• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    2022-09-29 00:19:52DENGTaoliCHENHexinHEILingliLIShuxingXIERongjun
    無機材料學(xué)報 2022年8期
    關(guān)鍵詞:榮軍色溫白光

    DENG Taoli, CHEN Hexin, HEI Lingli, LI Shuxing, XIE Rongjun

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    DENG Taoli1,2, CHEN Hexin1, HEI Lingli1, LI Shuxing1, XIE Rongjun1

    (1. State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China; 2. College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China)

    Laser-driven white lighting sources have great potential for applications with super-high brightness, high directionality and long distance illumination, but are usually limited by their poor uniformity due to mismatch between blue laser light and phosphor converted light. In this work, a secondary phase of TiO2, BN, Al2O3or SiO2was introduced as scattering media in the Y3Al5O12: Ce3+(YAG) phosphor-in-glass (PiG) film to regulate the light path, where the optimum concentration of the secondary phase was determined, respectively. The images of illumination and speckle, angular distributions of luminance and color temperature, as well as optical properties of the white light produced by the different secondary phases based-YAG PiG films were investigated. The light uniformity in luminance and color temperature is greatly improved by introducing secondary phases, among which TiO2is demonstrated as the best one as it has the largest relative reflective index. In addition, the YAG-TiO2PiG film has the largest luminance saturation threshold of 20.12 W/mm2and the highest luminous flux of 1056.6 lm under blue laser irradiation. This work paves an avenue to choose appropriate scattering media in PiG films for realizing more uniform and brighter laser-driven white lighting source.

    light uniformity; laser-driven white lighting source; scattering; phosphor-in-glass film; optical properties

    Given the laser diodes (LDs) can bear a much higher input power density than light-emitting diodes (LEDs), laser-driven solid state lighting by combining blue LDs with phosphor converters promises super-high-brightness[1-3]. Till now, extensive investigations have been devoted to optical performances of laser-driven lighting sources, such as luminous flux, luminous efficacy, correlated color temperature (CCT) and color rendering index (CRI)[4-7], but the light uniformity receives much less attentions. In fact, the uniformity of the lighting source is an extremely important parameter for the safety uses in some special fields, including high-beam headlamps and endoscopy[8-9].

    Generally, laser light presents a Gaussian distribution (, high energy in the middle and low energy at the edge), and the phosphor converted light follows a Lambert curve (, a uniform spherical cosine emitter). This difference usually yields uneven spatial distribution of the emitted light when they are mixed. Moreover, the blue laser light has a strong emission intensity and high directionality, leading to much poorer angular color uniformity. Therefore, the “blue circle” or “yellow ring” is often observed in the laser-driven white light[10-11].

    Many efforts have been made to improve the mixing uniformity in white LEDs, for example, SiO2or TiO2particles are used as the secondary phases in phosphor layers to enhance the light scattering, which then improves the uniformity of angular CCT[12-15]. Meanwhile, optical software simulations are applied to understand the effect of scattering media, such as CaCO3, CaF2, SiO2and TiO2, on the light uniformity of white LEDs[16]. As far as we know, there are still few studies on regulating the micros-tructure of the phosphor converter for obtaining a high uniformity laser-driven white lighting source. In addition, the methods for evaluating the light uniformity have not been systematically established.

    In this work, we attempt to introduce a secondary phase (., TiO2, BN, Al2O3or SiO2) as scattering media in YAG-PiG films to improve the light uniformity of laser-driven white lighting source. Analyses of the illum-in-ation and speckle images, illuminance curve, luminance and CCT distributions of the different secondary phases based-YAG PiG films under blue laser irradiation have been done to evaluate the optical quality of the white light. This work lays a foundation for regulating the light path in phosphor converters that enable to create high performance laser-driven white lighting sources.

    1 Experimental

    1.1 Materials

    Y3Al5O12: Ce3+(YAG, Rhonda Fluorescent Materials Co., Ltd., China), Al2O3(TAIMICRON, Japan), TiO2(Zhongnuo New Material Technology Co., Ltd., China), BN (AI LAN, China) and SiO2(Sinopharm Chemical Reagent, China) are commercially available. The glass powder SiO2-Al2O3-Na2O-CaO-TiO2(XinghaiGaoke Non- metallic Mining Material Ltd., China), used as the binder, has a particle size of 1.8 μm and a softening temperature of 650 ℃. A certain proportion of ethyl cellulose (Aladdin, China, CP), terpineol (Xilong Scientific Co., Ltd., China, AR) and 2-(2-butoxyethoxy) ethyl acetate (Aladdin, China, 98%) were fully mixed at 80 ℃ for 10 h to prepare the organic vehicle. The single crystal sapphire plates (SA) with a size of 10 mm×10 mm×0.3 mm are commercially available (Crystal-Optiech, China).

