nm and the biggest redness value of 52.0. The preparation temperature of zirconia ceramics is lower than the single crystals, which can effectively avoid the volatilization of colorants. Red Ce-doped 8YSZ transparent ceramics have wide application prospects in filter materials, signal lamp materials and other fields.

    [1] ZHANG X X, ZHU D B, LIANG J S. Progress on hydrothermal stability of dental zirconia ceramics., 2020, 35(7): 759–768.

    [2] LV H D, BAO J X, RUAN F,. Preparation and properties of black Ti-doped zirconia ceramics., 2020, 9(3): 6201–6208.

    [3] SANI E, SCITI D, CAPIANI C,. Colored zirconia with high absorbance and solar selectivity., 2020, 186: 147–151.

    [4] LAGANOVSKA K, OLSTEINS D, SMITS K,. Formation of translucent nanostructured zirconia ceramics., 2021, 41(13): 6641–6648.

    [5] LEI L W, FU Z Y, WANG H,. Transparent yttria stabilized zirconia from glycine-nitrate process by spark plasma sintering., 2012, 38(1): 23–28.

    [6] IKESUE A. Processing of ceramics: breakthroughs in optical materials. Hoboken: John Wiley and Sons, 2021: 275–348.

    [7] BEJUGAMA S, CHAMEETTACHAL S, PATI F,.cellular response and hydrothermal aging of two-step sintered Nb2O5doped ceria stabilized zirconia ceramics., 2021, 47(2): 1594–1601.

    [8] WOOD D L, NASSAU K. Refractive index of cubic zirconia stabilized with yttria., 1982, 21(16): 2978–2981.

    [9] TIAN T, XU J Y, ZHAN Z G,. Study on the spectral characteristics of emerald-like cubic zirconia crystal., 2015, 44(3): 581–586.

    [10] DASHA A, KIMB B N, KLIMKEC J,. Transparent tetragonal-cubic zirconia composite ceramics densified by spark plasma sintering and hot isostatic pressing., 2019, 39(4): 1428–1435.

    [11] ZHANG H B, KIM B N, MORITA K,. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains., 2010, 508(1): 196–199.

    [12] ZHANG H B, KIM B N, MORITA K,. Optical properties and microstructure of nanocrystalline cubic zirconia prepared by high-pressure spark plasma sintering., 2011, 94(9): 2981–2986.

    [13] TIAN F, CHEN C, LIU Y,. Fabrication of Nd:YAG transparent ceramics from co-precipitated powders by vacuum pre- sintering and HIP post-treatment., 2020, 101: 109728.

    [14] TSUKUMA K. Transparent titania-yttria-zirconia ceramics., 1986, 5: 1143–1144.

    [15] TSUKUMA K, YAMASHITA I, KUSUNOSE T. Transparent 8mol% Y2O3-ZrO2(8Y) ceramics., 2010, 91(3):813–818.

    [16] PEUCHERT U, OKANO Y, MENKE Y,. Transparent cubic-ZrO2ceramics for application as optical lenses., 2009, 29(2): 283–291.

    [17] LIU Q, CHEN P H, JIANG N,. Fabrication and characterizations of 8.7mol% Y2O3-ZrO2transparent ceramics using co-precipitated nanopowders., 2019, 171: 98–101.

    [18] LUO J M, CAO Z C, DENG L P,. Preparation and luminescence property of Ho3+/Yb3+:8YSZ nanopowders., 2017, 46(10): 1902–1906.

    [19] HUANG X Y, LIU Y M, LIU Y,. Fabrication and characterizations of Yb:YAG transparent ceramics using alcohol- water co-precipitation method., 2021, 36(2): 217–224.

    [20] LI X Y, SNETKOV I L, YAKOVLEV A,. Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12(RE=Pr, Tm, Dy) toward magneto-optical application., 2021, 10(2): 271–278.

    [21] LIU Z Y, TOCI G, PIRRI A,. Fabrication, microstructures, and optical properties of Yb:Lu2O3laser ceramics from co-precipitated nano-powders., 2020, 9(6): 674–682.