    1.2 Fabrication of PiG Films

    The YAG, YAG-TiO2, YAG-BN, YAG-Al2O3and YAG- SiO2PiG films were produced by using a blade-coating method. The phosphor slurry was prepared by fully admixing YAG, glass powders, organic vehicles, and the scattering medium (, Al2O3, TiO2, BN or SiO2) in an agate mortar. The weight ratio of the YAG phosphor to glass powder (PtG ratio) was fixed at 3:7, and the secondary TiO2, BN, Al2O3or SiO2was added with the optimal contents of 20%, 25%, 30% and 30% in mass relative to the phosphor, respectively (Fig. S1, Table S1). The evenly mixed slurry was blade-coated on the SA substrate with a film thickness of 35 μm. Finally, all films were heat-treated at 120 ℃ for 60 min to volatilize the organic glue, and then fired at 650 ℃for 10 min in a Muffle furnace.

    1.3 Characterizations

    The microstructure and elemental mappings were obtained by using a field-emission scanningmicroscope (SEM, SU70, Hitachi, Japan) equipped with an energy dispersive X-ray spectroscope (EDS, X-MaxN, Oxford

    Instruments, UK). The emission spectra and decay curves were measured by using the fluorescence spectrometer (FLS980, Edinburgh Instruments Ltd, UK). The speckle images were captured by a CCD camera (ARTCAM- 0134AR-WOM Series) under the excitation of blue laser (em=445 nm). The luminance uniformity and the light spot diameter were measured in a transmissive configu-ration by using an imaging colorimeter (IC-PMI16- XBND3, Radiant Zemax, USA) under a laser power of 0.015 W. The optical properties of all PiG films under high power density laser irradiation were measured in a transmissive configuration by using a sphere-spectroradiometer system. This system specially consists of a high-power blue laser light source (LSR445CP-FC-48W,Lasever, Ningbo, China) and an integrating sphere (diameter of 30 cm, Labsphere) that is connected to a CCD spectr-ometer (HR4000, Ocean Optics). The incident laser spot has a nearly circular area of 0.5 mm2. The optical power of the blue laser, controlled by the input current, was measured with a laser powermeter (LP-3C, Physcience Opto- Electronics, Beijing, China). The uniformity of color temperature was tested by using an optical test platform from different angles in the range of 10°~170°. The measurement platform consists of an incident blue laser, a sample stand, a semicircular protractor with a radius of about 30 cm, and a spectral color illuminometer (SPIC- 200, Everfine, China). The temperature of the light spot was measured by using an infrared (IR) thermal imager (TIX580, Fluke, USA).

    2 Results and discussion

    2.1 Morphologies of YAG-based PiG films

    The cross-section and top-view SEM images of YAG, YAG-TiO2, YAG-BN, YAG-Al2O3and YAG-SiO2PiG films are shown in Fig.1. All of the phosphor layers with different scattering media (TiO2, BN, Al2O3, SiO2) are uniform with a thickness of 35 μm, where the phosphor particles are well-distributed in the glass matrix. A amount of pores are detected in the YAG-TiO2, YAG-BN and YAG-SiO2PiG films, but the YAG-Al2O3PiG film is smooth and compact, which is probably due to the excellent wetting behavior of Al2O3particles. The SEM-EDS mappings show that TiO2is evenly distributed around the YAG phosphor particle, and no interfacial reactions occur during the firing process, evidenced by the smooth boundary between YAG particles and the glass matrix (Fig.1(k-o)). It is also true for other secondary phases. In addition, the photoluminescence spectra and lifetime of YAG-PiG films are not affected by adding the secondary phases (Fig. S2).

    Fig. 1 (a-e) Cross-section and (f-j) top-view SEM images of (a, f) YAG, (b, g)YAG-TiO2, (c, h) YAG-BN, (d, i) YAG-Al2O3, (e, j) YAG-SiO2 PiG films; (k-o) SEM image of the selected area of the YAG-TiO2 PiG film and corresponding EDS mappings of Y, Al, Ca and Ti

    Fig. 2 (a-e) Illumination images of laser-driven white light sources from YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under excitation of a laser power density of 1.72 W/mm2, and (f-j) speckle images of YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under 445 nm laser excitation

    2.2 Uniformity of the laser-driven white light

    The laser-driven white lighting sources were fabricated by pumping the YAG, YAG-TiO2, YAG-BN, YAG-Al2O3or YAG-SiO2PiG film with blue laser at a power density of 1.72 W/mm2, and their light uniformity is preliminarily evaluatedillumination images (Fig. 2(a-e)). An obvious “blue center” is observed from the YAG PiG film without the addition of secondary phases, and the brightness of the spot center is much higher than that at the edge. By contrast, the light becomes uniform when the YAG-TiO2, YAG-BN, YAG-Al2O3or YAG-SiO2PiG film is used. Further, the light uniformity was detected by the speckle analysis from a CCD detector, as shown in Fig. 2(f-j). It is clear to find that the speckle is serious for the YAG PiG film, and it can be eliminated to some extent with the introduction of TiO2, BN, Al2O3or SiO2. Among them, the YAG-TiO2PiG film has the best uniformity, followed by the YAG-Al2O3and YAG-BN PiG films.