    [22] CHEN P H, LIU Q, LI X Y,. Influence of terminal pH value on co-precipitated nanopowders for yttria-stabilized ZrO2transparent ceramics., 2019, 98: 109475.

    [23] LV H D, BAO J X, QI S Y,. Optical and mechanical properties of purple zirconia ceramics., 2019, 7(3): 306–311.

    [24] R?MER H, LUTHER K D, ASSMUS W. Coloured zirconia., 1994, 29(6): 787–794.

    [25] LV H D, BAO J X, CHAO L M,. Development mechanism of Ce-doped red zirconia ceramics prepared by a high-temperature reduction method., 2019, 797: 931–939.

    [26] LEE D Y, KIM D J, SONG Y S. Chromaticity, hydrothermal stability, and mechanical properties of t-ZrO2/Al2O3composites doped with yttrium, niobium, and ferric oxides., 2000, 289(1/2): 1–7.

    [27] HOLZA L, MACIASB J, VITORINOB N,. Effect of Fe2O3doping on colour and mechanical properties of Y-TZP ceramics., 2018, 44(15): 17962–17971.

    [28] JOVANí M, FORTU?O-MORTE M, BELTRáN-MIR H,. Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7., 2018, 38(4): 2210–2217.

    [29] WILLEMS E, ZHANG F, VAN MEERBEEK B,. Iron oxide colouring of highly-translucent 3Y-TZP ceramics for dental restorations., 2019, 39(2/3): 499–507.

    [30] SALEHI S, FATHI M H. Fabrication and characterization of Sol-Gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents., 2010, 36(5): 1659–1667.

    [31] SU S, LIU Q, HU Z W,. A simple way to prepare Co:MgAl2O4transparent ceramics for saturable absorber., 2019, 797: 1288–1294.

    [32] CHEN P H, LIU Q, FENG Y G,. Transparent Y0.16Zr0.84O1.92ceramics sintered from co-precipitated nanopowder., 2020, 100: 109645–1–6.

    [33] NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: material defects and scintillation performance., 2008, 245(9): 1701–1722.

    2000年7月, 我大學(xué)畢業(yè)到中國科學(xué)院上海硅酸鹽研究所潘裕柏老師課題組工作。當(dāng)時我的辦公室正好在郭先生辦公室隔壁, 讓我有很多機會與先生近距離接觸。郭先生給人的印象是平易近人、知識淵博、科研功底深厚。受郭先生的感染, 我入所沒多久就立志要攻讀研究生。經(jīng)過努力, 我順利通過國家研究生入學(xué)考試, 并幸運地成為郭先生和潘老師的研究生。2002年9月, 我進(jìn)入中國科學(xué)技術(shù)大學(xué)聯(lián)合培養(yǎng), 也是在這一年郭先生發(fā)現(xiàn)自己的聲音變得嘶啞。2003年6月底, 我回到所里開展“稀土離子摻雜YAG激光透明陶瓷的制備、結(jié)構(gòu)及性能研究”的課題研究。同年8月, 郭先生查出來患了喉癌, 他用自己的嗓音在我主持的“青年學(xué)術(shù)沙龍”上做了最后一次學(xué)術(shù)報告“碳纖維補強石英復(fù)合材料及其應(yīng)用”。2003年9月, 郭先生進(jìn)行了全喉切除手術(shù), 從此他再也無法正常發(fā)音了。癌癥手術(shù)后的生活中, 郭先生把更多的精力放在研究生的培養(yǎng)與指導(dǎo)上, 他借助人工發(fā)聲裝置經(jīng)常跟我討論研究課題, 并提出解決問題的建議, 幫助我成功研制出高性能的YAG激光陶瓷。研究生期間我撰寫的每一篇學(xué)術(shù)論文, 郭先生都一字一句仔細(xì)修改, 使我的科研論文撰寫能力得到不斷提升。在與癌癥抗?fàn)幤陂g, 郭先生表現(xiàn)出來的積極樂觀深深地鼓舞了我, 讓我在科研生活中遇到任何困難都不會輕言放棄。這些年來, 郭先生主張逆向思維, 提倡標(biāo)新立異, 追求事物本質(zhì)的科學(xué)精神也一直激勵著我。我希望自己能像郭先生一樣, 在自己的研究領(lǐng)域揮灑汗水與智慧, 在科研的道路上發(fā)光發(fā)熱。