    In addition, the luminance uniformity of the light spot was further evaluated by using the imaging colorimeter (Fig. 3(a)). The luminance of 6×6 matrix points was measured for each light spot. The luminance standard deviationcan be calculated with the formula (1):

    Fig. 3 (a) Luminance of light spots in YAG, YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films under excitation with a laser power of 0.015 W, respectively, (b) luminance distribution curves along the light spot diameter, and (c) photograph of the light spot at a distance of 10 m when the YAG-BN PiG film pumped by a blue LD

    Table 1 Luminance uniformity of YAG-based PiG films with different scattering media

    Further, the light uniformity was evaluated by the CCT and illuminance distribution curves of the white light source at different angles (10°~170°). The “blue center” of the YAGPiG film is reflected by higher CCT values at the center (Fig. 4(a)). The CCT uniformity (Uni) can be defined as the ratio of the minimum CCT (min) to the average CCT (ave), as given in formula (2):

    As summarized in Table 2, the CCT uniformity increases from 10.4% (YAG) to 48.3% (YAG-SiO2), 89.3% (YAG-Al2O3), 94.1% (YAG-BN) and 94.8% (YAG-TiO2), respectively. It means that YAG-TiO2and YAG-BN PiG films can produce better uniformity in CCT. Moreover, the illuminance curve is much closer to the standard cosine curve when the secondary phase is introduced into the YAG PiG film (Fig. 4(b)).

    The above results show that the introduction of a secondary phase can effectively improve the light uniformity of the YAG PiG film, but the effects are different from each other. To understand this difference, we calculate the relative reflective index () for each secondary phase by the Formula (3):

    Fig. 4 (a) CCT and (b) illuminance distribution curves at different angles (10°–170°) of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films

    Table 2 CCT uniformity of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2 PiG films under blue laser excitation

    Table 3 Relative refractive indexes of secondary phases introduced into the YAG-PiG film

    = (1?2)2/ (1+2)2(3)

    Where1is the refractive index of the glass (., 1.5), and2is the refractive index of the secondary phase (Table 3). A largermeans stronger scattering ability, and more uniform light is thus produced. In addition, the pores generated in the PiG film also enhance the light scattering, which definitely contributes to the impr-ovement of the light uniformity. As a result, the YAG- TiO2PiG film with a highestshows the best uniformity in light, luminance and CCT, followed by the YAG-BN and YAG-Al2O3PiG films. It indicates that the secondary phase with a higher relative reflective index enables to produce uniform white light, which provides a selection rule for scattering centers.

    2.3 Optical performances

    As shown in Fig. 5, the internal quantum efficiency (IQE) of the YAG-PiG film is slightly reduced by adding the secondary phase, which may be caused by some unexpected reactions between the phosphor particles and the secondary phases during the sintering process. There is a big drop in absorption efficiency (AE), due to the enhanced light scattering caused by the secondary phases in the PiG films. Therefore, the external quantum effici-ency (EQE) largely declines with the addition of secon-dary phases, typically for BN, which results in the dece-as-ing luminous efficacy of the white light in YAG-basedPiG films (Fig.5(c)).On one hand, less absorption means less heat generation under laser light excitation. On the other hand, the smaller IQE will create more heat, thus increasing the temperature of the PiG films. A balance between them finally determines the total heat prod-uction, and the temperature of the light spot decreases from 185.6 ℃(YAG PiG film) to 98.3, 113.9, 135.5℃for YAG-TiO2, YAG-BN and YAG-Al2O3PiG films, respectively. But for the YAG-SiO2PiG film, the temper-ature increases up to 348.0 ℃ (Fig. S3). As we know, thermal quenching of luminescence usually occurs rapidly at the temperature higher than 200 ℃[17], so the YAG-SiO2PiG film has the lowest luminous flux and luminance saturation threshold. The YAG-TiO2PiG film has the largest luminance saturation threshold of 20.12 W/mm2(11.73 W/mm2for the YAG-PiG film), and hence the highest luminous flux of 1056.6 lm (Fig. 5(b)).

    3 Conclusions

    In this work, the secondary phase of TiO2, BN, Al2O3or SiO2with varying refractive indexes was introduced into the YAG PiG film as scattering centers to obtain high light uniformity laser-driven white lighting sources. The addition of TiO2resulted in the best multidi-me-nsional uniformity in illumination image, speckle image, illuminance curve, CCT and luminance distribution, followed by BN and Al2O3, which is basically consistent with their relative reflective index. In addition, the luminous flux and saturation threshold of the YAG PiG film were improved by introducing the secondary phase except for SiO2, due to the less heat generation under blue laser excitation. The YAG-TiO2PiG film presents a maximal luminance saturation threshold of 20.12 W/mm2and a highest luminous flux of 1056.6 lm. This work provides a simple method for evaluating the light unif-ormity of the white light from multiple dimensions, and suggests a rule for selecting scattering media to realize uniform laser-driven white lighting sources with high luminance.

    Fig. 5 (a) Quantum efficiency and absorption efficiency, (b) luminous flux, and (c) luminous efficacy of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, and YAG-SiO2 PiG films

    Supporting materials

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20220074.

    [1] WIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting., 2013, 7(6): 963–993.