    左二: 李江; 左四: 郭景坤先生

    (李江)

    兩步燒結(jié)法制備紅色Ce:8YSZ透明陶瓷及其性能研究

    劉強1, 王倩1,2, 陳鵬輝2,3, 李曉英2,3, 章立軒2,3, 謝騰飛2,3, 李江2,3

    (1. 江蘇大學(xué) 材料科學(xué)與工程學(xué)院, 鎮(zhèn)江 212013; 2. 中國科學(xué)院 上海硅酸鹽研究所, 透明光功能無機材料重點實驗室, 上海 201899; 3. 中國科學(xué)院大學(xué) 材料科學(xué)與光電工程中心, 北京 100049)

    彩色氧化鋯陶瓷具有鮮艷色彩、高折射率、耐磨損、耐腐蝕及對人體無毒等優(yōu)點, 被廣泛應(yīng)用于電子、裝飾等領(lǐng)域。本研究采用共沉淀法合成了平均粒徑為15.9 nm的立方相Ce:8YSZ納米粉體。以經(jīng)過800 ℃煅燒4 h的粉體為原料, 通過兩步燒結(jié)技術(shù)制備了具有高光學(xué)透過率和高紅色度的Ce:8YSZ透明陶瓷,并系統(tǒng)研究了空氣預(yù)燒溫度對紅色Ce:8YSZ透明陶瓷微觀結(jié)構(gòu)、直線透過率和色度的影響。當(dāng)預(yù)燒溫度從1200 ℃升高到1300 ℃時, Ce:8YSZ陶瓷的平均晶粒尺寸從0.3 μm增大到2.2 μm, 同時相對密度從87.2%增加到97.1%。經(jīng)過1275 ℃空氣預(yù)燒2 h并結(jié)合1700 ℃熱等靜壓燒結(jié)3 h所得的Ce:8YSZ透明陶瓷表現(xiàn)出最佳的光學(xué)質(zhì)量和最大的紅色度值, 在700 nm處的直線透過率為47.6%, 紅色度為52.0。

    Ce:8YSZ; 紅色透明陶瓷; 空氣預(yù)燒; 熱等靜壓燒結(jié); 光學(xué)性能

    TQ174

    A

    1000-324X(2022)08-0911-07

    10.15541/jim20220025

    date:2022-01-17;

    date: 2022-03-17;

    2022-04-07

    National Key R&D Program of China (2021YFE0104800); Key Research Project of the Frontier Science of the Chinese Academy of Sciences (QYZDB-SSW-JSC022)