    [2] LI S, WANG L, HIROSAKI N,. Color conversion materials for high-brightness laser-driven solid-state lighting., 2018, 12(12): 1800173.

    [3] LIANG Y, DING X, YAN C,. Phosphor-in-glass (PIG) conve-rter sintered by a fast Joule heating process for high-power laser- driven white lighting., 2021, 29(10): 14218.

    [4] ZHENG P, LI S, WANG L,. Unique color converter archit-ecture enabling Phosphor-in-Glass (PiG) films suitable for high- power and high-luminance laser-driven white lighting., 2018, 10(17): 14930–14940.

    [5] YOU S, LI S, ZHENG P,. A thermally robust La3Si6N11: Ce-in-glass film for high-brightness blue-laser-driven solid state lighting., 2019, 13(2): 1800216.

    [6] YAO Q, HU P, SUN P,. YAG:Ce3+transparent ceramic phos-phors brighten the next-generation laser-driven lighting., 2020, 32(19): 1907888.

    [7] PENG Y, HUANG Y, LEI Z,. Rapid and efficient preparation of phosphor-in-glass converter by induction heating for high-power white LEDs/LDs.,2021, 29: 102839.

    [8] AVANAKI A, ESPIG K, KIMPE T,. Perceptual uniformity of commonly used color spaces.Proceedings of SPIE-The International Society for Optical Engineering, 2014: 9041.

    [9] LIU P, GUAN Z, ZHOU T,. Laser regulation for variable color temperature lighting with low energy consumption by microlens arrays.., 2021, 60(19): 5652–5661.

    [10] MA Y, LUO X. Small-divergent-angle uniform illumination with enhanced luminance of transmissive phosphor-converted white laser diode by secondary optics design., 2019, 122: 14–22.

    [11] CHEN K, HAN H, CHEN H,. White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2nanoparticles., 2014, 6(10): 5378–5383.

    [12] WU B, LUO X, ZHENG H,. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode., 2011, 19(24): 24115–24121.

    [13] LIU J, WANG W, LU X,. Controlling phosphor particle distribution for high-angular-color-uniformity and low-cost LEDs based on thermalcapillary flow., 2021, 68(2): 592-596.

    [14] LAI M, QUOCANH N D, MA H,. Scattering effect of SiO2particles on correlated color temperature uniformity of multi-chip white light LEDs., 2016, 39(4): 468–472.

    [15] HOU Y, CHEN C, YING S,. The effects of TiO2diffuser- loaded encapsulation on corrected color temperature uniformity of remote phosphor white leds., 2019, 9(4): 675.

    [16] NGUYEN A Q D, NGUYEN T T, LEE H. Selection of scattering enhancement particles for improving color homogeneity and luminous flux of phosphor-converted LEDs., 2017, 40(4): 307–312.

    [17] XU Y, LI S, ZHENG P,. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation., 2019, 7(37): 11449–11456.

    Supporting materials:

    Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters

    DENG Taoli1,2, CHEN Hexin1, HEI Lingli1, LI Shuxing1, XIE Rongjun1

    (1. State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Key Laboratory of Surface and Interface Engineering for High performance Materials, College of Materials, Xiamen University, Xiamen 361005, China; 2. College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China)

    Fig. S1 CCT (a) and illuminance (b) distribution curves at different angles (10°~170°) of YAG PiG films with different TiO2,BN, Al2O3, or SiO2contents

    Table S1 CCT uniformity of YAGPiG films with different TiO2,BN, Al2O3, or SiO2contents under blue laser excitation

    UniCCT/%010%15%20%25%30% TiO210.491.594.394.89191 BN10.473.686.988.494.190.9 Al2O310.418.1–84.2–89.3 SiO210.412.113.719.416.248.3

    Fig. S2 Photoluminescence spectra and lifetime of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2PiG films

    Fig. S3 Temperatures of light spots of YAG,YAG-TiO2, YAG-BN, YAG-Al2O3, YAG-SiO2PiG films

    第二相引入熒光轉(zhuǎn)換材料實現(xiàn)激光驅(qū)動高均勻性白光光源

    鄧陶麗1,2, 陳河莘1, 黑玲麗1, 李淑星1, 解榮軍1

    (1. 廈門大學(xué) 材料學(xué)院, 固體表面物理化學(xué)國家重點實驗室, 福建省表界面工程與高性能材料重點實驗室, 廈門 361005; 2. 安順學(xué)院 化學(xué)化工學(xué)院, 安順 561000)

    激光驅(qū)動的白光光源在超高亮度、高準直性和遠距離照明領(lǐng)域具有很大的應(yīng)用潛力, 但由于藍光激光和轉(zhuǎn)換熒光在光源性質(zhì)上的失配, 造成激光驅(qū)動白光光源的光均勻性差。本研究在Y3Al5O12: Ce3+(YAG)熒光玻璃薄膜(PiG)中引入不同種類的第二相, 如TiO2、BN、Al2O3或SiO2作為散射介質(zhì)來調(diào)節(jié)光路, 并對第二相的摻雜濃度分別進行了優(yōu)化。研究分析了摻入不同種類第二相的YAG PiG獲得激光驅(qū)動白光光源的實物照明圖像和散斑圖像、亮度和色溫的角分布情況及其光學(xué)性質(zhì)。結(jié)果發(fā)現(xiàn), 引入第二相大大改善了白光光源的亮度和色溫均勻性, 其中具有最大相對反射率的YAG-TiO2PiG, 獲得綜合性能最佳的高均勻性白光光源, 在藍光激光激發(fā)下, 其發(fā)光飽和閾值和光通量值達到最高, 分別為20.12 W/mm2和1056.6 lm。本研究為熒光轉(zhuǎn)換材料中散射介質(zhì)的選擇提供了指導(dǎo), 為實現(xiàn)高均勻性、高亮度的激光驅(qū)動白光光源奠定了基礎(chǔ)。

    光均勻性; 激光驅(qū)動白光光源; 光散射; 熒光玻璃薄膜; 光學(xué)性質(zhì)

    O482

    A

    1000-324X(2022)08-0891-06

    10.15541/jim20220074

    date:2022-02-15;

    date: 2022-03-23;

    2022-04-07

    National Natural Science Foundation of China (51832005, U2005213); Fujian Provincial Science and Technology Project (2020I0002)

    DENG Taoli (1989–), female, PhD candidate. E-mail: dengtaoli77@163.com

    鄧陶麗(1989–), 女, 博士研究生. E-mail: dengtaoli77@163.com

    LI Shuxing, PhD. E-mail: lishuxing@xmu.edu.cn; XIE Rongjun, professor. E-mail: rjxie@xmu.edu.cn