    LIU Qiang (1964–), male, professor. E-mail: lq88611338@163.com

    劉強(1964–), 男, 教授. E-mail: lq88611338@163.com

    LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn

    李江, 研究員. E-mail: lijiang@mail.sic.ac.cn

    猜你喜歡
    李江郭先生靜壓
    該干什么干什么
    思維與智慧(2022年3期)2022-04-02 16:22:38
    該干什么干什么
    靜壓法沉樁對周邊環(huán)境影響及質(zhì)量控制
    父親9年20萬字記錄孩子成長
    科教新報(2020年21期)2020-06-05 14:37:33
    “繁華”的地下世界
    靜壓托換樁在某濕陷性黃土場地地基加固中的應(yīng)用
    超精密液體靜壓轉(zhuǎn)臺裝配技術(shù)
    一種基于空氣靜壓支承的自調(diào)心裝置
    Expression and characterization of a bifunctional alginate lyase named Al163 from the Antarctic bacterium Pseudoalteromonas sp. NJ-21*
    樹也要輸液
    老司机影院成人| 久久亚洲精品不卡| 亚洲精品乱码久久久v下载方式| 国产欧美日韩一区二区精品| 国产真实乱freesex| 成年免费大片在线观看| 午夜爱爱视频在线播放| 男人和女人高潮做爰伦理| 国国产精品蜜臀av免费| 91麻豆精品激情在线观看国产| 成年女人永久免费观看视频| 天天躁日日操中文字幕| 99久国产av精品国产电影| 在现免费观看毛片| 少妇人妻精品综合一区二区 | h日本视频在线播放| 夜夜看夜夜爽夜夜摸| 精品熟女少妇av免费看| av在线观看视频网站免费| 91久久精品电影网| 欧美最新免费一区二区三区| 亚洲色图av天堂| 99久久九九国产精品国产免费| 国内精品一区二区在线观看| 日韩欧美在线乱码| 真人做人爱边吃奶动态| 国产大屁股一区二区在线视频| 亚洲在线自拍视频| 看黄色毛片网站| 亚洲性久久影院| 欧美日韩国产亚洲二区| 99久久九九国产精品国产免费| 成年版毛片免费区| 国产老妇女一区| 久久鲁丝午夜福利片| 变态另类成人亚洲欧美熟女| 成年版毛片免费区| 精品一区二区三区视频在线观看免费| 变态另类成人亚洲欧美熟女| 亚洲人成网站在线播放欧美日韩| 你懂的网址亚洲精品在线观看 | 国产精品一区www在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品伦人一区二区| 成熟少妇高潮喷水视频| 99久久成人亚洲精品观看| 成人美女网站在线观看视频| 少妇的逼水好多| 内射极品少妇av片p| 国产毛片a区久久久久| 国产一级毛片七仙女欲春2| 丰满的人妻完整版| 男人的好看免费观看在线视频| 日本在线视频免费播放| 成人亚洲欧美一区二区av| www日本黄色视频网| 中国国产av一级| 熟女人妻精品中文字幕| 国产av麻豆久久久久久久| av在线蜜桃| 五月玫瑰六月丁香| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 精品久久久久久久久av| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 亚洲国产精品成人综合色| 男女视频在线观看网站免费| 亚洲av免费高清在线观看| 最近在线观看免费完整版| 日本撒尿小便嘘嘘汇集6| 晚上一个人看的免费电影| 真实男女啪啪啪动态图| 午夜视频国产福利| 国产成人freesex在线 | 少妇猛男粗大的猛烈进出视频 | 日韩欧美免费精品| 久久久久性生活片| 国产探花极品一区二区| 黄片wwwwww| 日日干狠狠操夜夜爽| 国产精品伦人一区二区| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 国产探花在线观看一区二区| 免费观看在线日韩| 国产一区二区亚洲精品在线观看| 桃色一区二区三区在线观看| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩一区二区精品| 在线国产一区二区在线| 婷婷色综合大香蕉| 天天躁日日操中文字幕| 真实男女啪啪啪动态图| 午夜福利高清视频| 俄罗斯特黄特色一大片| 九九爱精品视频在线观看| 国产精品1区2区在线观看.