    李淑星, 博士. E-mail: lishuxing@xmu.edu.cn; 解榮軍, 教授. E-mail: rjxie@xmu.edu.cn

    猜你喜歡
    榮軍色溫白光
    Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
    Traffic flow prediction based on BILSTM model and data denoising scheme
    An extended smart driver model considering electronic throttle angle changes with memory
    Stabilization strategy of a car-following model with multiple time delays of the drivers?
    學(xué)生臺燈色溫 不宜超過4000K
    科教新報(2020年22期)2020-06-11 08:48:29
    基于DALI協(xié)議的色溫可調(diào)節(jié)LED照明控制器
    白光LED無線通信的研究進展
    白光(選頁)
    中國房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    白光LED照明通信關(guān)鍵技術(shù)及發(fā)展趨勢研究
    亚洲少妇的诱惑av| 嫁个100分男人电影在线观看 | 人妻 亚洲 视频| 国产成人a∨麻豆精品| 久久久久视频综合| 高清黄色对白视频在线免费看| 亚洲男人天堂网一区| 乱人伦中国视频| 女性被躁到高潮视频| 久久久久久久久免费视频了| 亚洲成国产人片在线观看| 国产有黄有色有爽视频| 国产av一区二区精品久久| 丝瓜视频免费看黄片| 欧美精品啪啪一区二区三区 | 久久av网站| 日韩视频在线欧美| 中文字幕色久视频| 亚洲av日韩精品久久久久久密 | www.av在线官网国产| 欧美+亚洲+日韩+国产| 丝袜脚勾引网站| 国产av国产精品国产| 亚洲av电影在线观看一区二区三区| 777米奇影视久久| e午夜精品久久久久久久| 久久中文字幕一级| 亚洲av美国av| 91成人精品电影| 在线亚洲精品国产二区图片欧美| 下体分泌物呈黄色| 亚洲av片天天在线观看| 成人影院久久| 又粗又硬又长又爽又黄的视频| 国产麻豆69| 国产色视频综合| 免费女性裸体啪啪无遮挡网站| 亚洲久久久国产精品| 久久精品国产a三级三级三级| 老司机在亚洲福利影院| 亚洲精品av麻豆狂野| 一本色道久久久久久精品综合| 欧美亚洲 丝袜 人妻 在线| 久久女婷五月综合色啪小说| 成年动漫av网址| 亚洲精品国产区一区二| 在线观看免费高清a一片| 亚洲欧洲日产国产| 国产极品粉嫩免费观看在线| 欧美精品人与动牲交sv欧美| 香蕉丝袜av| 国产av一区二区精品久久| 午夜免费成人在线视频| 亚洲国产欧美日韩在线播放| 日韩 亚洲 欧美在线| 欧美人与性动交α欧美软件| 一区二区三区四区激情视频| 成人影院久久| 亚洲成国产人片在线观看| 别揉我奶头~嗯~啊~动态视频 | 国产精品.久久久| 免费在线观看黄色视频的| 十八禁人妻一区二区| 最近最新中文字幕大全免费视频 | 又黄又粗又硬又大视频| 午夜福利影视在线免费观看| 免费在线观看日本一区| 亚洲 欧美一区二区三区| 久久久久久久久免费视频了| 国产精品一区二区在线不卡| 国产精品欧美亚洲77777| svipshipincom国产片| 亚洲国产中文字幕在线视频| 成人三级做爰电影| 国产男人的电影天堂91| 日韩av免费高清视频| 国产亚洲午夜精品一区二区久久| 国产精品欧美亚洲77777| 激情五月婷婷亚洲| 天堂8中文在线网| 91精品国产国语对白视频| 少妇猛男粗大的猛烈进出视频| xxxhd国产人妻xxx| 一区二区三区乱码不卡18| 亚洲国产精品成人久久小说| 九色亚洲精品在线播放| 久久久精品区二区三区| 又紧又爽又黄一区二区| 亚洲自偷自拍图片 自拍| 老司机深夜福利视频在线观看 | 亚洲国产欧美网| 免费一级毛片在线播放高清视频 | 精品国产超薄肉色丝袜足j| 久久久久久免费高清国产稀缺| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 99国产精品免费福利视频| 两个人免费观看高清视频| 日韩视频在线欧美| 欧美黑人精品巨大| 一区福利在线观看| 91麻豆精品激情在线观看国产 | 久久久久网色| 国产老妇伦熟女老妇高清| 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 久久久久国产精品人妻一区二区| a 毛片基地| 建设人人有责人人尽责人人享有的| 国产片特级美女逼逼视频| 精品福利观看| 欧美日韩av久久| 亚洲中文字幕日韩| 成年av动漫网址| 国产爽快片一区二区三区| 国产欧美日韩一区二区三区在线| 男人舔女人的私密视频| 亚洲精品国产av蜜桃| 久久精品国产a三级三级三级| 91成人精品电影| 精品国产一区二区三区四区第35| av欧美777| 久久天堂一区二区三区四区| 18禁国产床啪视频网站| 国产91精品成人一区二区三区 | 亚洲av片天天在线观看| 99久久综合免费| 精品少妇一区二区三区视频日本电影| 欧美97在线视频| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 美女主播在线视频| 中文字幕最新亚洲高清| 无限看片的www在线观看| 亚洲欧美日韩另类电影网站| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品人妻al黑| 婷婷色麻豆天堂久久| 久久久国产一区二区| 国产精品熟女久久久久浪| 久久久久网色| 亚洲五月色婷婷综合| 亚洲伊人色综图| avwww免费| 中文字幕人妻丝袜一区二区| 在线天堂中文资源库| 亚洲人成77777在线视频| 久久国产精品大桥未久av| 香蕉丝袜av| 黄频高清免费视频| 99国产精品一区二区蜜桃av | 国产精品久久久人人做人人爽| 欧美精品高潮呻吟av久久| 亚洲av成人不卡在线观看播放网 | 建设人人有责人人尽责人人享有的| 别揉我奶头~嗯~啊~动态视频 | 国产91精品成人一区二区三区 | 夫妻午夜视频| 多毛熟女@视频| 成人影院久久| 日本av手机在线免费观看| 国产高清国产精品国产三级| 国产日韩一区二区三区精品不卡| 一级毛片女人18水好多 | 久久精品熟女亚洲av麻豆精品| 国产精品香港三级国产av潘金莲 | 精品欧美一区二区三区在线| av又黄又爽大尺度在线免费看| 国产一区亚洲一区在线观看| 国产亚洲午夜精品一区二区久久| 亚洲国产中文字幕在线视频| 搡老乐熟女国产| 校园人妻丝袜中文字幕| 校园人妻丝袜中文字幕| 精品国产国语对白av| 一区二区三区乱码不卡18| 