| 日本 av在线| 久久午夜福利片| 在线播放国产精品三级| 小说图片视频综合网站| 床上黄色一级片| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| 久久国产乱子免费精品| 一级毛片我不卡| 日韩欧美国产在线观看| 亚洲欧美精品自产自拍| 欧美一区二区国产精品久久精品| 老司机午夜福利在线观看视频| 天天一区二区日本电影三级| 色吧在线观看| 久久久色成人| 国产激情偷乱视频一区二区| 成人三级黄色视频| 天天躁日日操中文字幕| 一级毛片aaaaaa免费看小| 在线观看av片永久免费下载| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 久久久国产成人免费| 国产伦精品一区二区三区四那| 男人舔奶头视频| 欧美性感艳星| 亚洲国产精品国产精品| 日韩人妻高清精品专区| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 国产成人freesex在线 | 在线免费十八禁| 中文字幕人妻熟人妻熟丝袜美| 搡老熟女国产l中国老女人| 亚洲精品亚洲一区二区| 亚洲av熟女| 日本三级黄在线观看| 国产高清不卡午夜福利| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 人人妻人人澡人人爽人人夜夜 | 最新在线观看一区二区三区| 亚洲av五月六月丁香网| 日日撸夜夜添| 最近的中文字幕免费完整| 18+在线观看网站| 欧美日本亚洲视频在线播放| 亚洲高清免费不卡视频| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 精品免费久久久久久久清纯| 老师上课跳d突然被开到最大视频| 你懂的网址亚洲精品在线观看 | av免费在线看不卡| 51国产日韩欧美| 91狼人影院| 亚洲精品日韩av片在线观看| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 麻豆成人午夜福利视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品成人久久久久久| 国产一区二区三区在线臀色熟女| 夜夜爽天天搞| 亚洲丝袜综合中文字幕| 精品人妻偷拍中文字幕| 国产成人91sexporn| 给我免费播放毛片高清在线观看| av在线亚洲专区| 午夜影院日韩av| av卡一久久| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久 | 亚洲七黄色美女视频| 蜜桃久久精品国产亚洲av| 亚洲欧美精品综合久久99| 免费看日本二区| 美女被艹到高潮喷水动态| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 在线播放国产精品三级| 日日啪夜夜撸| 一区二区三区免费毛片| 人人妻人人看人人澡| 亚洲自拍偷在线| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 日韩欧美精品v在线| 日韩欧美免费精品| 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 综合色丁香网| 欧美一级a爱片免费观看看| 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 午夜久久久久精精品| 色哟哟哟哟哟哟| 一级毛片久久久久久久久女| 国产成人a区在线观看| 人人妻,人人澡人人爽秒播| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 成人国产麻豆网| 亚洲欧美中文字幕日韩二区| 丝袜喷水一区| 1000部很黄的大片| 日本爱情动作片www.在线观看 | 精品午夜福利在线看| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 哪里可以看免费的av片| 国产久久久一区二区三区| 老熟妇仑乱视频hdxx| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 一级黄片播放器| 黄色日韩在线| 欧美日韩乱码在线| 麻豆一二三区av精品| 久久精品国产自在天天线| 久久九九热精品免费| 搡老熟女国产l中国老女人| 亚洲av.av天堂| 一级黄片播放器| 亚洲成人av在线免费| 97在线视频观看| 亚洲美女搞黄在线观看 | 欧美成人精品欧美一级黄| 欧美区成人在线视频| 噜噜噜噜噜久久久久久91| 直男gayav资源| 又粗又爽又猛毛片免费看| 精品久久久久久久末码| 国产亚洲精品av在线| 久久久久久伊人网av| 麻豆乱淫一区二区| 小说图片视频综合网站| 一夜夜www| 午夜久久久久精精品| 日韩人妻高清精品专区| 99riav亚洲国产免费| 国产精品人妻久久久久久| 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱 | 国产精品久久视频播放| 成人永久免费在线观看视频| 亚洲精品国产成人久久av| 国产aⅴ精品一区二区三区波| 国产真实伦视频高清在线观看| 久久九九热精品免费| 99久久九九国产精品国产免费| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 日韩中字成人| 干丝袜人妻中文字幕| 国产高潮美女av| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 成人漫画全彩无遮挡| 国产成人a区在线观看| 男女下面进入的视频免费午夜| 99热6这里只有精品| 九九在线视频观看精品| 久久韩国三级中文字幕| 人妻制服诱惑在线中文字幕| 欧美性感艳星| 91在线观看av| 狂野欧美激情性xxxx在线观看| 十八禁国产超污无遮挡网站| 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 欧美日本视频| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 国产午夜精品久久久久久一区二区三区 | 丝袜喷水一区| 精品国产三级普通话版| 午夜福利成人在线免费观看| 搡老岳熟女国产| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 久久草成人影院| 你懂的网址亚洲精品在线观看 | 美女大奶头视频| 久久国内精品自在自线图片| 亚洲丝袜综合中文字幕| av免费在线看不卡| 少妇熟女欧美另类| 中文字幕av成人在线电影| 国产精品一及| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 成人av在线播放网站| 日韩在线高清观看一区二区三区| 亚洲熟妇熟女久久| 一级av片app| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| av在线老鸭窝| 日日啪夜夜撸| 99在线人妻在线中文字幕| 国产69精品久久久久777片| 黄色配什么色好看| 精品乱码久久久久久99久播| 亚洲不卡免费看| 国产极品精品免费视频能看的| 床上黄色一级片| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 久久久久国内视频| .国产精品久久| 九色成人免费人妻av| 久久久国产成人精品二区| 久久精品人妻少妇| 国产成人a∨麻豆精品| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放 | 久久久久国内视频| 国产欧美日韩一区二区精品| 欧美+日韩+精品| 深夜a级毛片| 午夜福利视频1000在线观看| 久久久久精品国产欧美久久久| 国产一区二区在线观看日韩| 国产麻豆成人av免费视频| 搞女人的毛片| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片| 寂寞人妻少妇视频99o| 春色校园在线视频观看| 日日摸夜夜添夜夜添av毛片| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 国内揄拍国产精品人妻在线| 亚洲欧美成人综合另类久久久 | 久久精品久久久久久噜噜老黄 | 在线免费观看不下载黄p国产| 亚洲国产精品久久男人天堂| 国产视频一区二区在线看| 亚洲内射少妇av| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 国产老妇女一区| 3wmmmm亚洲av在线观看| 欧美激情在线99| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 深夜a级毛片| 亚洲无线在线观看| 色视频www国产| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| 俺也久久电影网| 久久亚洲国产成人精品v| 日本色播在线视频| 国产精品久久视频播放| 亚洲图色成人| 免费观看在线日韩| 99九九线精品视频在线观看视频| 男人狂女人下面高潮的视频| 大香蕉久久网| 一进一出好大好爽视频| 国模一区二区三区四区视频| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av香蕉五月| 老司机影院成人| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| 久久精品综合一区二区三区| 亚洲国产色片| 免费人成在线观看视频色| 久久精品人妻少妇| 欧美一区二区亚洲| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 一进一出抽搐gif免费好疼| 日韩强制内射视频| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 亚洲色图av天堂| eeuss影院久久| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 成人高潮视频无遮挡免费网站| 国产精品,欧美在线| 直男gayav资源| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 国产精品亚洲一级av第二区| 欧美zozozo另类| 欧美一级a爱片免费观看看| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 老司机午夜福利在线观看视频| 亚洲成人久久性| 国产成人aa在线观看| 精品福利观看| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 午夜影院日韩av| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 国产一区二区亚洲精品在线观看| 免费av观看视频| 久久中文看片网| 欧美xxxx性猛交bbbb| 欧美又色又爽又黄视频| 老司机影院成人| 亚洲av中文av极速乱| 在线观看午夜福利视频| 色视频www国产| 欧美一区二区精品小视频在线| 亚洲人与动物交配视频| 久久精品91蜜桃| 国产精品美女特级片免费视频播放器| 小说图片视频综合网站| 简卡轻食公司| 国产真实伦视频高清在线观看| 国产精品美女特级片免费视频播放器| 