热99国产精品久久久久久7| 国产一区二区三区综合在线观看| 在线观看人妻少妇| 亚洲第一av免费看| 午夜福利一区二区在线看| 宅男免费午夜| 国产亚洲欧美在线一区二区| 永久免费av网站大全| 中文欧美无线码| 国产熟女午夜一区二区三区| 日本vs欧美在线观看视频| 亚洲精品乱久久久久久| 欧美少妇被猛烈插入视频| 久久午夜综合久久蜜桃| 啦啦啦中文免费视频观看日本| 亚洲成人手机| 老司机深夜福利视频在线观看 | 久久精品久久久久久噜噜老黄| 久久精品亚洲av国产电影网| 成人亚洲欧美一区二区av| 欧美日韩亚洲综合一区二区三区_| 在线看a的网站| 久久免费观看电影| 丝袜人妻中文字幕| 国产一区二区三区av在线| 国产成人一区二区三区免费视频网站 | 精品亚洲成a人片在线观看| 国产精品麻豆人妻色哟哟久久| 日本91视频免费播放| 美女中出高潮动态图| 亚洲成人国产一区在线观看 | av天堂久久9| 国产免费视频播放在线视频| 无限看片的www在线观看| 国产日韩欧美视频二区| 亚洲 国产 在线| 国产真人三级小视频在线观看| 蜜桃在线观看..| 久久久久精品人妻al黑| 亚洲欧美精品自产自拍| 这个男人来自地球电影免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99热网站在线观看| av一本久久久久| 日日摸夜夜添夜夜爱| 99国产精品一区二区三区| 亚洲精品第二区| 好男人电影高清在线观看| 国产又爽黄色视频| 99国产精品免费福利视频| 性色av乱码一区二区三区2| 亚洲精品日韩在线中文字幕| 极品人妻少妇av视频| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 欧美性长视频在线观看| 日韩中文字幕欧美一区二区 | 亚洲色图 男人天堂 中文字幕| 女人精品久久久久毛片| 国产高清国产精品国产三级| 9191精品国产免费久久| 国产精品一二三区在线看| 精品人妻1区二区| 免费看不卡的av| 精品国产一区二区三区久久久樱花| 一级,二级,三级黄色视频| 欧美日韩视频精品一区| 女人精品久久久久毛片| 亚洲情色 制服丝袜| 大片免费播放器 马上看| 久久久久国产精品人妻一区二区| 欧美+亚洲+日韩+国产| 精品一品国产午夜福利视频| 国产亚洲欧美在线一区二区| 麻豆av在线久日| 最黄视频免费看| 熟女少妇亚洲综合色aaa.| 最近手机中文字幕大全| 美女午夜性视频免费| 肉色欧美久久久久久久蜜桃| 美女主播在线视频| 极品人妻少妇av视频| 91老司机精品| 国产精品99久久99久久久不卡| 亚洲伊人色综图| 99re6热这里在线精品视频| 国产伦人伦偷精品视频| 亚洲人成电影免费在线| 成人影院久久| 日本欧美国产在线视频| 中文字幕亚洲精品专区| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久久久99蜜臀 | 91精品国产国语对白视频| 国产亚洲av高清不卡| 久久人人97超碰香蕉20202| 日韩欧美一区视频在线观看| 人人妻人人澡人人爽人人夜夜| 18在线观看网站| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 亚洲欧美清纯卡通| 中文字幕制服av| 午夜免费男女啪啪视频观看| 精品久久久久久久毛片微露脸 | 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 亚洲色图 男人天堂 中文字幕| 欧美少妇被猛烈插入视频| 老司机深夜福利视频在线观看 | 免费在线观看影片大全网站 | 亚洲国产精品一区二区三区在线| 国产麻豆69| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 国产在线视频一区二区| 永久免费av网站大全| 一本—道久久a久久精品蜜桃钙片| 一级毛片女人18水好多 | 永久免费av网站大全| 两人在一起打扑克的视频| 亚洲色图综合在线观看| 又紧又爽又黄一区二区| 亚洲欧美色中文字幕在线| 美女中出高潮动态图| 亚洲成av片中文字幕在线观看| 国产免费现黄频在线看| 日本a在线网址| 在线av久久热| 好男人视频免费观看在线| 国产爽快片一区二区三区| 午夜福利,免费看| 日韩av不卡免费在线播放| xxx大片免费视频| 国产精品熟女久久久久浪| 成年av动漫网址| 岛国毛片在线播放| 亚洲五月婷婷丁香| 欧美久久黑人一区二区| 欧美日韩av久久| 搡老岳熟女国产| 你懂的网址亚洲精品在线观看| 日韩一卡2卡3卡4卡2021年| 午夜福利视频精品| 中文字幕亚洲精品专区| 欧美黑人欧美精品刺激| 青草久久国产| 亚洲国产精品一区三区| 精品福利观看| 国产淫语在线视频| 男女免费视频国产| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| videosex国产| 日本色播在线视频| 日本av手机在线免费观看| 丝袜在线中文字幕| 欧美人与善性xxx| 免费观看a级毛片全部| 免费在线观看日本一区| 老司机靠b影院| 精品少妇黑人巨大在线播放| 国产黄色免费在线视频| 国产一区亚洲一区在线观看| 日本欧美国产在线视频| 国产成人一区二区在线| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 亚洲精品国产区一区二| 捣出白浆h1v1| 亚洲人成电影免费在线| 日日夜夜操网爽| 欧美日韩黄片免| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 啦啦啦视频在线资源免费观看| 少妇粗大呻吟视频| 国产精品av久久久久免费| 亚洲国产av影院在线观看| 不卡av一区二区三区| 午夜福利视频在线观看免费| 波野结衣二区三区在线| 99久久精品国产亚洲精品| 最近手机中文字幕大全| 国产又爽黄色视频| 这个男人来自地球电影免费观看| 亚洲av电影在线观看一区二区三区| 免费在线观看影片大全网站 | 精品久久久久久久毛片微露脸 | 久久久久久久国产电影| 精品一品国产午夜福利视频| 大香蕉久久成人网| 国产av国产精品国产| 嫩草影视91久久| 男女之事视频高清在线观看 | 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 人体艺术视频欧美日本| 日韩一卡2卡3卡4卡2021年| 91九色精品人成在线观看| 精品亚洲成国产av| 国产成人精品久久久久久| 欧美中文综合在线视频| 国产视频一区二区在线看| 老汉色av国产亚洲站长工具| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 一区福利在线观看| 亚洲人成电影观看| 中文字幕av电影在线播放| videos熟女内射| 51午夜福利影视在线观看| av网站在线播放免费| 久久久久网色| 午夜福利,免费看| 视频区图区小说| 