欧美日韩在线观看h| 日韩亚洲欧美综合| 自拍偷自拍亚洲精品老妇| 麻豆国产av国片精品| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 免费一级毛片在线播放高清视频| 亚洲18禁久久av| av黄色大香蕉| 少妇丰满av| 久久人妻av系列| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 少妇被粗大猛烈的视频| 性欧美人与动物交配| 深夜a级毛片| 久久久久性生活片| 国产乱人视频| 欧美丝袜亚洲另类| 不卡一级毛片| 美女高潮的动态| 成人av一区二区三区在线看| 俺也久久电影网| 国产乱人视频| 久久久久久久久中文| 久久久久国产网址| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 国产精品国产三级国产av玫瑰| 观看美女的网站| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 国产视频内射| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 99国产极品粉嫩在线观看| 久久午夜福利片| 天堂网av新在线| 欧美一区二区国产精品久久精品| 天堂网av新在线| 黄色视频,在线免费观看| 日韩一区二区视频免费看| 国产亚洲91精品色在线| 欧美日本视频| a级毛片a级免费在线| 成人二区视频| 免费av毛片视频| 99久国产av精品| 欧美+亚洲+日韩+国产| 午夜精品国产一区二区电影 | 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 精品久久久噜噜| 我要搜黄色片| 亚洲无线观看免费| 日韩高清综合在线| 国产高清不卡午夜福利| 国产淫片久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 黄色配什么色好看| а√天堂www在线а√下载| 欧美最黄视频在线播放免费| 超碰av人人做人人爽久久| 国产在线男女| 日日撸夜夜添| 日韩在线高清观看一区二区三区| 激情 狠狠 欧美| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 人妻夜夜爽99麻豆av| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 欧美色视频一区免费| 国产午夜福利久久久久久| 麻豆av噜噜一区二区三区| 日本与韩国留学比较| 中文字幕精品亚洲无线码一区| 国产精品av视频在线免费观看| 亚洲三级黄色毛片| 精品午夜福利在线看| 直男gayav资源| 一进一出好大好爽视频| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| .国产精品久久| 成人无遮挡网站| ponron亚洲| 精品无人区乱码1区二区| 国产成人精品久久久久久| 亚洲精品456在线播放app| 亚洲精品成人久久久久久| 精品久久久久久久末码| av.在线天堂| 高清毛片免费观看视频网站| 国产av在哪里看| 最近2019中文字幕mv第一页| 一区福利在线观看| 直男gayav资源| 嫩草影院精品99| 亚洲性久久影院| 插阴视频在线观看视频| 亚洲中文字幕日韩| 综合色丁香网| 国产免费一级a男人的天堂| 男人的好看免费观看在线视频| 色在线成人网| 国产精品伦人一区二区| АⅤ资源中文在线天堂| 美女被艹到高潮喷水动态| 国产精品久久久久久av不卡| 亚洲av五月六月丁香网| 在线观看美女被高潮喷水网站| 成人特级黄色片久久久久久久| 午夜精品在线福利| 看非洲黑人一级黄片| 成熟少妇高潮喷水视频| 精品久久久久久久久av| 波多野结衣巨乳人妻| 久久久久国内视频| 你懂的网址亚洲精品在线观看 | 99热网站在线观看| 国产av一区在线观看免费| 欧美性感艳星| 久久鲁丝午夜福利片| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 精品乱码久久久久久99久播| 日韩欧美国产在线观看| 18禁在线播放成人免费| 亚洲无线观看免费| 老司机影院成人| 日韩av不卡免费在线播放| 亚洲图色成人| 日韩三级伦理在线观看| 国产精品久久视频播放| 国产日本99.免费观看| 久久国产乱子免费精品| 免费在线观看成人毛片| 99久久九九国产精品国产免费| 俺也久久电影网| 你懂的网址亚洲精品在线观看 | 精品人妻视频免费看| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看| 成人欧美大片| 国产精品精品国产色婷婷| 欧美三级亚洲精品| а√天堂www在线а√下载| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 搡老岳熟女国产| 欧美成人精品欧美一级黄| 久久久精品94久久精品| av在线亚洲专区| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 国内精品宾馆在线| 草草在线视频免费看| 淫妇啪啪啪对白视频| 日日摸夜夜添夜夜爱| 国产亚洲精品久久久久久毛片| 精品日产1卡2卡| 久久中文看片网| 欧美不卡视频在线免费观看| 亚洲精品久久国产高清桃花|