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 国产伦人伦偷精品视频| 一级毛片电影观看| 飞空精品影院首页| 天天添夜夜摸| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 一二三四社区在线视频社区8| 婷婷色综合大香蕉| 好男人视频免费观看在线| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 日本a在线网址| 免费av中文字幕在线| 又紧又爽又黄一区二区| 亚洲视频免费观看视频| 青草久久国产| 色播在线永久视频| 亚洲欧洲日产国产| 亚洲中文字幕日韩| 亚洲精品美女久久av网站| 女警被强在线播放| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 丝袜美足系列| 欧美成人精品欧美一级黄| 成人亚洲精品一区在线观看| xxx大片免费视频| 国产视频一区二区在线看| 成人免费观看视频高清| 狂野欧美激情性xxxx| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美精品济南到| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 最黄视频免费看| 热99国产精品久久久久久7| 91麻豆精品激情在线观看国产 | 精品少妇一区二区三区视频日本电影| 成人午夜精彩视频在线观看| 麻豆国产av国片精品| 午夜91福利影院| 国产午夜精品一二区理论片| 国产成人av教育| 国产黄色视频一区二区在线观看| 国产在线视频一区二区| 久久国产精品大桥未久av| 尾随美女入室| 亚洲欧洲国产日韩| 中文字幕高清在线视频| 涩涩av久久男人的天堂| 久久天躁狠狠躁夜夜2o2o | 男人舔女人的私密视频| 国产有黄有色有爽视频| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 国产三级黄色录像| 女人精品久久久久毛片| 国产精品免费视频内射| 精品少妇黑人巨大在线播放| e午夜精品久久久久久久| 精品福利观看| 亚洲精品美女久久av网站| 99热网站在线观看| 国产精品99久久99久久久不卡| 男女床上黄色一级片免费看| 亚洲国产av新网站| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 一级片'在线观看视频| 一级黄片播放器| videosex国产| 免费av中文字幕在线| 国产欧美日韩一区二区三 | 午夜免费成人在线视频| 十八禁人妻一区二区| 午夜91福利影院| 黄片小视频在线播放| 各种免费的搞黄视频| 亚洲精品在线美女| 日本a在线网址| 黄色怎么调成土黄色| 日韩电影二区| 又大又黄又爽视频免费| 亚洲午夜精品一区,二区,三区| 国产不卡av网站在线观看| 成人国产av品久久久| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av高清一级| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 中文字幕高清在线视频| 黄片小视频在线播放| 成人三级做爰电影| 亚洲国产精品国产精品| 国产黄频视频在线观看| 亚洲欧美精品综合一区二区三区| 夫妻性生交免费视频一级片| 高潮久久久久久久久久久不卡| 精品视频人人做人人爽| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 国产成人影院久久av| 国产片特级美女逼逼视频| 欧美日韩综合久久久久久| 日日夜夜操网爽| 亚洲男人天堂网一区| 免费av中文字幕在线| 欧美97在线视频| 桃花免费在线播放| 999久久久国产精品视频| 国产精品一国产av| 99热全是精品| 伊人亚洲综合成人网| 久久精品亚洲熟妇少妇任你| 成在线人永久免费视频| 丁香六月欧美| 十八禁网站网址无遮挡| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 成人国产av品久久久| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 成年人午夜在线观看视频| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 久9热在线精品视频| 亚洲欧美日韩另类电影网站| 国产免费福利视频在线观看| 一本久久精品| 黑丝袜美女国产一区| 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| 日本av手机在线免费观看| 91精品三级在线观看| 黄色a级毛片大全视频| 亚洲精品美女久久av网站| 50天的宝宝边吃奶边哭怎么回事| 欧美人与善性xxx| 亚洲情色 制服丝袜| 久久天堂一区二区三区四区| √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 午夜免费观看性视频| 国产精品人妻久久久影院| 在线观看人妻少妇| 桃花免费在线播放| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 中文字幕制服av| 麻豆国产av国片精品| 亚洲精品在线美女| 欧美日韩成人在线一区二区| 亚洲专区国产一区二区| 男的添女的下面高潮视频| 手机成人av网站| 51午夜福利影视在线观看| 国产精品久久久久成人av| 丝袜美腿诱惑在线| 色播在线永久视频| 国产免费现黄频在线看| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 欧美日韩视频高清一区二区三区二| 国产91精品成人一区二区三区 | 涩涩av久久男人的天堂| 性少妇av在线| 亚洲精品一区蜜桃| 精品久久久久久电影网| 亚洲av成人不卡在线观看播放网 | 成人黄色视频免费在线看| 热re99久久精品国产66热6| 亚洲人成电影观看| 国产亚洲一区二区精品| 只有这里有精品99| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 久久精品亚洲av国产电影网| 天堂俺去俺来也www色官网| 免费高清在线观看视频在线观看| 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 日韩视频在线欧美| 午夜久久久在线观看| 午夜福利一区二区在线看| 欧美少妇被猛烈插入视频| 少妇被粗大的猛进出69影院| 国产片内射在线| 亚洲成人国产一区在线观看 | 亚洲国产看品久久| 91麻豆av在线| 日韩电影二区| 男女边吃奶边做爰视频| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| a级片在线免费高清观看视频| 中国国产av一级| 深夜精品福利| 一区二区三区四区激情视频|